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Abstract

Bayesian inference for high-dimensional inverse problems is computationally costly
and requires selecting a suitable prior distribution. Amortized variational inference
addresses these challenges by pretraining a neural network that approximates the
posterior distribution not only for one instance of observed data, but a distribution of
data pertaining to a specific inverse problem. When fed previously unseen data, the
neural network—in our case a conditional normalizing flow—provides posterior
samples at virtually no cost. However, the accuracy of amortized variational
inference relies on the availability of high-fidelity training data, which seldom exists
in geophysical inverse problems because of the Earth’s heterogeneous subsurface.
In addition, the network is prone to errors if evaluated over data that is not drawn
from the training data distribution. As such, we propose to increase the resilience
of amortized variational inference in the presence of moderate data distribution
shifts. We achieve this via a correction to the conditional normalizing flow’s latent
distribution that improves the approximation to the posterior distribution for the
data at hand. The correction involves relaxing the standard Gaussian assumption
on the latent distribution and parameterizing it via a Gaussian distribution with an
unknown mean and (diagonal) covariance. These unknowns are then estimated
by minimizing the Kullback-Leibler divergence between the corrected and the
(physics-based) true posterior distributions. While generic and applicable to other
inverse problems, by means of a linearized seismic imaging example, we show
that our correction step improves the robustness of amortized variational inference
with respect to changes in the number of seismic sources, noise variance, and shifts
in the prior distribution. This approach, given noisy seismic data simulated via
linearized Born modeling, provides a seismic image with limited artifacts and an
assessment of its uncertainty at approximately the same cost as five reverse-time
migrations.



1 Introduction

Inverse problems involve the estimation of an unknown quantity based on noisy indirect observations.
The problem is typically solved by minimizing the difference between observed and predicted data,
where predicted data can be computed by modeling the underlying data generation process through a
forward operator. Due to the presence of noise in the data, forward modeling errors, and the inherent
nullspace of the forward operator, minimization of the data misfit alone negatively impacts the quality
of the obtained solution [1]. Casting inverse problems into a probabilistic Bayesian framework
allows for a more comprehensive description of their solution, where instead of finding one single
solution, a distribution of solutions to the inverse problem—known as the posterior distribution—is
obtained whose samples are consistent with the observed data [2]. The posterior distribution can be
sampled to extract statistical information that allows for quantification of uncertainty, i.e., assessing
the variability among the possible solutions to the inverse problem.

Uncertainty qualification and Bayesian inference in inverse problems often require high-dimensional
posterior distribution sampling, for instance through the use of Markov chain Monte Carlo [MCMC,
3–6]. Because of their sequential nature, MCMC sampling methods require a large number of sam-
pling steps to perform accurate Bayesian inference [7], which reduces their applicability to large-scale
problems due to the high-dimensionality of the unknown and costs associated with the forward
operator [4, 5, 8–14]. As an alternative, variational inference methods [15–23] approximate the pos-
terior distribution with a surrogate and easy-to-sample distribution. By means of this approximation,
sampling is turned into an optimization problem, in which the parameters of the surrogate distribution
are tuned in order to minimize the divergence between the surrogate and posterior distributions. This
surrogate distribution is then used for conducting Bayesian inference. While variational inference
methods may have computational advantages over MCMC methods in high-dimensional inverse
problems [24, 25], the resulting approximation to the posterior distribution is typically non-amortized,
i.e., it is specific to the observed data used in solving the variational inference optimization problem.
Thus, the variational inference optimization problem must be solved again for every new set of
observations. Solving this optimization problem may require numerous iterations [19, 20], which
may not be feasible in inverse problems with computationally costly forward operators, such as
seismic imaging.

