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Abstract

We introduce a probabilistic technique for full-waveform inversion, employing
variational inference and conditional normalizing flows to quantify uncertainty in
migration-velocity models and its impact on imaging. Our approach integrates
generative artificial intelligence with physics-informed common-image gathers,
reducing reliance on accurate initial velocity models. Considered case studies
demonstrate its efficacy producing realizations of migration-velocity models condi-
tioned by the data. These models are used to quantify amplitude and positioning
effects during subsequent imaging.

1 Introduction

Full-waveform inversion (FWI) plays a pivotal role in exploration, primarily focusing on estimating
Earth’s subsurface properties from observed seismic data. The inherent complexity of FWI stems from
its nonlinearity, further complicated by ill-posedness and computational intensiveness of the wave
modeling. To address these challenges, we introduce a computationally cost-effective probabilistic
framework that generates multiple migration-velocity models conditioned on observed seismic data.
By combining deep learning with physics, our approach harnesses advancements in variational
inference [VI, 11] and generative artificial intelligence [AI, 6, 13, 28]. We achieve this by forming
common-image gathers (CIGs), followed by training conditional normalizing flows (CNFs) that
quantify uncertainties in migration-velocity models.

Our paper is organized as follows. First, we delineate the FWI problem and its inherent challenges.
Subsequently, we explore VI to quantify FWI’s uncertainty. To reduce VI’s computational costs, we
introduce physics-informed summary statistics and justify the use of CIGs as these statistics. Our
framework’s capabilities are validated through two case studies, which include studying the effects of
uncertainty in the generated migration-velocity models on migration.

2 Methodology

We present a Bayesian inference approach to FWI by briefly introducing FWI and VI used as a
framework for uncertainty quantification (UQ).

2.1 Full-waveform inversion

Estimation of unknown migration-velocity models, x, from noisy seismic data, y involves inverting
nonlinear forward operator, F , which links x to y via y = F(x) + ϵ with ϵ measurement noise.
Source/receiver signatures are assumed known and absorbed into F . Solving this nonlinear inverse
problem is challenging because of the noise, the non-convexity of the objective function, and the
non-trivial null-space of the modeling [37]. As a result, multiple migration-velocity models fit the
data, necessitating a Bayesian framework for UQ.



2.2 Full-waveform inference

Rather than seeking a single migration-velocity model, our goal is to invert for a range of models
compatible with the data, termed “full-waveform inference”. From a Bayesian perspective, this
involves determining the posterior distribution of migration-velocity models given the data, p(x|y).
We focus on amortized VI, which exchanges the computational cost of posterior sampling for neural
network training [4, 26, 29, 31, 44, 45]. Specifically, we employ amortized VI, which incurs offline
computational training cost but enables cheap online posterior inference on many datasets y [15].
Next, we discuss how to use CNFs for amortized VI.

2.3 Amortized variational inference with conditional normalizing flows

During VI, the posterior distribution p(x|y) is approximated by the surrogate, pθ(x|y), with learnable
parameters, θ. Given the sample pairs {(x(i), y(i))}N

i=1, CNFs are suitable to act as surrogates for
the posterior because of their low-cost training and rapid sampling [18, 27]. Their training involves
minimization of the Kullback-Leibler divergence between the true and surrogate posterior distribution.
In practice, this requires access to N training pairs of migration-velocity model and observed data to
minimize the following objective:
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θ
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Here, fθ is the CNF with network parameters, θ, and Jacobian, Jfθ
. It transforms each velocity

model, x(i), into white noise (as indicated by the ℓ2-norm), conditioned on the observation, y(i).
After training, the inverse of CNF turns random realizations of the standard Gaussian distribution
into posterior samples (migration-velocity models) conditioned on any seismic observation that is in
the same statistical distribution as the training data.

