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1 INTRODUCTION
1.1 Adjoint-based optimization

Adjoint-based optimization problems typically consist of a simu-
lation that is run forward in simulation time, producing data that
is used in reverse order by a subsequent adjoint computation that
is run backwards in simulation time. Figure 1 shows the result-
ing data flow. Many important numerical problems in science and
engineering use adjoints and follow this pattern.

Since the data for each of the computed timesteps in the forward
simulation will be used later in the adjoint computation, it would
be prudent to store it in memory until it is required again, if the
required amount of memory is indeed available. However, the total
size of this data can often run into tens of terabytes and the manage-
ment of this data becomes a problem in itself. A variety of strategies
exist for this problem - some involve storing this data, sometimes
with some preprocessing, while others work around the problem of
storage by recomputing the discarded data instead. In this paper we
present a new strategy that combines some previously used ones.

1.2 Example adjoint problem: Seismic
inversion

Seismic inversion typically involves the simulation of the propaga-
tion of seismic waves through the earth’s subsurface, followed by a
comparison with data from field measurements. The model of the
subsurface is iteratively improved by minimizing the misfit between
simulated data and field measurement in an adjoint optimization
problem [Plessix 2006].
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Figure 1: The data flow pattern that is typical of adjoint-
based optimization problems

The data collected in an offshore survey typically consists of a
number of “shots” - each of these shots corresponding to different
locations of sources and receivers. As a loose analogy with ma-
chine learning, these correspond to different data points. Since the
gradient computation over a single shot is complex enough that
a single shot can occupy a complete node for 10! — 10? minutes,
the gradient is computed for each of these shots independently and
then collated across all the shots to form a single update that is used
to update the model. It might be evident here that the processing
across shots is easy to parallelize since it requires a small amount of
communication followed by a relatively long period of independent
computation as part of a single iteration of the optimization. Since
the number of shots is typically of the order of 104, this offers ample
opportunity to fill up a large cluster with computation, even if an
individual shot is only processed on a single node of the cluster
at a time. Hence, it is worthy to note that even though this paper
focuses on a single gradient evaluation for a single shot, the overall
problem involves carrying out 10° such evaluations and is typically
run on large clusters for non-trivial amounts of time.

The first part of seismic inversion, i.e. the simulation of seismic
wave propagation through the earth’s subsurface, is typically done
using a finite-difference solver and is called the “forward problem”
in the context of inversion. Looking at this part in isolation, the
data flow here looks like the one shown in figure 2. This illustration
assumes a first-order time-stepper, i.e. the computation of each
timestep only depends on the previous timestep. In such a scenario,
only two timesteps need to be kept in memory - the last computed
step and the one currently being computed. In case of an n-th order
time-stepper, (n + 1) timesteps need to be kept in memory at any
one time. Hence, the memory requirements of the forward problem
can remain constant, regardless of the number of timesteps the
simulation may be run for.

1.3 Memory requirements

A number of strategies are regularly employed to deal with this
enormous volume of data - the simplest of these being to store
it to a disk, to be read later by the adjoint pass in reverse order.
However, typically the computation to be done on this data in the
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Figure 2: The dataflow pattern typical of a forward-only simulation. Boxes represent data and arrows represent computation.

adjoint phase takes much less time than the time taken to read it
from the disk. Hence, reading from the disk becomes the bottleneck
for most practical cases. While this may be one of the simpler
strategies, it leaves a lot of room for improvement in computational
performance. Seeing this from the perspective where thousands of
such computations might be running in parallel on a single cluster
(for different shots), the network bandwidth might restrict the use
of a network storage further, hence only node-local disks may be
suitable for this strategy.

Domain decomposition, where a single shot may be distributed
across more than one node, is often used not only to distribute
the computational workload across more processors, but also to
utilize the large amount of memory available in distributed sys-
tems. While this strategy is very powerful, the number of compute
nodes and therefore the amount of memory that can be used effi-
ciently is limited, for example by communication overheads that
start to dominate as the domain is split into increasingly small
pieces [Virieux et al. 2009]. Secondly, this strategy can lead to a
wastage of resources within the nodes, i.e. using more nodes only
for their memory implies that their CPUs are incompletely utilized.
At the scale of the entire inversion problem, this can sometimes
even lead to a longer time-to-solution, especially when the number
of nodes is less than the number of shots. For example, a problem
setup that requires only 10% more memory than is available on a
single node might not be a good candidate for domain decomposi-
tion over multiple nodes. Lastly, this method is even less applicable
on cloud-based setups since it can be drastically more complicated
to setup and slower due to the communication.