On the other hand, amortized variational inference [26–37] reduces Bayesian inference computational
costs by incurring an up-front optimization cost for finding a surrogate conditional distribution,
typically parameterized by deep neural networks [28], that approximate the posterior distribution
across a family of observed data instead of being specific to a single observed dataset. This supervised
learning problem involves maximization of the probability density function (PDF) of the surrogate
conditional distribution over existing pairs model and data [30]. Following optimization, samples
from the posterior distribution for previously unseen data may be obtained by sampling the surrogate
conditional distribution, which does not require further optimization or MCMC sampling. While
drastically reducing the cost of Bayesian inference, amortized variational inference can only be used
for inverse problems where a dataset of model and data pairs is available that sufficiently captures the
underlying joint distribution. In reality, such an assumption is rarely true in geophysical applications
due to the Earth’s strong heterogeneity across geological scenarios and our lack of access to its
interior [31, 38, 39]. Additionally, the accuracy of Bayesian inference with data-driven amortized
variational inference methods degrades as the distribution of the data shifts with respect to pretraining
data [40]. Among these shifts are changes in the distribution of noise, the number of observed
data in multi-source inverse problems, and the distribution of unknowns, in other words, the prior
distribution.

In this work, we leverage amortized variational inference to accelerate Bayesian inference while build-
ing resilience against data distribution shifts through an unsupervised, data-specific, a physics-based
latent distribution correction method. During this process, the latent distribution of a normalizing-
flow-based surrogate conditional distribution [28] is corrected to minimize the Kullback-Leibler
(KL) divergence between the predicted and true posterior distributions. The invertibility of the
conditional normalizing flow—a family of invertible neural networks [41]—guarantees the existence
of a corrected latent distribution [42] that when “pushed forward” by the conditional normaliza-
tion flow matches the posterior distribution. During pretraining, the conditional normalizing flow
learns to Gaussianize the input model and data joint samples [28], resulting in a standard Gaussian
latent distribution. As a result, for slightly shifted data distributions, the conditional normalization
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flow can provide samples from the posterior distribution given an “approximately Gaussian” latent
distribution as input [43, 44]. Motivated by this, and to limit the costs of the latent distribution
correction step, we learn a simple diagonal (elementwise) scaling and shift to the latent distribution
through a physic-based objective that minimizes the KL divergence between the predicted and true
posterior distributions. As with amortized variational inference, after latent distribution correction,
we gain cheap access to corrected posterior samples. Besides offering computational advantages,
our proposed method implicitly learns the prior distribution during conditional normalizing flow
pretraining. As advocated in the literature [42, 45] learned priors have the potential to better describe
the prior information when compared to generic handcrafted priors that are chosen purely for their
simplicity and applicability. A schematic representation of our proposed method is shown in Figure 1.

Figure 1: Schematic representation of our proposed method. We modify the standard Gaussian
latent distribution of a pretrained conditional normalizing flow through a computationally cheap
diagonal physics-based correction procedure to mitigate the errors due to data distribution shifts.
Upon correction, the new latent samples result in corrected posterior samples when fed into the
pretrained conditional normalizing flow.

1.1 Related work

In the context of variational inference for inverse problems, Rizzuti et al. [19], Andrle et al. [46],
Zhao et al. [47], Zhang and Curtis [48], and Zhao et al. [49] proposed a non-amortized variational
inference approach to approximate posterior distributions through the use of normalizing flows.
These methods do not require training data, however they require choosing a prior distribution and
repeated computationally expensive evaluation of the forward operator and the adjoint of its Jacobian.
Therefore, the proposed methods may prove computationally expensive when applied to inverse
problems involving computationally expensive forward operators. To speed up the convergence
of non-amortized variational inference, Siahkoohi et al. [31] introduces a normalizing-flow-based
nonlinear preconditioning scheme. In this approach, a pretrained conditional normalizing flow
capable of providing a low-fidelity approximation to the posterior distribution is used to warm-start
the variational inference optimization procedure. In a related work, Kothari et al. [50] partially address
challenges associated with non-amortized variational inference by learning a normalizing-flow-based
prior distribution in a learned low-dimensional space via an injective network. Additionally to learning
a prior, this approach also allowed non-amortized variational inference in a lower dimensional space,
which could potentially have computational benefits.

