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Abstract—Many seismic exploration techniques rely on the
collection of massive data volumes that are mined for infor-
mation during processing. This approach has been extremely
successful, but current efforts toward higher-resolution images in
increasingly complicated regions of the Earth continue to reveal
fundamental shortcomings in our typical workflows. The “curse
of dimensionality” is the main roadblock, and is exemplified by
Nyquist’s sampling criterion, which disproportionately strains
current acquisition and processing systems as the size and desired
resolution of our survey areas continues to increase.

We offer an alternative sampling strategy that leverages recent
insights from compressive sensing towards seismic acquisition
and processing for data that are traditionally considered to be
undersampled. The main outcome of this approach is a new
technology where acquisition and processing related costs are no
longer determined by overly stringent sampling criteria.

Compressive sensing is a novel nonlinear sampling paradigm,
effective for acquiring signals that have a sparse representation
in some transform domain. We review basic facts about this new
sampling paradigm that revolutionized various areas of signal
processing, and illustrate how it can be successfully exploited in
various problems in seismic exploration to effectively fight the
curse of dimensionality.

Index Terms—Compressive sensing, curvelet transform, spar-
sity promotion, exploration seismology, seismic acqusition, seis-
mic imaging, seismic inversion, and convex optimization

I. THE CURSE OF DIMENSIONALITY IN SEISMIC
EXPLORATION

Modern-day seismic-data processing, imaging, and inver-
sion rely increasingly on computationally and data-intensive
techniques to meet society’s continued demand for hydrocar-
bons. This is problematic because this leads to exponentially
increasing costs as the size of the area of interest increases.
Motivated by recent findings from compressive sensing (CS)
and earlier work in seismic data regularization [55] and phase
encoding [52], we confront the challenge of the curse of
dimensionality with a randomized dimensionality-reduction
approach that decreases the cost of acquisition and subsequent
processing significantly. Before we discuss possible solutions
to the “curse of dimensionality in exploration seismology”,
let us first briefly discuss how sampling is conducted in
exploration seismology.
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Özgür Yılmaz is with the Department of Mathematics, The University of
British Columbia, Vancouver, Canada.

A. Classical approaches

During seismic data acquisition, data volumes are collected
that represent dicretizations of analog finite-energy wavefields
in up to five dimensions including time. So, we are concerned
with the acquisition of an analog spatio-temporal wavefield
f̄(t, x) ∈ L2((0, T ] × [−X,X]) with time T in the order of
seconds and length X in the order of kilometers. The sampling
intervals are of the order of milliseconds and of meters. Math-
ematically, high-resolution sampling of a continuous seismic
wavefield can be written as

f [q] = Φs[q]f̄ , q = 0, · · · , N − 1,

where N is the total number of samples, and where Φs is the
sampling operator and models the characteristics of the devices
that are used to collect the measurements, i.e., geophones,
including analog-to-digital conversion.

It is convenient to organize these high-resolution samples
into a vector f :=

{
f [q]

}
q=0,··· ,N−1

∈ RN . Note that in
practice often we have missing samples, i.e., instead of f , the
acquired data is b = Rf where R is a n×N restriction matrix
that consists of n rows of the N ×N identity matrix.

B. Bottlenecks and compromises

Unfortunately, pressures for increased resolution (i.e., in-
creasing N ) and increasing dimenions (with f̄(t, x) ∈
L2((0, T ] × [−X,X]4), two dimensions for the source and
two dimensions for the receivers) make complete sampling
(n = N ) economically and physically infeasible and data is
sampled at a rate below Nyquist, i.e., n� N . For the spatial
coordinates, this typically corresponds to periodic subsampling
of the sources/receivers while the total acquistion time is
reduced by reducing the time of the sequential single-source
experiments. Unfortunately, these subsamplings can lead to
serious artifacts and a lot of research has recently been devoted
to come up with improved sampling schemes that randomize
spatial locations of sources and receivers or that randomize
the sources, e.g., by random dithering of marine sources or by
source encodings on land.

C. Dimensionality reduction by Compressive Sensing

While recent proposals to expedite seismic acquisition or
computations through simultaneous sourcing have proven suc-
cessful, the proposed methods miss a rigorous framework
that would allow for the design of rigorous workflows. By
recognizing these clever new sampling schemes as instances
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of CS, we are able to make a start towards sampling and
computation strategies that employ structure in seismic data,
which translates into transform-domain sparsity. This attribute
allows us to come up with sub-Nyquist sampling schemes
whose sampling is proportional to the sparsity rather than
to the dimensionality of the problem. The success of these
techniques hinges on subsamplings that break periodicty of
conventional samplings. To demonstrate how this works, we
first give a brief introduction to the theory CS, followed by its
application to problems in exploration seismology. Because
recovery from the subsamplings depends on solving large-
scale optimization problems, we reserve a discussion of this
important topic towards the end of this paper.

II. COMPRESSIVE SAMPLING AS A DIMENSION REDUCTION
METHOD

Various classes of signals such us audio, images, and
seismic signals admit sparse approximations, i.e., they can be
well-approximated by a linear superposition of a few atoms
of an appropriate basis, or more generally, a redundant frame.
Compressed sensing (or compressive sampling)—following
the breakthroughs by Candès, Romberg, and Tao [10] and
Donoho [23]—has emerged as a novel paradigm for sensing
such signals more efficiently as compared to the classical
approach based on Shannon-Nyquist sampling theory. Signals
that admit sparse approximations can be acquired from sig-
nificantly fewer measurements than their ambient dimension
by means of nonlinear recovery algorithms, e.g., one-norm
minimization or greedy algorithms such as OMP [59] (the
anti-leakage Fourier transform, [63] is a special case of OMP).
However, because OMP is not suitable for curvelet-based
recovery because it only brings a single component into the
solution per iteration.

One of the main messages of CS is that the number of
samples required to achieve a certain accuracy scales log-
arithmically with the ambient dimension of the underlying
sparse signal, which, in the case of spatial sampling, is the
sampling grid size. Thus, in problems where the sheer number
of the measurements that need to be obtained (according to the
classical Shannon-Nyquist sampling theory) is prohibitively
large, the theory of CS is especially invaluable.

The aim of this section is to introduce the mathematical
framework behind CS and discuss the particular challenges
we face in exploration seismology.

A. Compressive acquisition of sparse signals

The main assumption in the classical sampling theory is
that the signals of interest are in a linear subspace (i.e., all
functions with a certain bandwidth). However, the main signal
model of CS is nonlinear: the signals are sparse (only a few
of the entries are non-zero) or compressible (can be well-
approximated by a sparse signal), either in the canonical basis
or in some appropriate transform domain.