Checkpointing is yet another strategy to reduce the memory
overhead. Only a subset of the timesteps during the forward pass
is stored (and the rest discarded). The discarded data is recomputed
when needed by restarting the forward pass from the last available
stored state. We discuss this strategy in section 3.

Another strategy commonly employed to reduce the memory
footprint of such applications is data compression. This is discussed
in section 2.

Another common strategy in seismic inversion is to only store
values at the boundaries of the domain at each timestep, and re-
construct the rest of the wavefield when required [Clapp 2009;
Yang et al. 2014] with time reversal of the wave equation. However,
this method is not applicable for wave equations that are not time
reversible when for example physical attenuation is included.

In this paper, we extend the previous studies by combining check-
pointing and compression. This is obviously useful when the data
does not fit in the available memory even after compression, for
example for very large adjoint problems, or for problems where the
required accuracy limits the achievable compression ratios.

Compared to the use of only checkpointing without compres-
sion, this combined method often improves performance. This is
a consequence of the reduced size of stored timesteps, allowing

more timesteps to be stored during the forward computation. This
in turn reduces the amount of recomputation that needs to be per-
formed. On the other hand, the compression and decompression
itself takes time. The answer to the question “does compression
pay oftf?”, depends on a number of factors including - available
memory, the required precision, the time taken to compress and
decompress, and the achieved compression factors, and various
problem specific parameters like computational intensity of the
kernel involved in the forward and adjoint computations, and the
number of timesteps.

Hence, the answer to the compression question depends not only
on the problem one is solving (within seismic inversion, there are
numerous variations of the wave equation that may be solved), but
also the hardware specifics of the machine on which it is being
solved. In fact, as we will see in section 5, the answer might even
change during the solution process of an individual problem. This
brings up the need to be able to predict whether compression would
pay off in a given scenario, without incurring significant overheads
in answering this question. In this paper, we present the use of a
performance model to answer that question.

1.4 Summary of contributions
In this paper, we study

o the use of different compression algorithms to seismic data
including six lossless and the two most popular lossy com-
pression algorithms for floating point data,

o a performance model for Revolve alone, taking into account
the time taken to read and write checkpoints, and

e an online performance model to predict whether compres-
sion would speed up an optimization problem.

2 COMPRESSION ALGORITHMS

Data compression is increasingly used to reduce the memory foot-
print of scientific applications. General purpose data compression
algorithms like Zlib (which is a part of gzip) [Deutsch and Gailly
1996], and compression algorithms for video and image data such
as JPEG-2000 [Skodras et al. 2001] have been presented in previous
work. More recently, special purpose compression algorithms for
floating-point scientific data have been developed, such as ZFP or
SZ [Di et al. 2018; Lindstrom 2014].

Lossless algorithms guarantee that the exact original data can be
recovered during decompression, whereas lossy algorithms intro-
duce an error, but often guarantee that the error does not exceed cer-
tain absolute or relative error metrics. Typically, lossy compression
is more effective in reducing the data size. Most popular compres-
sion packages offer various settings that allow a tradeoff between
compression ratio, accuracy, and compression and decompression
time.

Another comonly-observed difference between lossless and lossy
compression algorithms is that lossless compression algorithms
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tend to interpret all data as one-dimensional series only while SZ
and ZFP, being designed for scientific data, tend to take the dimen-
sionality into account directly. This makes a difference in the case
of a wavefield, for example, where the data to be compressed corre-
sponds to a smoothly varying function in (two or) three dimensions
and interpreting this three-dimensional data as one-dimensional
would completely miss the smoothness and predictability of the
data values.

It is worth noting that another data reduction strategy is to type-
cast values into a lower precision format, for example, from double
precision to single precision. This can be seen as a computationally
cheap lossy compression algorithm with a compression ratio of 2.