Alternatively, amortized variational inference was applied by Adler and Öktem [51], Kruse et al. [28],
Kovachki et al. [29], Siahkoohi and Herrmann [33], and Khorashadizadeh et al. [34] to further reduce
the computational costs associated with Bayesian inference. These supervised methods learn an
implicit prior distribution from training data and provide posterior samples for previously unseen data
for a negligible cost due to the low cost of forward evaluation of neural networks. The success of such
techniques hinges on having access to high-quality training data, including pairs of model and data
that sufficiently capture the underlying model and data joint distribution. To address this limitation,
Siahkoohi et al. [31] take amortized variational inference a step further by proposing a two-stage
multifidelity approach where during the first stage a conditional normalizing flow is trained in the

3



context of amortized variational inference. To account for any potential shift in data distribution, the
weights of this pretrained conditional normalizing flow are then further finetuned during an optional
second stage of physics-based variational inference, which is customized for the specific imaging
problem at hand. While limiting the risk of errors caused by shifts in the distribution of data, the
second physics-based stage can be computationally expensive due to the high dimensionality of
the weight space of conditional normalizing flows. Our work differs from the proposed method in
Siahkoohi et al. [31] in that we learn to correct the latent distribution of the conditional normalizing
flow, which typically has a much smaller dimensionality (approximately ×90 in our case) than the
dimension of the conditional normalizing flow weight space.

The work we present is principally motivated by Asim et al. [42], which demonstrates that normalizing
flows—due to their invertibility—can mitigate biases caused by shifts in the data distribution. This is
achieved by reparameterizing the unknown by a pretrained normalizing flow with fixed weights while
optimizing over the latent variable in order to fit the data. The reparameterization together with a
Gaussian prior on the latent variable act as a regularization while the invertibility ensures the existence
of a latent variable that fits the data. Asim et al. [42] exploit this property using a normalizing flow
that is pretrained to capture the prior distribution associated with an inverse problem. By computing
the maximum-a-posterior estimate in the latent space, Asim et al. [42], as well as Li [23] and Orozco
et al. [35], limit biases originating from data distribution shifts while utilizing the prior knowledge
of the normalizing flow. We extend this method by obtaining an approximation to the full posterior
distribution of an inverse problem instead of a point estimate, e.g., maximum-a-posteriori.

Our work is also closely related to the non-amortized variational inference techniques presented by
Whang et al. [52] and Kothari et al. [50], in which the latent distribution of a normalizing flow is altered
in an unsupervised way in order to perform Bayesian inference. In contrast to our approach, these
methods employ a pretrained normalizing flow that approximates the prior distribution. As a result, it
is necessary to significantly alter the latent distribution in order to correct the pretrained normalizing
flow to sample from the posterior distribution. In response, Whang et al. [52] and Kothari et al. [50]
train a second normalizing flow aimed at learning a latent distribution that approximates the posterior
distribution after passing through the pretrained normalizing flow. Our study, however, utilizes a
conditional normalizing flow, which, before any corrections are applied, already approximates the
posterior distribution. We argue that our approach requires a simpler correction in the latent space to
mitigate biases caused by shifts in the data distribution. This is crucial when dealing with large-scale
inverse problems with computationally expensive forward operators.

1.2 Main contributions

The main contribution of our work involves a variational inference formulation for solving proba-
bilistic Bayesian inverse problems that leverages the benefits of data-driven learned posteriors whilst
being informed by physics and data. The advantages of this formulation include

• Enhancing the solution quality of inverse problems by implicitly learning the prior distribu-
tion from the data;

• Reliably reducing the cost of uncertainty quantification and Bayesian inference; and

• Providing safeguards against data distribution shifts.

1.3 Outline

In the sections below, we first formulate multi-source inverse problems mathematically and cast them
within a Bayesian framework. We then describe variational inference and examine how existing
model and data pairs can be used to obtain an approximation to the posterior distribution that is
amortized, i.e., the approximation holds over a distribution of data rather than a specific set of
observations. We showcase amortized variational inference on a high-dimensional seismic imaging
example in a controlled setting where we assume observed data during inference is drawn from
the same distribution as training seismic data. As means to mitigate potential errors due to data
distribution shifts, we introduce our proposed correction approach to amortized variational inference,
which exploits the advantages of learned posteriors while reducing potential errors induced by
certain data distribution shifts. Two linearized seismic imaging examples are presented, in which the
distribution of the data (simulated via linearized Born modeling) is shifted by altering the forward
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model and the prior distribution. These numerical experiments are intended to demonstrate the
ability of the proposed latent distribution correction method to correct for errors caused by shifts in
the distribution of data. Finally, we verify our proposed Bayesian inference method by conducting
posterior contraction experiments.