Formally, consider a high-dimensional signal x ∈ RN . We
first make the naive assumption that x is k-sparse, i.e., ‖x‖0 ≤
k, where ‖x‖0 denotes the number of non-zero entries of the
vector x. (We later relax the sparsity assumption to make way

for more realistic signal ensembles including seismic.) Our
goal is to obtain x (or an approximation) from non-adaptive
linear measurements y = Ψx, where Ψ is an appropriate n×
N measurement matrix. Clearly, we can recover all x ∈ RN
exactly if n ≥ N and Ψ has full rank. Furthermore, setting
Ψ to be the N ×N identity matrix corresponds to measuring
every entry of x separately.

On the other hand, if n < N , i.e., the number of measure-
ments is less than the ambient dimension, the system

Ψz = y

has infinitely many solutions, rendering it generally impossible
to recover x from y. CS considers this scenario and aims to
recover x by utilizing the prior information that x is sparse
(or compressible): among all solutions of this equation, find
the solution x∗ with the smallest number of non-zero entries,
i.e., solve the optimization problem

minimize
z

‖z‖0 subject to Ψz = y. (1)

This is referred to as the sparse recovery problem. It can be
shown that if every n-by-n submatrix of Ψ is nonsingular, then
x∗ = x, i.e., (1) recovers every k-sparse x exactly whenever
k < n/2, e.g., see [22]. In other words, to acquire a k-
sparse signal, we only need to obtain n > 2k measurements
regardless of the ambient dimension N and then solve the
optimization problem (1). Unfortunately, this observation is
not very useful in practice because the program (1) is NP-
hard [46] and sensitive to the sparsity assumption and additive
noise. The major breakthrough in CS has been to specify
explicit conditions under which the minimizer of (1) also
solves the convex—and hence computationally tractable—
optimization problem

minimize
z

‖z‖1 subject to Ψz = y. (2)

Specifically, these conditions [10], [23] determine what mea-
surement matrices Ψ can be used so that (2) is guaranteed
to recover all k-sparse x in RN from n measurements given
by y = Ψx. In words, the main requirement is that Ψ nearly
preserves the length of all sparse vectors.

Various random matrix ensembles have been shown to be
effective compressive measurement matrices, e.g., Gaussian
and Bernoulli matrices, and Fourier matrices with randomly
selected rows [11], [53]. An important question is how the
number of measurements required for exact recovery scales
with the sparsity level k, the number of measurements n, and
the ambient dimension N . (In the classical sampling theory,
k is analogous to “bandwidth”, n is analogous to sampling
frequency, and N is analogous to the size of the sampling
grid.) The following theorem, adapted from [10], summarizes
the answer to this question.

Theorem 1. Let ΣNk be the set of all k-sparse vectors in RN .
Suppose Ψ is an n × N random matrix the entries of which
are drawn i.i.d. from a sub-Gaussian distribution. If

n & k log(N/n),

with overwhelming probability (on the draw of Ψ) (2) recovers
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all x ∈ ΣNk from the compressive measurements y = Ψx.

In words, if the measurement matrix is chosen appropriately,
the number of measurements scales only logarithmically with
the ambient dimension N—a tremendous improvement over
linear scaling of the classical sampling theory.
Remark 1.1. One-norm minimization via (2) is the most
common and well-understood method of solving the sparse
recovery problem and it is our main focus. However, it is
important to note that various alternative approaches have
been proposed and analyzed, e.g., greedy algorithms such as
OMP [59], CoSaMP [47], iterative hard thresholding [5], and
p-norm minizimation with 0 < p < 1 [13], [29], [54].

B. Compressible signals and robustness to noise

For CS to be practicable, two major modifications to the
setting in the previous section need to be considered. First, it is
naive to expect signals in practice to be exactly sparse. A more
realistic model is that the magnitude-sorted coefficients decay
rapidly, leaving us with a vector with only few large entries
and many small ones. Such signals can be well approximated
by sparse signals and usually are said to be compressible. It is
crucial that CS is stable in the case of CS. Second, in practical
applications typically the measurements are contaminated by
noise, and it is again crucial that CS paradigm is robust to
noise.

The following result by Candès, Romberg, and Tao [10]
shows that this is indeed the case. For x ∈ RN , let

σk(x)`1 := min
v∈ΣNk

‖x− v‖1 (3)

be the best k-term approximation error of x in `1. Note that
the more compressible x is, the smaller is σk(x)`1 .

Theorem 2. Let x ∈ RN be arbitrary, and let Ψ be an
appropriate n × N measurement matrix (e.g., a Gaussian
matrix). Suppose that the noisy measurements are given by
y = Ψx+ e where e is additive noise with ‖e‖2 ≤ ε. Denote
by x∗ the solution of the following convex program:

minimize
z

‖z‖1 subject to ‖Ψz − y‖ ≤ ε.

Then for absolute constants C1 and C2,

‖x− x∗‖2 ≤ C1ε+ C2k
−1/2σk(x)`1 ,

whenever n = O(k log[N/n]).

In words, the recovered approximation is within the noise
level and nearly as accurate as the approximation we would
obtain by measuring directly the largest k entries of x.

C. Extensions

As we mentioned before, CS can be used to recover
signals that admit a sparse representation with respect to a
basis or frame. In sections II-A and II-B we considered the
case where the signals of interest were simply sparse in the
canonical basis, which, of course, is rarely the case in practice.
Images, for example, are sparse with respect to appropriate
orthonormal wavelet bases, and seismic signals admit sparse

approximations in terms of curvelets [9], [21], [32]. Formally,
consider signals f ∈ RN that are sparse with respect to a basis
or frame S, i.e.,

f = SHx, x sparse.

Above S is a P × N matrix, with P ≥ N , that admits a
left-inverse, and the superscript H denotes the adjoint.

In the next sections we discuss how and to what extent the
CS paradigm can be used when S is either an orthonormal
basis or a redundant frame. (See, e.g., [43] for a comprehensive
review of frame theory.)

1) S is an orthonormal basis: In the case when S is
an orthonormal basis (i.e., S−1 = SH ), CS theory applies
essentially unchanged. Specifically, the compressive samples
of the signal f is given by y = Ψf = ΨSHx where x is
sparse (or compressible). In turn, the effective measurement
matrix is ΨSH and if this matrix satisfies the requirements of
Theorems 1 and 2, the conclusions of these theorems remain
valid, including the compressibility error bounds of Theorem
2 as S is orthonormal, thus an isometry.

The main challenge is how to choose Ψ for a given S
so that ΨSH is still a good “measurement matrix”. Recall
that in CS each measurement is an inner product with an
appropriate “measurement vector”, a row of Ψ. One possible
way of constructing a good Ψ tailored to a given sparsity basis
S is to first choose an appropriate measurement basis M that
is incoherent with S. The coherence of two bases S and M
is reflected by the largest-in-magnitude entry of the matrix
MSH . Once we choose an incoherent M , we discard all but
n rows from M and use the resulting n × N matrix as our
measurement matrix. More precisely, we set Ψ = RM where
R is an n×N restriction matrix (consisting of n rows of the
N ×N identity matrix). It can be shown that such a Ψ can be
used for CS. For example, if the signal u is sparse in Fourier
domain, i.e., S is the DFT matrix, then an optimally incoherent
measurement basis is given by M = IN , the N ×N identity
basis.