Perhaps counterintuitively, compression can not only reduce the
memory footprint, but also speed up an application. Previous work
has observed that the compression and decompression time can be
less than the time saved from the reduction in data that needs to
be communicated across MPI nodes or between a GPU and a host
computer [O’Neil and Burtscher 2011].

One way of using compression in adjoint-based methods is to
compress all the timesteps during the forward pass. If the compres-
sion ratio is sufficient to fit the entire data in memory, this enables
solving an adjoint-based optimization problem without resorting to
any of the other techniques previously discussed here. Specifically,
compression serves as an alternate strategy to checkpointing in
this scenario. Previous work has discussed this in the context of
computational fluid dynamics [Cyr et al. 2015; Marin et al. 2016]
and seismic inversion using compression algorithms specifically
designed for the respective applications [Boehm et al. 2016; Dalmau
et al. 2014].

Since the time spent on compressing and decompressing data is
often non-negligible, this raises the question whether the computa-
tional time is better spent on this compression and decompression,
or on the recomputation involved in the more traditional check-
pointing approach. This question was previously answered to a
limited extent for the above scenario where compression is an alter-
native to checkpointing, in a specific application [Cyr et al. 2015].
We discuss that in section 4.

2.1 Lossless

We use the python package blosc [blo [n. d.]], which includes im-
plementations for six different lossless compression algorithms,
namely ZLIB, ZSTD, BLOSCLZ, LZ4, LZ4HC and Snappy. All these
algorithms look at the data as a one-dimensional stream of bits and
at least the blosc implementations have a limit on the size of the
one-dimensional array that can be compressed in one call. There-
fore we use the python package blosc-pack, which is a wrapper
over the blosc library, to implement chunking, i.e. breaking up the
stream into chunks of a chosen size, which are compressed one at
a time.

2.2 Lossy

2.2.1 ZFP. We use the lossy compression package ZFP [Lind-
strom 2014] developed in C. To use ZFP from python, we developed
a python wrapper for the reference implementation of ZFP 1.

1To be released open source on publication
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ZFP supports three compression modes, namely fixed-tolerance,
fixed-precision and fixed-rate. The fixed-tolerance mode limits the
absolute error, while the fixed-precision mode limits the error as
a ratio of the range of values in the array to be compressed. The
fixed-rate mode achieves a guaranteed compression ratio requested
by the user, but does not provide any bounds on accuracy loss.

2.2.2 SZ SZ [Diet al. 2018] is a more recently developed com-
pression library, also focussed on lossy compression of floating-
point scientific data, also developed in C. We also wrote a python
wrapper for the reference implementation of SZ to use it as part of
our benchmark suite. ?

SZ supports four compression modes, namely absolute error
mode, which, similar to ZFP’s fixed-tolerance mode, allows the user
to control the maximum pointwise error in absolute values. The
relative ratio mode of SZ allows the user to specify a maximum error
as a ratio of the range of values in the array, which is effectively
similar to ZFP’s fixed-precision mode but not exactly. SZ has two
other modes that are missing in ZFP, namely pointwise relative
error and pointwise SNR mode. In the pointwise relative error
mode, the user can provide a relative error ratio and SZ will ensure
that the error at each point is within that ratio, considering its
absolute value. In the pointwise SNR mode, the user provides a
signal-to-noise ratio value that SZ respects at each point.

ZFP’s fixed-rate mode, that guarantees compression ratios, could
make an implementation quite straightforward, but with no error
guarantees, it might affect the numerical properties of the problem
too much. ZFP’s fixed-precision mode can be compared to SZ’s
relative error mode although not directly. ZFP claims to achieve the
best "compression efficiency” in the fixed-tolerance mode, and since
this is the mode most readily comparable with SZ in its absolute
error mode, we chose to do all the tests using this mode.

2.3 Combining lossy and lossless compression

Another approach we attempted is a combination of lossy and
lossless compression schemes to achieve an overall lossless com-
pression scheme. Here, the checkpoint is first compressed using a
lossy compression scheme, following which the errors incurred by
this lossy scheme are passed on to a lossless scheme for compres-
sion. The idea is that the distribution of errors incurred by a lossy
compression algorithm might make it more favourable for lossless
compression than the original array.