2 Theory

Our purpose is to present a technique for using deep neural networks to accelerate Bayesian inference
for ill-posed inverse problems while ensuring that the inference is robust with respect to data
distribution shifts through the use of physics. We begin with an introduction to Bayesian inverse
problems and discuss variational inference [15] as a probabilistic framework for solving Bayesian
inverse problems.

2.1 Inverse problems

We are concerned with estimating an unknown multidimensional quantity x∗ ∈ X , often referred
to as the unknown model, given N noisy and indirect observed data (e.g, shot records in seismic
imaging) y = {yi}N

i=1 with yi ∈ Y . Here X and Y denote the space of unknown models and data,
respectively. The physical underlying data generation process is assumed to be encoded in forward
modeling operators, Fi : X → Y , which relates the unknown model to the observed data via the
forward model

yi = Fi(x∗) + ϵi, i = 1, . . . , N. (1)
In the above expression, ϵi is a vector of measurement noise, which might also include errors in the
forward modeling operator. Solving ill-posed inverse problems is challenged by noise in the observed
data, potential errors in the forward modeling operator, and the intrinsic nontrivial nullspace of the
forward operator [1]. These challenges can lead to non-unique solutions where different estimates of
the unknown model may fit the observed data equally well. Under such conditions, the use of a single
model estimate ignores the intrinsic variability within inverse problem solutions, which increases
the risk of overfitting the data. Therefore, not only the process of estimating x∗ from y requires
regularization, but it also calls for a statistical inference framework that allows us to characterize the
variability among the solutions by quantifying the solution uncertainty [2].

2.2 Bayesian inference for solving inverse problems

To systematically quantify the uncertainty, we cast the inverse problem into a Bayesian framework [2].
In this framework, instead of having a single estimate of the unknown, the solution is characterized by
a probability distribution over the solution space X that is conditioned on data, namely the posterior
distribution. This conditional distribution, denoted by ppost(x | y), can according to the Bayes’ rule
be written as follows:

ppost(x | y) =
plike(y | x) pprior(x)

pdata(y) . (2)

which equivalently can be expressed as

− log ppost(x | y) = −
N∑

i=1
log plike(yi | x) − log pprior(x) + log pdata(y)

= 1
2σ2

N∑
i=1

∥∥yi − Fi(x)
∥∥2

2 − log pprior(x) + const,

(3)

in case the observed data (yi) are independent conditioned on the unknown model x. In equations 2
and 3, the likelihood function plike(y | x) quantifies how well the predicted data fits the observed data
given the PDF of the noise distribution. For simplicity, we assume the distribution of the noise is a
zero-mean Gaussian distribution with covariance σ2I but other choices can be incorporated. The prior
distribution pprior(x) encodes prior beliefs on the unknown quantity, which can also be interpreted as
a regularizer for the inverse problem. Finally, pdata(y) denotes the data PDF, which is a normalization
constant that is independent of x.

Acquiring statistical information regarding the posterior distribution requires access to samples from
the posterior distribution. Sampling the posterior distribution, commonly achieved via MCMC
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[3] or variational inference techniques [15], is computationally costly in high-dimensional inverse
problems due to the costs associated with many needed evaluations of the forward operator [2, 4, 5,
11, 12, 24, 25, 53–56]. For multi-source inverse problem the costs are especially high as evaluating
the likelihood function involves N forward operator evaluations (equation 3). Stochastic gradient
Langevin dynamics [SGLD; 6, 9, 57] alleviates the need to evaluate the likelihood for all the N
forward operators by allowing for stochastic approximations to the likelihood, i.e., evaluating the
likelihood over randomly selected indices i ∈ {1, . . . , N}. While SGLD can provably provide
accurate posterior samples with more favorable computational costs [9], due to the sequential nature
of MCMC methods, SGLD still requires numerous iterations to fully traverse the probability space
[7], which is computationally challenging in large-scale multi-source inverse problems. In the next
section, we introduce variational inference as an alternative Bayesian inference method that has the
potential to scale better than MCMC-methods in inverse problems with costly forward operators
[24, 25].