In summary, we obtain the compressive samples of the
signal f by y = RMf + e (where e is again additive noise)
and recover f by solving the convex program

minimize
z

‖z‖1 subject to ‖RMSHz − y‖ ≤ ε.

We should also note that there is a universal strategy for
choosing Ψ that does not require prior knowledge of the
sparsity basis S: if we choose Ψ to be an appropriate ran-
dom measurement matrix that satisfies a certain concentration
of measure property [2], e.g., Gaussian and Bernoulli, then
ΨSH is guaranteed to be also a good measurement matrix
independent of the orthonormal basis S. The downside of this
approach is the computational challenges related to generating,
storing, and applying unstructured random matrices.

2) S is a redundant frame: The problem becomes sig-
nificantly more challenging if the sparsifying dictionary is
an overcomplete frame. This means that the signal f can
be decomposed as f = SHx where S is P × N with
P > N and S admits a left inverse. For example, seismic
signals are compressible with respect to curvelet frames, which
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are overcomplete. Compared to the orthonormal bases, the
differences of this set-up are: (i) the expansion coefficients are
not unique, i.e., there are (infinitely) many x that explain the
same signal f , and (ii) the columns of SH must be correlated.
Accordingly, the approaches used in the orthonormal case
do not readily generalize immediately to this case. Empir-
ically, the CS paradigm has been observed to be effective
for acquisition of signals that admit sparse approximations
in appropriately redundant frames—see Section III-A for an
empirical study of compressive seismic-data acquisition using
curvelet frames as the sparsifying transform. Finally we note
that recent theoretical results, e.g., [12], corraborate with these
empirical observations.

D. Challenges in seismic

According to CS, successful dimensionality reduction
hinges on an incoherent sampling strategy where coherent
aliases are turned into relatively harmless white Gaussian
noise. The challenges of adapting this approach to real-
life problems in exploration seismology are threefold. First,
seismic data acquisition is subject to physical constraints on
the placement, type, and number of (possibly simultaneous)
sources, and numbers of receivers. These constraints in con-
junction with the extreme large size of seismic data call for
seismic problem-specific solutions. Second, while CS offers
significant opportunities for dimensionality reduction, there
remain still challenges in adapting the scientific-computing
workflow to this new approach, and again, CS offers an op-
portunity to make computation more efficient. Third, seismic
wavefields are highly multiscale, multidirectional, and are
the solution of the wave equation. This calls for the use of
directional and anisotropic transforms, e.g., curvelets.

III. COMPRESSIVE SEISMIC-DATA ACQUISITION

Perhaps it is too early to claim that CS will constitute a
paradigm shift in seismic acquisition. The first breakthrough
was the identification of seismic data regularization and simul-
taneous/continuous acquisition as instances of CS [36]. Further
encouraging progress has been made in the selection of the
sparsifying transform and the design of randomized sampling
schemes that are realizable in the field.

We discuss progress in each of these areas by means of
carefully designed examples that include real field data.

A. Selection of the sparsifying transform

CS leverages structure within signals to reduce the required
sampling rates. Typically, this structure translates into com-
pressible representations, using an appropriate transform, that
concentrate the signal’s energy into a small percentage of large
coefficients. The size of seismic data volumes, along with
the complexity of its high-dimensional and highly directional
wavefront-like features, makes it difficult to find a transform
that accomplishes this task.

We thus only consider transforms that are fast
(O(N logN)), multiscale (split the Fourier spectrum
into dyadic frequency bands), and multidirectional (split

the Fourier spectrum into second dyadic angular wedges).
For completeness, we also include separable 2-D wavelets
in our study. Unlike wavelets, which compose curved
wavefronts into a superposition of multiscale “fat dots” with
limited directionality, curvelets [9] and wave atoms [21]
compose wavefields as a superposition of highly anisotropic,
localized, and multiscale waveforms, which obey the so-
called parabolic-scaling principle. For curvelets, this principle
translates into a support where length is proportional to the
square of the width. At fine scales, this leads to needle-like
curvelets. Curvelets, with their near invariance under wave
propagation [8], are thus highly suitable for compressing
seismic data. Wave atoms share with curvelets this invariance,
and they are also anisotropic because their wavelength
depends quadratically on their width. While curvelets are
optimal for data with delta-like wavefronts, wave atoms
are more appropriate for compressing data with oscillatory
wavefronts. Seismic data sits somewhere between these two
extremes, and we include both transforms in our study.

1) Approximation error: For an appropriately chosen repre-
sentation magnitude-sorted transform-domain coefficients of-
ten decay rapidly. For orthonormal bases, the decay rate is
directly linked to the decay of the nonlinear approximation
error, see e.g. [43]. This error can be expressed by

σk(f)`2 := min
x∈ΣNk

‖f − SHx‖2,

where fk is optimal argument, which gives the best k-term
approximation in the `2 sense; cf. (3). When S is orthonormal,
fk is uniquely determined by taking the largest-in-magnitude
k-entries of Sx. Unfortunately, such a direct way of finding fk
is not available when S is redundant, because redundant ex-
pansions are not unique: there are many coefficient sequences
that explain the discrete data f , and these different sequences
may have varying decay rates.

To address this issue, we use an alternative definition for the
nonlinear approximation error, which is based on the solution
of a sparsity-promoting program. With this definition, the k-
term sparse approximation error is computed by taking the
k-largest coefficients from the vector that solves

minimize
x

‖x‖1 subject to SHx = f, (4)

where the P -by-N matrix S is the curvelet analysis operator.
As before, N is the ambient dimension, and the transform is
redundant if P > N .

The solution of (4) is typically sparser than the vector
obtained by applying the analysis operator S directly. To be
able to compare various redundant transforms with different
degrees of redundancy, we study the signal-to-noise ratio
SNR(ρ) = −20 log

‖f−fρP ‖
‖f‖ , where ρ = k/P is a compres-

sion ratio. A smaller ratio implies a larger fraction of ignored
coefficients and sparser transform-coefficient vector, which
leads to a smaller SNR. In our study, we include fρP that are
derived from either the analysis coefficients, i.e., the largest
ρP coefficients of Sf , or from the synthesis coefficients that
are solutions of the above sparsity-promoting program (4).