3 REVOLVE: PERFORMANCE MODEL

Checkpointing is a commonly used strategy to reduce the memory
footprint of adjoint problems. Here, depending on the memory
available, some timesteps computed in the forward pass are stored,
while others are discarded. The ones that were discarded are later
recomputed by rerunning the forward pass from the last stored
checkpoint. The Revolve algorithm [Griewank and Walther 2000]
provides an answer to the question of which timesteps should be
stored and which states should be recomputed to minimize the total
amount of recomputation work. Other authors have subsequently
developed extensions to Revolve that are optimal under different
assumptions [Aupy and Herrmann 2017; Aupy et al. 2016; Schanen

2 Also to be released open source upon publication
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et al. 2016; Stumm and Walther 2009; Wang et al. 2009]. Previous
work has applied checkpointing to seismic imaging and inversion
problems [Datta et al. 2018; Symes 2007].

In this section, we build on the ideas introduced in [Stumm and
Walther 2009] to build a performance model that can be used to
predict the runtime of an adjoint computation that uses the Revolve
checkpointing strategy. We call the time taken by a single forward
computational step Cr and correspondingly, the time taken by a
single backward step Cg. For a simulation with N timesteps, the
minimum wall time required for the full forward-adjoint evaluation
is given by

IN =Cp-N+Cgr-N (1)
If the size of a single timestep in memory is given by S, this requires
a memory of at least size S - N. If sufficient memory is available, no
checkpointing or compression is needed.

If the memory is smaller than S - N, Revolve provides a strat-
egy to solve for the adjoint field by storing a subset of the N total
checkpoints and recompute the remaining ones. The overhead intro-
duced by this method can be broken down into the recomputation
overhead Og and the storage overhead Og. The recomputation
overhead is the amount of time spent in recomputation, given by

Or(N,M) = p(N, M) - Cr, @

where p(N, M) is the minimum number of recomputed steps from
[Griewank and Walther 2000], reproduced here in equation 3. In
equation 3, M is the number of checkpoints that can be stored in
memory. Note that for M >= N, Og would be zero. For M < N,
OpR grows rapidly as M is reduced relative to N.

In an ideal implementation, the storage overhead Og might be
zero, since the computation could be done “in-place”, but in practice,
checkpoints are generally stored in a separate section of memory
and they need to be transferred to a “computational” section of
the memory where the computation is performed, and then the
results copied back to the checkpointing memory. This copying is
a common feature of checkpointing implementations, and might
pose a non-trivial overhead when the computation involved in a
single timestep is not very large. This storage overhead is given by:

S
B 4
where W is the total number of times Revolve writes checkpoints
for a single run, N is the number of times checkpoints are read, and
B is the bandwidth at which these copies happen. The total time to
solution becomes

Tr = Cfp N+ Cgr - N+ Or(N, M) + Ogr(N, M) (5)

S
Osr(N,M) = W(N, M) - B +N-

4 PERFORMANCE MODEL INCLUDING
COMPRESSION

By using compression, the size of each checkpoint is reduced and
therefore the number of checkpoints available is increased (M in
equation 3). This reduces the recomputation overhead Og, while
at the same time adding overheads related to compression and
decompression in Og. To be beneficial, the reduction in Og must
offset the increase in Ogp, leading to an overall decrease in the
time to solution T.

Our performance model assumes that the compression algorithm
behaves uniformly across the different time steps of the simulation,

Anon.

i.e. that we get the same compression ratio, compression time and
decompression time, no matter which of the N possible checkpoints
we try to compress/decompress. The storage overhead now becomes

S
Osr(N,M) =W(N,M - F) - (ﬁ + tc) +

N S +t
F-B ¢

where F is the compression ratio (i.e. the ratio between the uncom-
pressed and compressed checkpoint), and t. and t; are compression
and decompression times, respectively. At the same time, the re-
computation overhead decreases because F times more checkpoints
are now available.