2.3 Variational inference

As an alternative to MCMC-based methods, variational inference methods [15] reduce the problem
of sampling from the posterior distribution ppost(x | y) to an optimization problem. The optimization
problem involves approximating the posterior PDF via the PDF of a tractable surrogate distribution
pϕ(x) with parameters ϕ by minimizing a divergence (read “distance”) between pϕ(x) and ppost(x |
y) with respect to surrogate distribution parameters ϕ. This optimization problem can be solved
approximately, which allows for trading off computational cost for accuracy [15]. After optimization,
we gain access to samples from the posterior distribution by sampling pϕ(x) instead, which does not
involve forward operator evaluations.

Due to its simplicity and connections to the maximum likelihood principle [58], we formulate
variational inference via the Kullback-Leibler (KL) divergence. The KL divergence can be explained
as the cross-entropy of ppost(x | y) relative to pϕ(x) minus the entropy of pϕ(x). This definition
describes the reverse KL divergence, denoted by KL

(
pϕ(x) || ppost(x | y)

)
, which is not equal to the

forward KL divergence, KL
(
ppost(x | y) || pϕ(x)

)
. This non-symmetry in KL divergence leads to

different computational and approximation properties during variational inference, which we describe
in detail in the following sections. We will first describe the reverse KL divergence, followed by
the forward KL divergence. Finally, we will describe normalizing flows as a way of parameterized
surrogate distributions to facilitate variational inference.

2.3.1 Non-amortized variational inference

The reverse KL divergence is the common choice for formulating variational inference [19, 46–49]
in which the physically-informed posterior density guides the optimization over ϕ. The reverse KL
divergence can be mathematically stated as

KL
(
pϕ(x) || ppost(x | yobs)

)
= Ex∼pϕ(x)

[
− log ppost(x | yobs) + log pϕ(x)

]
, (4)

where yobs ∼ pdata(y) refers to a specific single observed data. x in the right hand side of the
expression in equation 4 is a random variable obtained by sampling the surrogate distribution pϕ(x),
over which we evaluate the expectation. Variational inference using the reverse KL divergence
involves minimizing equation 4 with respect to ϕ during which the logarithm of the posterior PDF is
approximated by the logarithm of the surrogate PDF, when evaluated over samples from the surrogate
distribution. By expanding the negative-log posterior density via Bayes’ rule (equation 3), we write
the non-amortized variational inference optimization problem as

ϕ∗ = arg min
ϕ

Ex∼pϕ(x)

[
1

2σ2

N∑
i=1

∥∥yobs,i − Fi(x)
∥∥2

2 − log pprior (x) + log pϕ(x)
]

. (5)

The expectation in the above equation is approximated with a sample mean over samples drawn from
pϕ(x). The optimization problem in equation 5 can be solved using stochastic gradient descent and
its variants [59–62] where at each iteration the objective function is evaluated over a batch of samples
drawn from pϕ(x) and randomly selected (without replacement) indices i ∈ {1, . . . , N}. To solve this
optimization problem, there are two considerations to take into account. First consideration involves
the tractable computation of the surrogate PDF and its gradient with respect to ϕ. As described in the
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following sections, normalizing flows [17], which are a family of specially designed invertible neural
networks [41], facilitate the computation of these quantities via the change-of-variable formula in
probability distributions [63]. The second consideration involves differentiating (with respect to ϕ)
the expectation (sample mean) operation in equation 5. Evaluating this expectation requires sampling
from the surrogate distribution pϕ(x), which depends ϕ. Differentiating through the sampling
procedure from the surrogate distribution pϕ(x) can be facilitated through the reparameterization
trick [64]. In this approach sampling from pϕ(x) is interpreted as passing latent samples z ∈ Z from
a simple base distribution, such as standard Gaussian distribution, through a parametric function
parameterized by ϕ [64]. With this interpretation, the expectation over pϕ(x) can be computed over
the latent distribution instead, which does not depend on ϕ, followed by a mapping of latent samples
through the parametric function. This process enables computing the gradient of the expression in
equation 5 with respect to ϕ [64].

Following optimization, pϕ∗(x) provides unlimited samples from the posterior distribution—virtually
for free. While there are indications that this approach can be computationally favorable compared to
MCMC sampling methods [24, 25], each iteration during optimization problem 5 involves evaluating
the forward operator and the adjoint of its Jacobian, which can be computationally costly depending
on N and the number of iterations required to solve 5. In addition, and more importantly, this ap-
proach is non-amortized—i.e., the resulting surrogate distribution pϕ∗(x) approximates the posterior
distribution for the specific data yobs that is used to solve optimization problem 5. This necessitates
the optimization problem to be solved again for a new instance of the inverse problem with different
data. In the next section, we introduce an amortized variational inference approach that addresses
these limitations.