2) Empirical approximation errors: Parametrizing the SNR
by ρ allows us to compare the recovery quality of seismic data
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Fig. 1: (Adapted from [38]) Signal-to-noise ratios (SNRs)
for the nonlinear approximation errors of a common-receiver
gather (a) from a Gulf of Suez data set. The SNRs (b) are
plotted as a function of the sparsity ratio ρ ∈ (0, 0.02]. The
plots include curves for the errors obtained from the analysis
and one-norm minimized synthesis coefficients. Notice the
significant improvement in SNRs for the synthesis coefficients
obtained by solving (4).

using various transforms, such as wavelets, curvelets, and wave
atoms. Figure 1 compares the performance of these transforms
on a common-receiver gather extracted from a Gulf of Suez
dataset. Our results in Figure 1 clearly show that curvelets
and wave atoms benefit significantly from sparsity promotion,
though wave atoms lag behind curvelets. This effect is most
pronounced for synthesis coefficients. Because wavelets are
orthogonal, they can not benefit, as expected. Note that the
observed behavior is consistent with the degree of redundancy
of each transform: the curvelet transform has the largest
redundancy (a factor of about eight in 2-D), wave atoms have
only a redundancy of two, and wavelets are not redundant.
This suggests that sparse recovery from subsampling would
potentially benefit most from curvelets. However, this may not
be the only factor that determines the performance of CS.

B. Acquisition schemes

Before discussing the application of CS to realistic data
examples, we briefly discuss differences between recovery
from missing shots, which is an instance of seismic data
regularization, and recovery from simultaneous data. The
seismic data regularization problem can be considered as the
seismic-version of inpainting.

Mathematically, sequential and simultaneous acquisition
only differ in the definition of the measurement basis. For
sequential-source acquisition, this sampling matrix is given
by the Kronecker product of two identity bases—i.e., I def

=
I Ns ⊗ I Nt , which is the N -by-N identity matrix where
N = NsNt, the product of the number of shots Ns and
the number of time samples Nt. For simultaneous acquisition,
where all sources fire simultaneously, this matrix is given by
M

def
= GNs ⊗ I Nt with GNs a Ns-by-Ns Gaussian matrix

with i.i.d. entries. In both cases, we use a restriction operator
R

def
= Rns⊗I Nt to model the collection of incomplete data by

(a) (b)

(c) (d)

Fig. 2: (Adapted from [38]) Recovery from a compressively-
sampled common-receiver gather with 50% of the sources
missing. (a) Receiver gather with sequential shots selected
uniformly at random. (b) The same but for random simul-
taneous shots. (c) Recovery from incomplete data in (a). (d)
The same but now for the data in (b). Notice the remarkable
improvement in the recovery from simultaneous data.

reducing the number of shots to ns � Ns. This restriction acts
on the source coordinate only. For both recovery experiments,
we use 2-D curvelets as the sparsifying transform S (cf. II-C).

CS predicts superior recovery for compressive-sampling
matrices with smaller coherence. This coherence depends
on the interplay between the restriction, measurement, and
synthesis matrices. To make a fair comparison, we keep the
randomized restriction matrix the same and compare the re-
coveries for measurement matrices given by the identity or by
a random Gaussian matrix. Physically, the first CS experiment
corresponds to surveys with sequential shots missing. The
second CS experiment corresponds to simultaneous-source
experiments with half of the experiments missing. Examples
of both measurements for the real common-receiver gather of
Figure 1 are plotted in Figure 2. Both CS experiments are
using the same amount of data.

Comparing the recovery quality for data for both experi-
ments confirms the insight from CS that states that incoher-
ent measurement matrices favor sparsity-promoting recovery.
This opens the possibility of designing efficient acquisition
strategies in the field, or of dimensionality reduction in the
computer.

Example: coil sampling. The quality of 3-D seismic
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Fig. 3: Synthetic common-azimuth/offset example of coil
sampling. The data is simulated with finite-differences on the
SEAM model [25]. (Top) Time slice with 66% data missing
data and recovery. (Bottom) Cross-section with 66% missing
traces and recovered section. Notice the excellent recovery
even in regions with strong complexity.

imaging and full-waveform inversion depends largely on az-
imuthal coverage. While full-azimuth acquisition is getting
within reach on land, full-azimuth sampling in marine remains
challenging.

Moldoveanu adopted Hennenfent and Herrmann’s jittered-
sampling approach [33] to devise a coil-sampling strategy
that addresses the full-coverage issue, and shoots with several
vessels in tandem while navigating along coils whose centers
are randomized [45]. To illustrate the performance of sparsity-
promoting recovery for this type of sampling, we consider
a binned common-azimuth/offset volume simulated from the
SEAM model [25] with 66% missing data. The recovery
results (where we use curvelets in the lateral directions and
wavelets along time to sparsify) are included in Figure 3 for
a time slice and a cross section. The results for these slices
were obtained with a relatively low number of iterations of
the one-norm solver SPGL1 [61] and show excellent recovery
from this sampling even in regions of large complexity. This
example is a good illustration of the validity of this technology
on industry-type data volumes.

IV. COMPRESSIVE SEISMIC COMPUTATION

We have so far concentrated on applying CS to seismic ac-
quisition. While the invocation of CS in acquisition potentially
reaps major increases in efficiency, CS can also be applied to
increase the efficiency of wavefield simulations, imaging, and
inversion.

(a) (b)

Fig. 4: (Adapted from [36]) Compressive sampling with simul-
taneous sources. (a) Amplitude spectrum for the source signa-
tures emitted by each source as part of the simultaneous-source
experiments. These signatures appear noisy in the shot-receiver
coordinates because of the phase encoding (cf. Equation V).
Observe that the frequency restrictions are different for each
simultaneous source experiment. (b) CS-data after applying
the inverse Fourier transform. Notice the noisy character of
the simultaneous-shot interferences.

A. Compressive simulation

To simulate seismic surveys, one needs for each source
experiment to solve a large linear system that discretizes the
underlying wave equation. Because seismic surveys consist
of many source experiments, we must reduce the number of
PDE solves by exploiting linearity of the wave equation in
the sources. This linearity allows us to combine sequential
sources into a smaller number of “supershots”, each consisting
of a random superposition of all sequential shots. Neelamani
et al. [48] and Herrmann et al. [36] identify this principle,
also known as “phase encoding” [52], as an instance of CS,
and demonstrate that it can be used to make wave simulations
more efficient by reducing the number of sources.

This technique allowed us to significantly speedup sim-
ulations with the time-harmonic Helmholtz equation. Used
in combination with randomized importance sampling in the
temporal frequency band, we achieved speedups proportional
to the subsampling ratio. A 4-times reduced data volume sim-
ulated for these incoherent sources is plotted in Figure 4(a). As
shown in [36], sequential simulations can be recovered from
this compressively-sampled simulation by solving a sparsity-
promoting program with a cost of O(n3 log n), where n the
number of sources, receivers, depth levels, and frequencies.
This additional cost is very small compared to the cost of
solving the Helmholtz system, which is O(n4).