(6)

5 ACCEPTABLE ERRORS AND
CONVERGENCE

Our performance model is designed to be agnostic of the specific
adjoint-based optimization problem being solved. This is because
we envision its use in a generic checkpointing runtime that man-
ages the checkpointed execution of the optimization problem that
accepts an acceptable error tolerance as an input parameter for each
gradient evaluation and determines whether or not compression
can pay off for that iteration, and if yes, which of the available strate-
gies is to be used. This last question has previously been addressed
previously in literature but in more specific contexts [Kunkel et al.
2017; Tao et al. 2018].

One question that arises in evaluating derivatives on grids com-
pressed (and decompressed) using lossy compression is the numer-
ical stability of the computed derivatives, since errors in neigh-
bouring points can accumulate in the derivative rather quickly,
rendering the derivatives unusable. This question was addressed
for ZFP [zfp [n. d.]] and SZ[Tao et al. 2017] separately.

In the context of seismic inversion, it has been shown before
that the precision required in the gradient evaluation is very low
in the beginning of the optimization and accurate gradients are
not needed until the optimization is close to a minimum [Boehm
et al. 2016; van Leeuwen and Herrmann 2014]. This is perhaps
quite intuitive since, being far from a minimum in the beginning,
a gradient pointing in the approximate direction of the relevant
minimum is sufficient to make progress. These initial iterations
could use a more aggressive lossy compression strategy to accel-
erate (through compression) the progress towards the minimum.
Once the optimization is within the vicinity of the minimum, the
gradient is required at a higher accuracy to make any progress,
and this performance model can then dynamically decide to dis-
able compression for those iterations where a more accurate, albeit
slower, gradient evaluation is preferred.

There is also a body of work that addresses convergence guar-
antees of trust-region based optimization methods in the presence
of unreliable gradients. This was primarily done for the scenario
where the gradient (and sometimes the functional itself) is known
with a probability p. [Blanchet et al. 2016; Cartis and Scheinberg
2017; Chen et al. 2018] It was shown here that the convergence
rate is only affected by a factor that is a linear function of p. This
analytical framework could be extended to provide bounds on the
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N(N - 1)z, M =1
PIN-MY=1" in (N+p(N, M) +p(N-N, M~ 1)}, ifM>1
1<=N<=N
®3)

accuracy required in a particular gradient evaluation in order to
guarantee a certain convergence rate.

Both these analyses stop at the required accuracy in the gradient
evaluation. This needs to be extended to derive acceptable error
tolerances in individual grid points corresponding to a specific error
bound in the overall gradient evaluation.

6 PROBLEM AND TEST CASE

We use Devito [Louboutin et al. 2018; Luporini et al. 2018] to
solve forward and adjoint wave equation problems. Devito is a
domain-specific language that enables the rapid development of
finite-difference solvers from a high-level description of partial
differential equations. The simplest version of the seismic wave
equation is the acoustic isotropic wave equation defined as:

0%u(t, x)

rramie VZu(t, x) = g(t, x), (7)

m(x)

where m(x) = % is the squared slowness, c(x) the spatially de-
pendent speed of sound, u(t, x) is the pressure wavefield, VZu(t, x)
denotes the laplacian of the wavefield and q(t, x) is a source term.

The solution to equation 7 forms the forward problem. The
seismic inversion problem minimizes the misfit between simulated
and observed signal given by:

. 1
mnllnﬁbs(m) = 5 ldsim — dohs”% : )

We call the kernel derived from a basic finite difference formu-
lation of Equation 7, the OT2 kernel because it is second-order
accurate in time. We also use another formulation from Louboutin
et al. [2018], which is 4th-order accurate in time. We call this the
OT4 kernel.

This optimization problem is usually solved using gradient based
methods such as steepest descent, where the gradient is computed
using the adjoint-state method that involves the data-flow pattern
from Figure 1.

The values of m(x) used in this work are derived from the Over-
thrust model [Aminzadeh et al. 1996] over a grid of 287 X 881 x 881
points, including an absorbing layer of 40 points on each side. The
grid spacing is 25m in space. The propagation time is 4sec that
corresponds to 2500 timesteps. The wave field at the final time is
shown in Figure 3. The uncompressed size of this single time step
field is just under 900MB. If one were to store all the timesteps, this
would require 2.3TB of memory.