2.3.2 Amortized variational inference

Similarly to reverse KL divergence, forward KL divergence involves calculating the difference
between the logarithms of the surrogate PDF and the posterior PDF. In contrast to reverse KL
divergence, however, to compute the forward KL divergence the PDFs are evaluated over samples
from the posterior distribution rather than the surrogate distribution samples (see equation 4). The
forward KL divergence can be written as follows

KL
(
ppost(x | y) || pϕ(x)

)
= Ex∼ppost(x|y)

[
− log pϕ(x) + log ppost(x | y)

]
. (6)

Following the expression above, it is infeasible to evaluate the forward KL divergence in inverse
problems as it requires access to samples from the posterior distribution—the samples that we are
ultimately after and do not have access to. However, the average (over data) forward KL divergence
can be computed using available model and data pairs in the form of samples from the joint distribution
p(x, y). This involves integrating (marginalizing) the forward KL divergence over existing data
y ∼ pdata(y):

Ey∼pdata(y)

[
KL

(
ppost(x | y) || pϕ(x)

)]
= Ey∼pdata(y)Ex∼ppost(x|y)

[
− log pϕ(x | y) + log ppost(x | y)︸ ︷︷ ︸

constant w.r.t. ϕ

]

=
∫∫

pdata(y)ppost(x | y)︸ ︷︷ ︸
=p(x,y)

[
− log pϕ(x | y)

]
dx dy + const

= E(x,y)∼p(x,y)
[

− log pϕ(x | y)
]

+ const.

(7)

In the above expression pϕ(x | y) represents a surrogate conditional distribution that approximates
the posterior distribution for any data y ∼ pdata(y). The third line in equation 7 is the result of
applying the chain rule of PDFs1. By minimizing the average KL divergence we obtain the following
amortized variational inference objective:

ϕ∗ = arg min
ϕ

Ey∼pdata(y)
[
KL (ppost(x | y) || pϕ(x | y))

]
= arg min

ϕ
E(x,y)∼p(x,y)

[
− log pϕ(x | y)

]
.

(8)

1p(x, y) = p(x | y) p(y), ∀ x ∈ X , y ∈ Y .
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The above optimization problem represent a supervised learning framework for obtaining fully-
learned posteriors using existing pairs of model and data. The expectation is approximated with a
sample mean over available model and data joint samples. Note that this method does not impose any
explicit assumption on the noise distribution (see equation 3), and the information about the forward
model is implicitly encoded in the model and data pairs. As a result, this formulation is an instance
of likelihood-free simulation-based inference methods [65, 66] that allows us to approximate the
posterior distribution for previously unseen data as,

pϕ∗(x | yobs) ≈ ppost(x | yobs), ∀ yobs ∼ pdata(y). (9)

Equation 9 holds for previously unseen data drawn from pdata(y) provided that the optimization
problem 8 is solved accurately [28, 40], i.e., Ey∼pdata(y)

[
KL (ppost(x | y) || pϕ∗(x | y))

]
= 0.

Following an one-time upfront cost of training, equation 9 can be used to sample the posterior
distribution with no additional forward operator evaluations. While computationally cheap, the
accuracy of the amortized variational inference approach in equation 8 is directly linked to the
quality and quantity of model and data pairs used during optimization [65]. This raises questions
regarding the reliability of this approach in domains that sufficiently capturing the underlying joint
model and data distribution is challenging, e.g., in geophysical applications due to the Earth’s strong
heterogeneity across geological scenarios and our lack of access to its interior [31, 38, 39]. To
increases the resilience of amortized variational inference when faced with data distribution shifts,
e.g., changes in the forward model or prior distribution, we propose a latent distribution correction to
physically inform the inference. Before describing our proposed physics-based latent distribution
correction approach, we introduce conditional normalizing flows [28] to parameterize the surrogate
conditional distribution for amortized variational inference.