2.4 Physics-informed summary statistics

While CNFs are capable of approximating the posterior distribution, training the CNFs on pairs (x, y)
presents challenges when changes in the acquisition occur or when physical principles simplifying
the mapping between model and data are lacking, both of which lead to increasing training costs.
To tackle these challenges, Radev et al. [25] introduced fixed reduced-size summary statistics that
encapsulate observed data and inform the posterior distribution. Building on this concept, Orozco et al.
[23] uses the gradient as the set of physics-informed summary statistics, partially reversing the forward
map and therefore accelerating CNF training. For linear inverse problems with Gaussian noise, these
statistics are unbiased — maintaining the same posterior distribution, whether conditioned on original
shot data or on the gradient. Based on this principle, Siahkoohi et al. [35] used reverse-time migration
(RTM), given by the action of the adjoint of the linearized Born modeling, to summarize data and
quantify imaging uncertainties for a fixed accurate migration-velocity model.

We aim to extend this approach to the nonlinear FWI problems. While RTM transfers information
from the data to the image domain, its performance diminishes for incorrect migration velocities. Hou
and Symes [9] showed that least-squares migration can perfectly fit the data for correct migration-
velocity models, but this fit fails for inaccurate velocity models. This highlights a fundamental
limitation in cases where the velocity model is inaccurate and RTM does not correctly summarize the
original shot data, which leads to a biased posterior. For an inaccurate initial FWI-velocity model x0,
p (x|y) ̸= p

(
x

∣∣∣∇F (x0)⊤ y
)

with ∇F Born modeling and ⊤ the adjoint. To avoid this problem,
more robust physics-informed summary statistics are needed to preserve information.

2.5 Common-image gathers as summary statistics

Migration-velocity analysis has a rich history in the literature [36]. Following Hou and Symes [9],
we employ relatively artifact-free subsurface-offset extended Born modeling to calculate summary
statistics. Because it is closer to an isometry—i.e, the adjoint of extended Born modeling is closer
to its inverse [14, 41] and therefore preserves information — its adjoint can nullify residuals even
when the FWI-velocity model is incorrect as shown by Hou and Symes [9]. Geng et al. [5] further
demonstrate that neural networks can be used to map CIGs to velocity models. Both these findings
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shed important light on the role of CIGs during VI because CIGs preserve more information than the
gradient, which leads to less biased physics-informed summary statistics when given an inaccurate
initial FWI-velocity model. Formally, this means p (x|y) ≈ p

(
x

∣∣∣∇F (x0)⊤ y
)

, where ∇F is
extended Born modeling. Leveraging this mathematical observation, we propose WISE, short for
full-Waveform variational Inference via Subsurface Extensions. The core of this technique is to
train CNFs with pairs of velocity models, x, and CIGs, ∇F (x0)⊤ y, guided by the objective of
Equation 1. Our case studies will demonstrate that even with inaccurate initial FWI-velocity models,
CIGs encapsulate more information, enabling the trained CNFs to generate accurate migration-
velocity models consistent with the observed shot data.

3 Synthetic case studies

Our study evaluates the performance of WISE through synthetic case studies on 2D slices of the
Compass dataset [10], known for its “velocity kickback” challenge for FWI algorithms. For a
poor initial FWI-velocity model, we aim to compare the quality of posterior samples informed by
RTM alone versus those informed by CIGs to verify the superior information content of CIGs. We
also illustrate how uncertainty in migration-velocity models can be converted into uncertainties in
amplitude and positioning of imaged reflectors.

Dataset generation and network training. We take 800 2D slices of the Compass model of 6.4 km
by 3.2 km, with 512 equally spaced sources towed at 12.5m depth and 64 ocean-bottom nodes (OBNs)
located at jittered sampled horizontal positions [7, 8]. This sampling scheme utilizes compressive
sensing techniques to improve acquisition productivity in various situations [21, 38, 39, 43]. The
surface is assumed absorbing. Using a 15Hz central frequency Ricker wavelet with energy below 3Hz
removed for realism, acoustic data is simulated with Devito [17, 19] and JUDI.jl [40]. Uncorrelated
band-limited Gaussian noise is added (S/N 12dB). The arithmetic mean over all velocity models is
used as the 1D initial FWI-velocity model (shown in Figure 1(b)). 51 horizontal subsurface offsets
ranging from −500m to +500m are used to compute CIGs (shown in Figure 1(e)). Each offset is
input to the network as a separate channel. We use the conditional glow network structure [24] for
the CNFs because of its capability to generate superior natural [12] and seismic [18] images.