To implement Revolve with Devito, we use pyRevolve [Kukreja
et al. 2018] which is a python library to manage the execution of
checkpointed adjoint computations. The performance model in
section 3 assumes that the implementation is similar to pyRevolve,
which stores a checkpoint by copying a portion of the operator’s
working memory to the checkpointing memory and similarly loads
a checkpoint by copying from the checkpointing memory to the
operator’s working memory. Although a perfect implementation
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Figure 3: Cross-section of the wavefield used as a refer-
ence sample for compression and decompression. This field
was formed after a Ricker wavelet source was placed at
the surface of the model and the wave propagated for 2500
timesteps. This is a vertical (x-z) cross-section of a 3D field,
taken at the y source location

Variation of achievable compression ratio as the simulation progresses
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Figure 4: Compression ratios achieved on compressing dif-
ferent time steps. Every timestep from 1 to 2526 was com-
pressed and plotted.

of checkpointing may be able to avoid these copies, the overhead
attached to these copies can be ignored for an operator that is
sufficiently computationally intensive. However, we include the
overheads in the model to verify this assumption.

For benchmarking we used a dual-socket Intel(R) Xeon(R) Plat-
inum 8180M @ 2.50 Ghz (28 cores each) (skylake).

7 RESULTS AND DISCUSSION

7.1 Evolution of compressibility

To understand the compressibility of the data produced in a typical
wave-propagation simulation, we ran a simulation as per the setup
described in section 6, and tried to compress every single timestep.
For this we chose ZFP in fixed tolerance mode at some arbitrary
tolerance level. We noted the compression ratios achieved at every
timestep. As figure 4 shows, the initial timesteps are much easier
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Figure 5: Cross-section of the field that shows errors in-
troduced during compression and decompression using the
fixed-tolerance mode. It is interesting to note that the errors
are more or less evenly distributed across the domain with
only slight variations corresponding to the wave amplitude
(from the field plot in Figure 3. A small block-like structure
characteristic of ZFP can be seen.

to compress than the later ones. This is not surprising since most
wave simulations start with the field at rest, i.e. filled with zeros.
As the wave reaches more parts of the domain, the field becomes
less compressible until it achieves a stable state when the wave has
reached most of the domain.

If the simulation had started with the field already oscillating in
a wave, it is likely that the compressibility curve for that simulation
would be flat.

This tells us that the compressibility of the last timestep of the
solution is representative of the worst-case compressibility and
hence we used the last timestep as our reference for comparison of
compression in the following sections.

7.2 Lossless compression

Table 1 shows the compression ratios and times for a few different
lossless compressors and their corresponding settings. As can be
seen, the compression factors achieved, and the time taken to com-
press and decompress can vary significantly, but it is hard to say
whether this compression could be used to speed up the inversion
problem.

7.3 Lossy Compression

Figure 6 shows compression ratios for different tolerance settings
for the fixed-tolerance mode of ZFP. The point highlighted here
was the setting used to compress all timesteps in section 7.1. Figure
5 shows the spatial distribution of the errors after compression and
decompression, compared to the original field, for this setting.

7.4 Performance Model

Using the results so far, it was evident that the use of compression
can sometimes speed up an adjoint problem and may sometimes
slow it down. For the generic and effective use of compression in
adjoint problems, we need to be able to predict and choose between
various kinds of compression and their settings, or even to switch off
compression when appropriate. For this purpose, the performance
model in section 4 was developed.

To study the performance model, we first visualize it along the
axis of available memory, comparing the predicted performance of
the chosen compression scheme with the predicted performance of
a Revolve-only adjoint implementation. This is shown in Figure 7

Anon.
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Figure 6: Compression ratios achieved on compressing the
wavefield. We define compression ratio as the ratio between
the size of the uncompressed data and the compressed data.
The dashed line represents no compression. The highlighted
point corresponds to the setting used for the other results
here unless otherwise specified.

where we can distinguish three different scenarios, depending on
the amount of available memory.

(1) If the memory is insufficient even with compression to store
the entire trajectory, one can either use checkpointing only,
or combine checkpointing with compression. This is the left
section of the figure.