2.4 Conditional normalizing flows for amortized variational inference

To limit the computational cost of amortized variational inference, both during optimization and
inference, it is imperative that the surrogate conditional distribution be able to: (1) approximate
complex distributions, i.e., it should have a high representation power, which is required to represent
possibly multi-modal distributions; (2) support cheap density estimation, which involves computing
the density pϕ(x | y) for given x and y; and (3) permit fast sampling from pϕ(x | y) for cheap
posterior sampling during inference. These characteristics are provided by conditional normalizing
flows [28], which are a family of invertible neural networks [41] that are capable of approximating
complex conditional distributions [67, 68].

A conditional normalizing flows—in the context of amortized variational inference—aims to map
input samples z from a latent standard multivariate Gaussian distribution N(z | 0, I) to samples
from the posterior distribution given the observed data y ∼ pdata(y) as an additional input. This
nonlinear mapping can formally be stated as f−1

ϕ ( · ; y) : Z → X , with f−1
ϕ (z; y) being the inverse

of the conditional normalizing flow with respect to its first argument. Due to the low computational
cost of evaluating invertible neural networks in reverse [41], using conditional normalizing flows
as a surrogate conditional distribution pϕ(x | y) allows for extremely fast sampling from pϕ(x |
y). In addition to low-cost sampling, the invertibility of conditional normalizing flows permits
straightforward and cheap estimation of the density pϕ(x | y). This allows for tractable amortized
variational inference via equation 8 through the following change-of-variable formula in probability
distributions [63],

pϕ(x | y) = N
(
fϕ(x; y)

∣∣ 0, I
) ∣∣∣ det ∇xfϕ(x; y)

∣∣∣, ∀ x, y ∼ p(x, y). (10)

In the above formula, N
(
fϕ(x; y)

∣∣ 0, I
)

represents the PDF for a multivariate standard Gaussian
distribution evaluated at fϕ(x; y). Thanks to the special design of invertible neural networks [41],
density estimation via equation 10 is cheap since evaluating the conditional normalizing flow and
the determinant of its Jacobian det ∇xfϕ(x; y) are almost free of cost. Given the expression for
pϕ(x | y) in equation 10, we derive the following training objective for amortized conditional
normalizing flows:

ϕ∗ = arg min
ϕ

E(x,y)∼p(x,y)
[

− log pϕ(x | y)
]

= arg min
ϕ

E(x,y)∼p(x,y)

[1
2 ∥fϕ(x; y)∥2

2 − log
∣∣∣ det ∇xfϕ(x; y)

∣∣∣].
(11)
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In the above objective, the ℓ2-norm follows from a standard Gaussian distribution assumption on
the latent variable, i.e., the output of the normalizing flow. The second term quantifies the relative
change of density volume [papamakarios2021] and can be interpreted as an entropy regularization
of pϕ(x | y), which prevents the conditional normalizing flow from converging to solutions, e.g.,
fϕ(x; y) := 0. Due to the particular design of invertible networks [28, 41], computing the gradient of
det ∇xfϕ(x; y) has a negligible extra cost. Figure 2 illustrates the pretraining phase as a schematic.

Figure 2: A schematic representation of pretraining conditional normalizing flows in the context of
amortized variational inference. During pretraining, joint model and data joint samples x, y ∼ p(x, y)
from the training dataset and are fed to the conditional normalizing flow. The training objective
(equation 11) enforces the conditional normalizing flow to Gaussianize its input.

After training, given a previously unseen observed data yobs ∼ pdata(y) we sample from the posterior
distribution using the inverse of the conditional normalizing flow. We achieve this by feeding
latent samples z ∼ N(z | 0, I) to the conditional normalizing flow’s inverse f−1

ϕ (z; yobs) while
conditioning on the observed data yobs,

f−1
ϕ (z; yobs) ∼ ppost(x | yobs), z ∼ N(z | 0, I). (12)

This step is illustrated in Figure 3. As the process above does not involve forward operator evaluations,
sampling with pretrained conditional normalizing flows is fast once an upfront cost of amortized
variational inference is incurred. In the next section, we apply the above amortized variational
inference to a seismic imaging example in a controlled setting in which we assume no data distribution
shifts during inference.