B. Compressive imaging

Even though useful for wavefield simulations, compres-
sive simulation is not particularly suitable for making wave-
equation based seismic imaging more efficient because we
would have to solve a sparsity-promoting program for each
PDE solve. To overcome this problem, [26] proposes to image
directly with simultaneous data, making the least-squares
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Fig. 5: (Adapted from [36]) Comparison between conventional
and compressive simulations for simple and complex velocity
models. (a) Seismic line for the simple model. (b) The same
for the complex model. (c). Recovered simulation (with a SNR
of 28.1 dB) for the simple model from 25 % of the samples
with the `1-solver running to convergence. (d) The same but
for the complex model now with a SNR of 18.2 dB.

migration problem

minimize
∆x

1

2K

K∑
i=1

‖∆bi−Ai∆x‖22 =
1

2K
‖∆b−A∆x‖22 (5)

more efficient. Here, ∆bi are the vectorized monochromatic
shot records with linearized data (residue), Ai is the linearized
Born scattering matrix, and ∆x the unknown seismic image
with the medium perturbations. (The quantities ∆b and A
aggregate the data across experiments.) In certain cases, the
residual ∆bi − Ai∆x can be interpreted as a linearization of
the forward map defined by the wave equation; see (6).

This is a difficult problem because each iteration requires a
large number of PDE solves, in particular, 4K solves, where
K = Nf ·Ns, and Nf and Ns are the number of frequencies
and sources. In order to do the inversion, we must be careful
to limit the cost of each matrix-vector multiply, which we
accomplish by dimensionality reduction. In particular, we use
the same supershots as defined in section IV-A.

The optimization problem defined by (5), however, differs
fundamentally from the standard CS problem because now
the system is overdetermined—there are more equations then
unknowns. In addition, the scattering matrix is ill conditioned
due to limitations in aperture that may lead to shadow zones.
However, for reflectors that are in the range of the scattering
operator, the wave-equation Hessian AHA is near unitary, and
curvelets are nearly invariant under the action of the Hes-
sian [39]. This, and the optimality of curvelets on images with

reflectors that may include conflicting dips [39], motivates us
to replace (5) by a sparsity-promoting program that solves for
the curvelet coefficients of the migrated image by replacing
A with A := RMASH and ∆b with ∆b = RM∆b. After
applying the sampling, the Ns sequential sources are replaced
by ns � Ns supershots with nf � Nf frequencies.

Unfortunately, the degree of randomized dimensionality
reduction determines the amount of cross-talk that results from
the inversion, and hence we can not reduce the problem size
too much. We use a stochastic optimization approach [3],
[24], [49], and cast the original imaging problem into a
series of much smaller subproblems that work on different
subsets of random source-encoded supershots [41]. (The best
sampling strategy itself is still an open research problem;
see, for example, [30], [58].) This approach corresponds to
drawing a collection of supershots, followed by imaging, and
using this image as a warm start for a new inversion with
a new independently drawn collection of supershots. This
process is repeated until progress towards the solution stalls.
In Algorithm 1, we outline this approach for a generic solver
P(RM ; ∆x0) that uses warm starts ∆x0.

Algorithm 1: Stochastic approximation with warm starts
∆x0 ← 0; k ← 0 ; // initialize
while ‖∆x0 −∆x̃‖2 ≥ ε do

k ← k + 1; // increase counter
∆x̃← ∆x0; // update warm start
RM ← Draw(RM); // draw supershots
∆x0 ← Solve(P(RM); ∆x̃); // solve subproblem

end

To establish a baseline for comparison, we first compute an
image by solving (5) for all 192 shots and 10 frequencies and
10 iterations of LSQR [51]. The result of this exercise, for data
generated from the synthetic Marmoussi model [6] is included
in Figure 6(a). We also solve a series of dimensionality-
reduced subproblems with 8 supershots and 3 frequencies
for 20 stochastic approximations, with LSQR (P`2(RM)),
with SPGL1 (P`1(RM)), each with and without independent
renewals of RM . These experiments are summarized in Fig-
ure 6(b-e) from which we make the following observations.
First, redrawing the supershots after solving each subproblem
clearly improves the performance of both solvers. We can
understand this observation because these renewals remove
possible correlations between RM and the current estimate
for the (curvelet-domain) perturbation. Second, the image
obtained by sparsity promotion is clearly superior in quality
compared to the least-squares result, which we can explain
with insights from CS. Third, this sparsifying result albeit
noisy also compares favorably to the baseline image; it has
higher resolution and better resolved amplitudes at depth.

We obtained a remarkably good result with a significantly
reduced computational cost. We attribute this performance to
curvelet-domain compressibility, which serves as a strong prior
that mitigates source crosstalk and regularizes the inversion.



8

Lateral distance (Km)

D
ep

th
 (

K
m

)

 

 

1 2 3 4 5 6 7 8 9

0.5

1

1.5

2

2.5

3

−4

−2

0

2

4

x 10
−5

(a)

Lateral distance (Km)

D
ep

th
 (

K
m

)

 

 

1 2 3 4 5 6 7 8 9

0.5

1

1.5

2

2.5

3

−4

−2

0

2

4

x 10
−5

(b)

Lateral distance(Km)

D
ep

th
 (

K
m

)

 

 

1 2 3 4 5 6 7 8 9

0.5

1

1.5

2

2.5

3

−4

−2

0

2

4

x 10
−5

(c)

Lateral distance (Km)

D
ep

th
 (

K
m

)

 

 

1 2 3 4 5 6 7 8 9

0.5

1

1.5

2

2.5

3

−4

−2

0

2

4

x 10
−5

(d)

Lateral distance (Km)

D
ep

th
 (

K
m

)

 

 

1 2 3 4 5 6 7 8 9

0.5

1

1.5

2

2.5

3

−4

−2

0

2

4

x 10
−5

(e)

Fig. 6: Comparison between images obtained by linearized
with and without dimensionality reduction. (a) Baseline image
calculated for all data with 10 iterations of LSQR. (b) Image
obtained by Algorithm 1 with P`2(RM) with 10 restarts
independent redraws for RM . (c) The same but with the same
RM . (d) Image obtained by Algorithm 1 with P`1(RM) for
approximately the same number of PDE solves. (e) The same
but with the same RM .

C. Compressive inversion
As we reported in earlier work (e.g., see [35], [42]), the cost

of computing gradient and Newton updates in full-waveform
inversion (FWI) is one of the major impediments that prevents
successful adaptation of this industry-size problems. FWI
involves the solution of an multi-experiment unconstrained
optimization problem (cf. (5) for the linearized case):

minimize
m

1

2K

K∑
i=1

‖bi −Fi[m, qi]‖22, (6)

with bi monochromatic shot records with the Earth re-
sponse to monochromatic sources qi, and Fi[m, qi] represents
monochromatic nonlinear forward operators. This operator is
parameterized by the velocity m.