(2) If the available memory is not sufficient to store the un-
compressed trajectory, but large enough to store the entire
compressed trajectory, we compare two possible strategies:
Either use compression only, or use checkpointing only. This
is the middle section of the figure.

(3) If the available system memory is large enough to hold the
entire uncompressed trajectory, neither compression nor
checkpointing is necessary. This is the right section of the
figure.

The second scenario was studied in previous work [Cyr et al.
2015], while the combined method is also applicable to the first
scenario, for which previous work has only used checkpointing
without compression.

We can identify a number of factors that make compression
more likely to be beneficial compared to pure checkpointing: A
very small system memory size and a large number of time steps
lead to a rapidly increasing recompute factor, and compression
can substantially reduce this recompute factor. This can be seen in
Figures 7 and 9.

The extent to which the recompute factor affects the overall
runtime also depends on the cost to compute each individual time
step. If the compute cost per time step is large compared to the
compression and decompression cost, then compression is also
likely to be beneficial, as shown in Figure 8. As the time per time
step increases and the compression cost becomes negligible, we
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Compressor ‘ Chunk size(bytes) ‘ Shuffle Mode ‘ Setting | Compression time(ms) ‘ Decompression time(ms) ‘ Compression Ratio

BloscLZ 1048576 SHUFFLE 6
LZ4 2965280 SHUFFLE 4
LZ4HC 2097152 SHUFFLE 8
ZLib 524288 SHUFFLE 7
ZStd 524288 SHUFFLE 9

4249.44 1288.86 1.188
1371.26 920.98 1.199
31245.16 926.69 1.265
30218.81 2470.04 1.291
117238.76 1477.34 1.312

Table 1: Some results from trying out all possible compressors and settings in blosc. We selected the best compression ratio
seen for each compressor. "Setting" here is the choice between speed and compression, where 0 is fastest and 9 is highest

compression.
Speedup for varying peak memory

6 \ - Orig !

l ! 0.25 !

i I ——- 083 !

51 5 [P 2.0 I

H | —- 8.0 |

i i i
E HN HE
41 4 i i
= :' © ]
= i\ 1o R
a 2 | N
> \ B Timesteps: 2526, =]
o s |w© Size of checkpoint (MB): 891.032828, |©
@ 34 \ H Time for compute step (s): 1.11, N
@ A% | Bandwidth (MB/s): 8139.2, | o~

Q \B \ Compression Factor: 41,

w0 \ Compression Time (s): 0.36, 1

\ | Decompression time (s): 1.6, |

\ Theoretical decompression time (s): 0.396, *

2 \ | Platform: Skylake |

| |

|

] ]

<r' n AD'

o o o

— - —
Memory (MB)

Figure 7: The speedups predicted by the performance model
for varying memory. The baseline (1.0) is the performance of
a Revolve-only implementation under the same conditions.
The different curves represent kernels with differing com-
pute times (represented here as a factor of the sum of com-
pression and decompression times). The first vertical line at
53GB marks the spot where the compressed wavefield can
completely fit in memory and Revolve is unnecessary if us-
ing compression. The second vertical line at 2.2 TB marks
the spot where the entire uncompressed wavefield can fit in
memory and neither Revolve nor compression is necessary.
The region to the right is where these optimizations are not
necessary or relevant. The middle region has been the sub-
ject of past studies using compression in adjoint problems.
The region to the left is the focus of this paper.

observe that the ratio between the runtime of the combined method
and that of pure checkpointing is only determined by the difference
in recompute factors.

7.5 Validation of model

To validate the revolve-only performance model, figure 10 shows
the predicted runtime for a variety of peak memory constraints
along with measured runtime for the same scenario. Next, we test
the performance model with compression. Figure 11 shows a com-
parison of predicted and measured runtimes for the OT2 kernel,
which has a relatively lower computational complexity.

Speedup for varying compute time per timestep
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Figure 8: The speedups predicted by the performance model
for varying compute cost. The baseline (1.0) is the perfor-
mance of a Revolve-only implementation under the same
conditions. The benefits of compression drop rapidly if the
computational cost of the kernel that generated the data is
much lower than the cost of compressing the data. For in-
creasing computational costs, the benefits are bounded.

