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1 Summary

This document is structured as follows: First, we provide a more detailed analysis of the case studies
on the Compass model. Next, we introduce an additional case study on the CurveFault-A dataset
from Open FWI dataset [1].

2 Compass

In the Compass case study, WISE showcases its ability to generate velocity models consistent with
the observed shot data. Here, we delve into a detailed analysis of these results in this section to
affirm its superior performance. To benchmark WISE against traditional FWI methods, we initiate by
conducting FWI on the 1D initial model depicted in Figure 1(b) in the main text. Subsequently, we
examine several posterior samples from WISE, focusing on the analysis of CIG focusing.

2.1 Full-waveform inversion from the 1D initial model

We conducted an FWI on the 1D initial model depicted in Figure 1(b) in the main text, using 200
iterations of gradient descent. In each iteration, we selected 4 random OBNs with replacement
to determine the update direction. The entire inversion amounts to 12.5 datapasses. To address
cycle-skipping, we employed a frequency continuation strategy, progressively inverting data from
low to high frequencies [2]. The FWI result, presented in Figure 1(a), reveals mispositioning of
several major reflectors and poor recovery of layers beneath the unconformity. This issue becomes
more pronounced in the vertical profiles shown in Figure 2. The cycle-skipping problem led to the
FWI’s failure in accurately estimating the bottom of the velocity “kick-back” layer at approximately
800 m depth, resulting in mispositioned layers, including the unconformity at about 2200 m depth.
Conversely, the conditional mean estimate from WISE closely matches the ground truth velocity
trend, and the 95% confidence interval successfully encompasses the ground truth velocity model at
nearly all locations.
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Figure 1: (a) FWI result using Figure 1(b) in the main text as a starting model; (b) ground truth
velocity model.
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Figure 2: Vertical profiles.

2.2 Common-image gathers of posterior samples

To evaluate the focusing of CIGs for all posterior samples, we calculated the per-
centage of energy within near offsets (specifically, between −60, m and 60, m) as
∥energy in near offsets∥2/∥energy in all offsets∥2. The CIGs derived from the initial 1D velocity
model (depicted in Figure (1)b of the main text) contained only 73.6% of their energy in near offsets,
whereas the conditional mean estimate from WISE (illustrated in Figure (1)d) accounted for 81.6%
of the energy. This quantitatively confirms the enhanced focusing of the conditional mean estimate.
Moreover, we computed the focused energy percentage in near offsets for CIGs produced by all
posterior samples, resulting in an average of 74.3% — an improvement over the initial 1D velocity
model. The standard deviation among these measurements was 0.005%. Three CIG examples are
presented in Figure 3, which, while not as sharply focused as the conditional mean estimate CIGs
(shown in Figure 1(f) in the main text), exhibit visibly better focusing than those generated by the 1D
velocity model (shown in Figure 1(e) in the main text). For further analysis, practitioners might choose
posterior samples based on this metric or other criteria, such as the curvature of gathers determined
by migration velocity analysis. We propose to explore these alternative selection methodologies in
future research.

3 Open FWI

We present a case study using the CurveFault-A models in the Open FWI dataset, which is a public
deep learning benchmark dataset for FWI. The CurveFault-A dataset comprises velocity models with
significant variability across samples, which poses challenges for deep learning methods. This is
further compounded by faults and dipping events while observations contain only reflected energy.
Testing on this dataset allows us to test WISE’s velocity-model generation capabilities.

Dataset generation and network training. We select 2800 velocity models of 640 m by 640 m, each
with 64 equally spaced receivers at 10m tow depth and 16 randomly placed sources. The surface is
assumed absorbing. Using a 15Hz central frequency Ricker wavelet with energy below 3Hz removed
for realism, acoustic data is simulated with Devito [3, 4] and JUDI.jl [5]. Uncorrelated band-limited
Gaussian noise is added (S/N 12dB) before migrating each dataset with a 1D initial FWI-velocity
model calculated by averaging the corresponding true model horizontally. CIGs are computed for
101 horizontal subsurface offsets ranging from −250m to +250m. Two CNFs are trained: one with
velocity-RTM pairs and another with velocity-CIGs pairs.
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Figure 3: CIGs for three posterior samples from WISE.
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Results. Results on two tested samples by our CNFs are included in Figure 4 and reveal notable
variation in the posterior samples for sharp boundaries and smooth transitions in the velocity. While
the conditional mean estimate does not fully replicate the true velocity, the standard deviations
meaningfully correlate with the errors, indicating that the uncertainty represented by the standard
deviation is informative. Across 50 test samples, the mean SSIM score for CIGs-based statistics is
0.87, surpassing the 0.85 mean for RTM-based statistics. We also observe that CIGs better inform
the posterior compared to RTM in both test samples.

Figure 4: Applying WISE for two unseen test samples in Open FWI CurveFault-A dataset. y denotes
the type of summary statistics.
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