Results. After CNF training, our method’s performance is evaluated on an unseen 2D Compass slice
shown in Figure 1(a). When RTM is used to summarize the data, the conditional mean estimate
(Figure 1(c)) does not capture the shape of the unconformity. Thanks to the CIGs, WISE captures
more information and as a result produces a more accurate conditional mean (Figure 1(d)). For the
50 test samples, the structural similarity index measure (SSIM) with CIGs yields a mean of 0.63,
outperforming RTM-based statistics with a mean SSIM of 0.52.

Quality control. To verify the inferred migration-velocity model as the conditional mean of the
posterior, CIGs calculated for the initial FWI-velocity model (Figure 1(b)), plotted in Figure 1(e), are
juxtaposed against CIGs calculated for the inferred migration-velocity model (Figure 1(d)), plotted in
Figure 1(f). Significant improvement in near-offset focused energy is observed in the CIGs for the
inferred migration-velocity model. A similar focusing behavior is noted for the posterior samples
themselves, as shown in the ancillary material.

Uncertainty quantification and downstream imaging. While access to the posterior represents an
important step towards grasping uncertainty, understanding its impact on imaging with (30Hz) RTMs
is more relevant because it concerns uncertainty in the final product. For this purpose, we display the
posterior velocity samples in Figure 2(a) and the point-wise standard deviation in Figure 2(b). These
deviations increase with depth and correlate with complex geology where the RTM-based inference
struggled. To understand how this uncertainty propagates to imaged reflectors, forward uncertainty
is assessed by carrying out RTMs for different posterior samples with results shown in Figure 2(c)
and the standard deviations plotted in Figure 2(d). These amplitude deviations are different because
mapping migration-velocities to RTMs is highly nonlinear, leading to large areas of intense amplitude
variation and dimming at the edges caused by the Born modeling’s null-space. While these amplitude
sensitivities are useful, deviations in the migration velocities also leads to differences in reflector
positioning. Vertical shifts between the envelope of the reference image (central image in Figure 2(c))
and the envelopes of RTMs for different posterior samples are calculated with a local cross-correlation
technique and included in Figure 2(d) where blue/red areas correspond to up/down shifts. As expected,
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(a) (b)

(c) (d)

(e) (f)

Figure 1: (a) an unseen ground-truth velocity model; (b) 1D initial FWI-velocity model; (c) condi-
tional mean estimate for RTM as summary statistics (SSIM = 0.48); (d) conditional mean estimate
from WISE (SSIM = 0.56); (e) CIGs calculated by the initial FWI-velocity model given by (b); (f)
CIGs calculated by (d).

these shifts are most notable in the deeper regions and at the edges where velocity variations are the
largest.

4 Discussion

Once the offline costs of computing 800 CIGs and network training are covered, WISE enables
generation of velocity models for unseen seismic data at the low computational cost of a single set of
CIGs for a poor initial FWI-velocity model. The Open FWI [2] case study in the ancillary material
demonstrates WISE’s capability to produce realistic posterior samples and conditional means for a
broad range of unseen velocity models. In the case of the Compass model, the initial FWI-velocity
model was poor. Still, CIGs obtained from a single 1D initial model capture relevant information
from the non-zero offsets. From this information, the network learns to produce migration-velocity
models that focus CIGs. WISE also produced two types of uncertainty, namely (i) inverse uncertainty
in migration-velocity model estimation, which arises from both the non-trivial null-space of FWI and
the measurement noise, and (ii) forward uncertainty where uncertainty in migration-velocity models
is propagated to uncertainty in amplitude and positioning of imaged reflectors.