Figure 12 repeats this experiment for the OT4 kernel which has
a higher computational complexity. It can be seen that compression
pays off more when the computational complexity of the kernel is
higher, as can be expected.

7.6 Accumulation of errors

Table 2 shows the effect of different levels of pointwise absolute
error on the overall error in the gradient evaluation.

8 CONCLUSIONS AND FUTURE WORK

We use lossless and lossy compression to reduce the computational
overhead of checkpointing in an adjoint computation used in seis-
mic inversion, a common method in seismic imaging applications
whose memory footprint commonly exceeds the available mem-
ory size in high performance computing systems. We saw that the
compression ratios achieved and the time taken to compress and
decompress can vary a lot based on the choice of compressor and
whether and how much error it is possible to tolerate in the gradient
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Speedup for varying number of timesteps
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Figure 9: The speedups predicted by the performance model
for varying number of timesteps to be reversed. The baseline
(1.0) is the performance of a Revolve-only implementation
under the same conditions. It can be seen that compression
becomes more beneficial as the number of timesteps is in-
creased.

Comparison of predicted and measured runtimes for OT2 kernel without compression
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Figure 10: Predicted vs measured runtimes for OT2 kernel
and no compression. This tests the performance model for
checkpointing alone

evaluation. We saw that it is possible to compute the gradient after
lossy checkpointing without affecting the stability of the numeri-
cal algorithm. We also saw that the tolerable error in the gradient
evaluation can vary from iteration to iteration within the same opti-
mization problem. Hence, the question, "Will compression speed up
the gradient evaluation?" can not be answered at a general level and
has to be evaluated at the problem and iteration level. To this end,
we developed a performance model that computes whether or not
the combination of compression and checkpointing will outperform
pure checkpointing or pure compression in a variety of scenarios,
depending on the available memory size, computational intensity
of the application, and compression ratio and throughput of the
compression algorithm. In an ideal implementation, the evaluation
of various compressors and settings would be distributed across

Anon.

Comparison of predicted and measured runtimes for OT2 kernel with compression
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Figure 11: Predicted vs measured runtimes for OT2 kernel
and ZFP compression enabled with absolute error tolerance
set to 107°. This tests the performance model for checkpoint-
ing combined with compression

Comparison of predicted and measured runtimes for OT4 kernel with compression
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Figure 12: Predicted vs measured runtimes for OT4 kernel
and ZFP compression enabled with absolute error tolerance
set to 107°.

Absolute error setting | Gradient error

0.1 662.905
0.01 70.619
0.001 10.485

0.0001 0.763
107° 0.194
107 0.154
1077 0.151

Table 2: The effect of pointwise checkpoint-(de)compression
errors on the overall gradient computation errors. Absolute
error was set in ZFP using the fixed-tolerance mode and the
gradient error is the 2-norm of the error tensor in the gradi-
ent, as compared with an exact computation.

nodes, while doing the first few shots/iterations and the results
collated to arrive at a central decision about whether to enable
compression for successive shots/iterations. Our current result has
several limitations that we plan to address in future work:
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o The discussion in section 5 can be extended with an analysis
that can derive pointwise bounds on checkpoint compres-
sion, given an error bound on the gradient evaluation.

e Our performance model is based on uniform compression
ratios and times. However, many applications, including
seismic inversion, are likely to have initial conditions that
contain little information and are easily compressed, and the
compression ratio gradually declines as the field becomes
more complex. We based our experiments on the final wave
field, which is presumably difficult to compress.

e In comparing pure compression with pure checkpointing,
we assume that every checkpoint is compressed and decom-
pressed. However, if the available memory is only slightly
less than the required memory, an implementation that com-
presses only a subset of the checkpoints might outperform
the expectations of our model.

e We do not discuss multi-level checkpointing, where some
checkpoints are stored on a slower, larger device. We ex-
pect compression to be beneficial in these scenarios due to
reduced data transfer sizes.

e To fully take advantage of checkpoint compression, the
checkpointing scheduling algorithm needs to be aware of
the size of each checkpoint after compression, since the com-
pression ratio is different for each timestep. Since Revolve
assumes uniform checkpoint sizes, it needs to be extended
for the case where the checkpoint size is non-uniform and
only known after compression.
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