To overcome the computational burden of solving (6), we
follow a similar procedure as outlined in Section IV-B but with
the difference that we do a new linearization after each of the
SPGL1 subproblems.

We test our algorithm on the synthetic model plotted in
Fig. 7(a), which we use to generate data with a source
signature given by a 12 Hz Ricker wavelet. To mimic practice,
we use a smooth starting model without lateral information
(Fig. 7(b)) and we start the inversion at 2.9 Hz. This means
that the seismic data carries relatively little low-frequency
information. All simulations are carried out with 350 shot
positions sampled at a 20m interval and 701 receiver positions
sampled at a 10m interval, yielding an maximum offset of
7km. To improve convergence, the inversions are carried out
sequentially in 10 overlapping frequency bands on the interval
2.9 − 22.5Hz [7], each using 7 different simultaneous shots
and 10 selected frequencies. For each subproblem, we use
roughly 20 iterations of SPGL1 at a cost roughly equivalent
to one tenth of the cost of a gradient calculation with all of
sources. The result for each frequency band after 10 SPGL1
subproblems is depicted in Fig. 7(c). We can see from this
result that our inversion captures more or less all discontinu-
ities with a resolution commensurate the frequency range over
which we carry out the inversion. This is remarkable and again
the result of combining randomized-dimensionality results and
sparse recovery from CS with recent insights from stochastic
optimization. As before, drawing independent supershots after
solving each SPGL1 subproblem benefited our results [41],
[57].

As before, we reduce the computation costs of minimizing
or of solving problem (6) by randomizing source superposi-
tion. Choosing a different collection of supershots for each
subproblem gives superior results.

V. SOLVING THE SPARSE-OPTIMIZATION PROBLEM

The main computational challenge in the dimensionality-
reduction techniques that we describe are rooted in solving
convex optimization problems. Almost all of these problems
have the form

BPσ : minimize
x

‖x‖1 subject to ‖Ax− b‖2 ≤ σ,

where σ is an estimate of the required data misfit, often related
to the noise level and model mismatch. (The value σ = 0
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Fig. 7: Full-waveform inversion result. (a) Initial model. (b)
True model. (c) Inverted result starting from 2.9Hz with 7
simultaneous shots and 10 frequencies.

yields the basis pursuit problem [15].) The nonsmoothness
of the objective is the essential difficulty. If these problems
were relatively small, then many of the current workhorse
algorithms for convex optimization (e.g., simplex and interior-
methods) could be used off-the-shelf. However, these methods
typically rely on explicit matrix representations of A. Thus
there is now significant effort devoted to developing matrix-
free algorithms tailored to these problems, which are typically
characterized by large dense matrices. The terrific problem
sizes in the seismic context is yet a further challenge: a “small”
seismic problem can easily have 221 variables.

One of our aims here is to give a broad view of the
main approaches, and to describe the approach used by the
SPGL1 software package [60], [61], which we use routinely
for tackling seismic sparse recovery problems.

A. Main approaches

Most approaches for solving BPσ are based on its “La-
grangian” reformulation

QPλ : minimize
x

1
2‖Ax− b‖22 + λ‖x‖1.

The positive parameter λ is related to the Lagrange multiplier
of the constraint in BPσ , and it balances the tradeoff between
the two norm of the data misfit and the one norm of the solu-
tion, which promotes sparsity. (When x is real-valued, ‖x‖1 =∑
j |xj | is a piecewise linear function, and QPλ is equivalent

to a quadratic program, which is an established technology;
when x is complex-valued, ‖x‖1 =

∑
j

√
<(xj)2 + =(xj)2,

which is not piecewise linear, and the equivalence to quadratic
programming is lost.) For an appropriate choice of λ, this
formulation has the same solution to BPσ , and thus in some
sense these two problems are equivalent. However, except for
very special cases, the value of λ that induces the equivalence
cannot be determined without first solving BPσ . The typical
approach is thus based on solving a sequence of problems QPλ
defined by a decreasing sequence of parameters λ [1], [37].
This gradually decreases the data misfit, which usually allows
more nonzeroes into the solution. The overall process termi-
nates when the data mismatch reaches a prescribed accuracy.
As we illustrate later, this can be an inefficient approach that
requires the solution of too many subproblems.

Many algorithms are available for solving QPλ or
closely related variations, including iteratively-reweighted
least-squares [14], [20], iterative soft-thresholding (IST),
which has been rederived from various perspectives [18], [28],
and projected gradient (PG) [19], [27]. A variation of the
PG algorithm features prominantly in the SPGL1 software
package, where it is used to approximately solve a sequence
of subproblems [61, §4.1].

B. Proximal splitting

It is increasingly clear that many of the seemingly different
algorithms that are being proposed for problems such as
QPλ are founded in classical ideas from convex analysis and
optimization, and can be often described within the concise
framework of proximal forward-backward splitting methods.
These approaches are now prevalent in the new field of
sparse optimization, which is concerned with exploiting sparse
structure.

Consider the problem

minimize
x

φ(x) + ρ(x),

where φ is convex and smooth, and ρ is convex and—of central
importance in sparse optimization—nondifferentiable. This
formulation captures a range of problems that arise in signal-
processing applications. For example, φ(x) = 1

2‖Ax−b‖22 and
ρ(x) = λ‖x‖1 yields QPλ; alternatively setting

ρ(x) =

{
0 if ‖x‖1 ≤ τ ,

+∞ otherwise,

yields the Lasso [56] variation

LSτ : minimize
x

1
2‖Ax− b‖2 subject to ‖x‖ ≤ τ.

The iteration scheme

xk+1 = proxαkρ{xk − αk∇φ(xk)}, (7)

where prox is the proximity operator corresponding to ρ and
αk is a step length, constitutes the basic form of the proximal-
splitting method. When ρ = λ‖x‖1, the corresponding prox-
imity operator is the soft-thresholding operator [43, Ch. 11].
We see that there is a steepest descent step on the smooth
component of the objective (i.e., φ), followed by a proximal
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step based on the nonsmooth component of the objective
(i.e., ρ). The resulting sequence {xk} converges to a solution
of (7) under very mild conditions. A comprehensive overview
is given by Combettes and Wajs [16]. Various algorithms,
including PG (also known as projected Landweber), and IST,
can be immediately cast in this framework.

The strategy that defines the sequence of step lengths αk
has a enormous effect on the effectiveness of these splitting
approaches. Classical approaches, such as steepest descent,
typically insist on selecting a steplength such that the objective
decreases monotonically. However, there is now significant
numerical and theoretical evidence to suggest that nonmono-
tonic approaches that consider one or more previous iterations
in determining the step in the next iteration, often preform
remarkably better than their monotonic counterparts; a short
selection of references includes [4], [27], [50].