Opportunities for future research remain. One area concerns dealing with the “amortization gap”
where CNFs tend to maximize performance across multiple datasets rather than excelling at a single
observation [20]. While we discovered that training CNFs on a diverse set of samples enhances
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(a) (b)

(c) (d)

(e)

Figure 2: Variability in velocity models and imaged reflectors. (a) Posterior velocity samples from
WISE visualized similar to CIGs by plotting the conditional mean (Figure 1(d)) in the central
image. Above it shows the posterior sample traces at Z = 2.4 km. On the right shows the traces at
X = 3.4 km. (b) Point-wise standard deviation of the posterior velocity samples. (c) Samples of
imaged reflectors, where the central image displays imaged reflectors using the conditional mean
estimate. The layout of the traces remains the same as (a). (d) Point-wise standard deviation of the
imaged reflectors. (e) Point-wise maximum depth shift.
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generalization, applying AI techniques to unseen, out-of-distribution samples remains a challenge.
However, our WISE framework is compatible with several fine-tuning approaches. To improve
single-observation performance, particularly for out-of-distribution samples, computationally more
expensive latent space corrections [35] can be employed that incorporate the physics. Recent studies
also have indicated that trained CNFs can act as preconditioners or regularizers for physics-based,
non-amortized inference [29, 34]. These correction methods can enhance the fit of posterior samples
to observed data, as shown in Siahkoohi et al. [35], or enable the generation of more focused CIGs
through migration velocity analysis. Moreover, velocity continuation methods [3] could be used
including recent advances in neural operators [33]. These could offset the cost of running RTMs
for each posterior sample, thus accelerating forward uncertainty propagation. While we observed
that providing more offsets can enhance the quality of the inference, we recognize the resulting
increase in CIG computation costs and CNF memory consumption. This necessitates cost-effective
frameworks for determining optimal offset numbers or sampling strategies for CIGs. In this context,
recent work on using CNFs for Bayesian optimal experimental design [22] seamlessly integrates as
an advancement to the WISE framework. Considering low-rank approximations of CIGs [41] may
reduce computational demands. Additionally, exploring other conditional generative models like
diffusion models [1] may be worthwhile. Our case studies have yet to account for inverse uncertainty
due to modeling errors, such as attenuation effects, multiples, or residual shear wave energy, which
could be addressed through Bayesian model misspecification techniques [30]. Recent advances
suggest that transfer learning could correct these modeling inaccuracies [32, 42], a solution that our
approach is amenable to.

Incurred computational cost on an NVIDIA A100 GPU can be broken down as follows: generating
training pairs requires generation of 64 OBN datasets and corresponding CIGs for 800 models,
totaling approximately 80 hours of runtime. After generating the training set, training the CNF takes
around 16 hours. With these initial runtime investments, the cost for a single inference involves
only a single CIG computation, which takes about 6 minutes. For context, running a single FWI
starting from the velocity model included in Figure 1(b) requires 12.5 data passes taking roughly 50
minutes to complete (the final result is shown in the ancillary material). Traditional UQ methods
require the compute equivalent to hundreds of FWI runs [44], but here we estimate at least 50 FWI
runs. Based on these numbers, the computational savings from employing CNF surrogates offset
the upfront costs after inference on approximately 3 datasets. We emphasize that as long as the
statistics of the underlying geology remains similar, our amortized network can be applied to different
observed datasets in the complete basin without retraining. Furthermore, the parallel execution of
training pair generation on clusters can significantly reduce initial computational time. Although our
study primarily demonstrates a proof of concept on a realistic 2D experiment, the WISE software
tool chain is designed for large-scale 3D problems. CNFs, favored for their memory efficiency
through invertibility [24], are well-suited for 3D problems. In addition, memory consumption of
CIG computation can be reduced significantly with random trace estimation techniques [16]. Since
our work requires training samples of Earth models, we envision these samples coming from legacy
proxy models and future work will explore automatic workflows for generating these from field
observations.

5 Conclusions

We present WISE, full-Waveform variational Inference via Subsurface Extensions, for computa-
tionally efficient uncertainty quantification of FWI. This framework underscores the potential of
generative AI to address FWI challenges, paving the way for a new seismic inversion and imaging
paradigm that is uncertainty-aware. By having common-image gathers act as information-preserving
summary statistics, a principled approach to UQ is achieved where generative AI is successfully
combined with wave physics. Because WISE automatically produces distributions for migration-
velocity models conditioned by the data, it moves well beyond traditional velocity model building.
It was shown that this distributional information can be employed to quantify uncertainties in the
migration-velocity models that can be used to better understand amplitude and positioning uncertainty
in migration.
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