C. Pareto curve
A fundamental problem remains: even if we do have an

effective algorithm for QPλ (or LSτ ), how do we best choose
a parameter λ (or τ ) that yields a required data misfit? The
Pareto curve, which traces the optimal trade-off between the
two-norm of the residual r = b − Ax and the one-norm of
the solution x, is a helpful tool for visualizing the effect of
regularization. Fig. 8 gives a schematic illustration of a the
curve and some of its features. Points below the curve are not
attainable. Any point on the curve, which is uniquely defined
by a given A and b, gives the corresponding values σ (vertical
axis) and τ (horizontal axis) that cause BPσ and LSτ to have
the same solution. The negative of the slope at that point gives
the corresponding value of λ that causes QPλ to have the
same solution; e.g., see point 1©. Point 2© coincides with the
solution of BPσ with σ = ‖b‖2 and of LSτ with τ = 0;
point 3© coincides with the solution of BPσ with σ = 0 and
of LSτ with τ = 0. Left- and right-hand limits can be used
to define the value of λ at points 2© and 3©. The relevance of
this curve in the seismic context is discussed by [34].

The Pareto curve can be interpreted as the graph of the value
function

φ(τ) = inf
‖x‖1≤τ

{‖Ax− b‖2}.

Let xτ be the optimal solution of LSτ , and let rτ = b−Axτ
be the corresponding residual. Let τ̄ be the smallest value of
τ at which the graph first touches the horizontal axis. (This is
guaranteed if A has full rank.) The function φ and the Pareto
curve is characterized by the following theorem, due to van
den Berg and Friedlander [61].

Theorem 3. Suppose that A is full rank. Then
1) The function φ is convex and nonincreasing.
2) For all τ ∈ (0, τ̄), φ is continuously differentiable,

φ′(τ) = −λτ , where λτ = ‖AHyτ‖∞ and yτ =
rτ/‖rτ‖2.

3) For τ ∈ [0, τ̄ ], ‖xτ‖1 = τ , and φ is strictly decreasing.

The solid curve in Fig. 9(a) graphs the Pareto curve for a
seismic interpolation problem similar to that shown in Fig. 3.

Although QPλ has proven to be the most used approach, it
is generally not clear how to choose the parameter λ such its
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Fig. 8: (Adapted from [34].) Schematic illustration of a Pareto
curve. Point 1© exposes the connection between the three
parameters of QPλ, BPσ , and LSτ . Point 3© corresponds to
a solution of BPσ with σ = 0.
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Fig. 9: (Adapted from [61].) (a) A typical Pareto curve, and
the path taken by the SPGL1 algorithm; (b) approximating the
Pareto curve from a few samples.

solution gives a desired misfit. This difficulty is illustrated by
Fig. 9(b). The solid (black) curve is the true Pareto curve; the
three solid (red) dots are solution/residual pairs of QPλ that
correspond to equally spaced values of λ between ‖AHb‖∞
and 0. This is typical behavior: even though the values of
λ are equally spaced, the resulting samples are not at all
equally spaced, and a quadratic interpolation/extrapolation
(dotted red line) based on these samples severly underestimates
the curve. Similar behavior in other problems that directly
weight competing objects has been objserved by [17], [40].
On the other hand, the circles (blue) are solution/residual pairs
of BPσ for equally spaced samples of σ between ‖b‖2 and 0
yields good coverage, and an estimate of the curve based on
these samples (blue solid line) closely approximates the true
curve.

D. Pareto root-finding

The SPGL1 approach for BPσ is based on approximately
solving a sequence of subproblems LSτ , using a spectral PG
method [4]; at each iteration k it refines the estimate τk such
that τk → τσ , which causes LSτ and BPσ to share a solution.
The sequence of estimates τk is derived by simply applying
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Fig. 10: (Adapted from [34].) Pareto curve and solution paths
of four solvers for a BPσ , with σ = 0. The symbols + represent
a sampling of the Pareto curve. The solid (—) line, obscured
by the Pareto curve, is the solution path of IST with cooling,
the chain (– · –) line the path of SPGL1, the dashed (– –) line
the path of IST, and the dotted (· · · ) line the path of IRLS.

Newton’s method to find a root of the nonlinear equation

φ(τ) = σ.

Theorem 3 is central to this approach because it describes how
the gradient of φ, needed for Newton’s method, is related to
the solutions of the LSτ subproblems. Practical refinements are
needed that allow for LSτ to be solved only approximately [61,
§3], [62, §3]. Fig. 10 shows how SPGL1 and IST (with
cooling) closely follow the Pareto curve; however, SPGL1
requires significantly fewer matrix multiplies.

VI. DISCUSSION AND CONCLUSIONS

We discussed possible adaptations of CS to solve outstand-
ing problems in exploration seismology including measures to
make acquisition and computations more efficient. The pre-
sented results illustrate that we are at the cusp of exciting new
developments where acquisition and processing workflows are
not hampered by the fear of creating coherent artifacts related
to periodic subsampling. Instead, we arrive at a workflow
with control over these artifacts. This is accomplished by
the following three new design principles, and the slogan
“randomize, sparsify, and convexify”:
• randomize—break coherent aliases by introducing ran-

domness, e.g., by designing randomly perturbed acqui-
sition grids, or by designing randomized simultaneous
sources;

• sparsify—use sparsifying transforms in conjunction with
sparsity-promoting programs that separate signal from
subsampling artifacts, and that restore amplitudes;

• convexify—relax difficult combinatorial problems into
tractable convex optimization problems.

The potential benefits of CS are real and significant. But
to realize them, several obstacles need to be surmounted,
including the need to overcome the inertia of entrenched
engineering practices, and adapting the theoretical framework
to practical acquisition schemes and workflows for imaging
and inversion.

Field-data acquisition presents an especially thorny prob-
lem. It needs to address physical limitations on the character-
istics of sources—e.g., limited control over source signatures
of airguns—and on the repeatability and placement accuracy
of the sources. In addition, analog-to-digital conversion by the
hydrophones and geophones limits their dynamic range, which
can have detrimental effects on the recovery quality, unless
special measures are taken [31].

On the field and computational sides, we are also faced with
the fact that we are not able to use measurement matrices that
we know are CS-compliant, but those that are imposed on us
by the nature of the application. Often, these matrices do not—
or cannot be verified to—satisfy the theortical requirements
of CS. But as the seismic examples have illustrated, there
is strong evidence that the principles of CS continue to
apply outside of its formal theoreical framework. Until our
theoretical tools can be extended to cover the situations that
we envisage, we continue to rely on the insight provided by
the current framework [38], [44].

The seismic application of CS and its extensions rely on
solving extremely large system of equations that arise from the
physical setting of exploration seismology. This puts pressures
on developing large-scale solvers that can handle massive data
volumes with billions of unknowns that are omnipresent in
industrial exploration seismology. Unless we develop sparsity-
promoting solvers that limit the number of passes through
the data, widespread adaptation of CS to exploration seismol-
ogy stay beyond the computational capabilities of industry.
However, as the extensions of CS presented in this paper
indicate, the ideas of CS can be incorporated into imaging
and inversion. This allows us to work in model space, which is
significantly smaller in dimension than data space. In addition,
integration of CS-inspired dimensionality-reduction ideas may
allow us to invert data as its acquired, which may be more
efficient and cost effective.
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Özgür Yılmaz received the B.Sc. degrees in mathemat-
ics and in electrical engineering from Bogazii University,
Istanbul, Turkey, in 1997, and the Ph.D. degree in Applied
and Computational Mathematics from Princeton University in
2001. From 2002 to 2004, he was an Avron Douglis Lecturer
at the University of Maryland, College Park. He joined the
Mathematics Department at the University of British Columbia
(UBC), Vancouver, BC, Canada, in 2004, where he is currently
an Associate Professor. He is a member of the Institute of
Applied Mathematics (IAM) and and an associate member
of the Institute for Computing, Information, and Cognitive
Systems (ICICS), UBC. His research interests include applied
harmonic analysis, information theory, and signal processing.

REFERENCES

[1] Fixed-point continuation applied to compressed sensing: implementation
and numerical experiments. J. Comp. Math., 28(2):170194, 2010.

[2] Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael
Wakin. A simple proof of the restricted isometry property for
random matrices. Constructive Approximation, 28:253–263, 2008.
10.1007/s00365-007-9003-x.

[3] DP Bertsekas and JN Tsitsiklis. Neuro-Dynamic Programming (Belmont,
MA: Athena Scientific). 1996.

[4] E. G. Birgin, J. M. Martı́nez, and M. Raydan. Nonmonotone spectral
projected gradient methods on convex sets. 10(4):1196–1211, 2000.

[5] T. Blumensath and M.E. Davies. Iterative hard thresholding for
compressed sensing. Applied and Computational Harmonic Analysis,
27(3):265–274, 2009.

[6] A. Bourgeois, M. Bourget, P. Lailly, M. Poulet, P. Ricarte, and R. Ver-
steeg. The Marmousi experience, volume 5-9, chapter Marmousi data
and model. EAGE, 1991.

[7] C. Bunks, F. Saleck, S. Zaleski, and G. Chavent. Multiscale seismic
waveform inversion. Geophysics, 60(5):1457–1473, 1995.

[8] E. J. Candès and L. Demanet. Curvelets and fourier integral operators.
C. R. Acad. Sci. Paris, 2003.

[9] E. J. Candes, L. Demanet, D. L. Donoho, and L. Ying. Fast discrete
curvelet transforms. SIAM Multiscale Model. Simul., 5(3):861–899,
2006.

[10] E.J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: ex-
act signal reconstruction from highly incomplete frequency information.
IEEE Trans. Inform. Theory, 52(2):489–509, 2006.

[11] E.J. Candes and T. Tao. Near-optimal signal recovery from random
projections: Universal encoding strategies? Information Theory, IEEE
Transactions on, 52(12):5406 –5425, dec. 2006.

[12] Emmanuel J. Cands, Yonina C. Eldar, Deanna Needell, and Paige
Randall. Compressed sensing with coherent and redundant dictionaries.
Applied and Computational Harmonic Analysis, 31(1):59 – 73, 2011.

[13] R. Chartrand. Exact reconstruction of sparse signals via nonconvex
minimization. Signal Processing Letters, IEEE, 14(10):707–710, 2007.

[14] R. Chartrand and Wotao Yin. Iteratively reweighted algorithms for
compressive sensing. In Acoustics, Speech and Signal Processing, 2008.
ICASSP 2008. IEEE International Conference on, pages 3869 –3872, 31
2008-april 4 2008.

[15] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition
by basis pursuit. 20(1):33–61, 1998.

[16] Patrick L. Combettes and Valérie R. Wajs. Signal recovery by proximal
forward-backward splitting. 4(4):1168–1200, 2005.

[17] I. Das and J. E. Dennis. A closer look at drawbacks of minimizing
weighted sums of objectives for Pareto set generation in multicriteria
optimization problems. Struct. Optim., 14:63–69, 1997.

[18] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint. Comm.
Pure Appl. Math., 57:1413–1457, 2004.

[19] I. Daubechies, M. Fornasier, and I. Loris. Accelereated projected
gradient method for linear inverse problems with sparsity constraints.
J. Fourier Anal. Appl., 2007. To appear.

[20] Ingrid Daubechies, Ronald DeVore, Massimo Fornasier, and C. Sinan
Gntrk. Iteratively reweighted least squares minimization for sparse
recovery. Communications on Pure and Applied Mathematics, 63(1):1–
38, 2010.

[21] L. Demanet and L. Ying. Wave atoms and sparsity of oscillatory patterns.
Applied and Computational Harmonic Analysis, 23(3):368–387, 2007.

[22] David L. Donoho and Michael Elad. Optimally sparse representation in
general (nonorthogonal) dictionaries via 1 minimization. Proceedings
of the National Academy of Sciences, 100(5):2197–2202, 2003.

[23] D.L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory,
52(4):1289–1306, 2006.

[24] Matthias Chung Eldad Haber and Felix J. Herrmann. An effective
method for parameter estimation with pde constraints with multiple
right hand sides. Technical Report TR-2010-4, UBC-Earth and Ocean
Sciences Department, 2010.

[25] Mike Fehler and Ken Larner. Seg advanced modeling (seam): Phase i
first year update. The Leading Edge, 27(8):1006–1007, 2008.

[26] Xiang Li Felix J. Herrmann. Efficient least-squares migration with spar-
sity promotion. EAGE, EAGE Technical Program Expanded Abstracts,
2011.

[27] M. Figueiredo, R. Nowak, and S. J. Wright. Gradient Projection for
Sparse Reconstruction: Application to Compressed Sensing and Other
Inverse Problems. Sel. Top. in Signal Process., IEEE J., 1(4):586–597,
2007.

[28] Mário A. T. Figueiredo and Robert D. Nowak. An EM algorithm for
wavelet-based image restoration. IEEE Trans. Sign. Proc., 12(8):906–
916, August 2003.

[29] S. Foucart and M.J. Lai. Sparsest solutions of underdetermined linear
systems via `q-minimization for 0 < q ≤ 1. Applied and Computational
Harmonic Analysis, 26(3):395–407, 2009.

[30] M. P. Friedlander and M. Schmidt. Hybrid deterministic-stochastic
methods for data fitting. Tech. rep., Department of Computer Science,
University of British Columbia, Vancouver, April 2011.
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