3 Validating amortized variational inference

The objective of this example is to apply amortized variational inference to the high-dimensional
seismic imaging problem. We show that a relatively good pretrained conditional normalizing flow
within the context of amortized variational inference can be used to provide approximate posterior
samples for previously unseen seismic data that is drawn from the same distribution as training
seismic data. We begin by introducing seismic imaging and describe challenges with Bayesian
inference in this problem.

3.1 Seismic imaging

We are concerned with constructing an image of the Earth’s subsurface using indirect surface
measurements that record the Earth’s response to synthetic sources being fired on the surface. The
nonlinear relationship between these measurements, known as shot records, and the squared-slowness
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Figure 3: A schematic representation of posterior sampling with pretrained conditional normalizing
flows. To sample from ppost(x | yobs), the observed data and latent samples are fed to the conditional
normalizing flow’s inverse f−1

ϕ (z; yobs). Each latent sample realization results in a realization of the
posterior distribution.

model of the Earth’s subsurface is governed by the wave equation. By linearizing this nonlinear
relation, seismic imaging aims to estimates the short-wavelength component of the Earth’s subsurface
squared-slowness model. In its simplest acoustic form, the linearization with respect to the slowness
model—around a known, smooth background squared slowness model m0—leads to the following
linear forward problem:

di = J(m0, qi)δm∗ + ϵi, i = 1, . . . , N. (13)

We invert the above forward model to estimate the ground truth seismic image δm∗ from N processed
(linearized) shot records {di}N

i=1 where J(m0, qi) represents the linearized Born scattering operator
[69]. This operator is parameterized by the source signature qi and the smooth background squared-
slowness model m0. Noise is denoted by ϵi, and represents measurement noise and linearization
errors. While amortized variational inference does not require knowing the closed from expression of
the noise density to simulate pairs of data and model (e.g., it is sufficient to be able to simulate noise
instances), for simplicity we assume the noise distribution is a zero-centered Gaussian distribution
with known covariance σ2I. Due to the presence of shadow zones and noisy finite-aperture shot data,
wave-equation based linearized seismic imaging (in short seismic imaging for the purposes of this
paper) corresponds to solving an inconsistent and ill-conditioned linear inverse problem [70–72]. To
avoid the risk of overfitting the data and to quantify uncertainty, we cast the seismic imaging problem
into a Bayesian inverse problem [2].

To address the challenge of Bayesian inference in this high-dimensional inverse problem, we adhere
to our amortized variational inference framework. Within this approach, for an one-time upfront cost
of training a conditional normalizing flow, we get access to posterior samples for previously unseen
observed data that are drawn from the same distribution as the distribution of training seismic data.
This includes data acquired in areas of the Earth with similar geologies, e.g., in neighboring surveys.
In addition, in our framework no explicit prior density function needs to be chosen as the conditional
normalizing flow learns the prior distribution during pretraining from the collection of seismic images
in the training dataset. The implicitly learned prior distribution by the conditional normalizing flow
minimizes the risk of negatively biasing the outcome of Bayesian inference by using overly simplistic
priors. In the next section, we describe the setup for our amortized variational inference for seismic
imaging.

3.1.1 Acquisition geometry

To mimic the complexity of real seismic images, we propose a “quasi”-real data example in which we
generate synthetic data by applying the linearized Born scattering operator to 4750 2D sections with
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size 3075 m×5120 m extracted from the shallow section of the Kirchhoff migrated Parihaka-3D field
dataset [73, 74]. We consider a 12.5 m vertical and 20 m horizontal grid spacing, and we augment an
artificial 125 m water column on top of these images. We parameterize the linearized Born scattering
operator via a fictitious background squared-slowness model, derived from the Kirchhoff migrated
images. To ensure good coverage, we simulate 102 shot records with a source spacing of 50 m. Each
shot is recorded for two seconds with 204 fixed receivers sampled at 25 m spread on top of the model.
The source is a Ricker wavelet with a central frequency of 30 Hz. To mimic a more realistic imaging
scenario, we add band-limited noise to the shot records, where the noise is obtained by filtering white
noise with the source wavelet (Figure 5b).

3.1.2 Training configuration

Casting seismic imaging into amortized variational inference, as described in this paper, is hampered
by the high-dimensionality of the data due to the multi-source nature of this inverse problem. To avoid
computational complexities associated with directly using N shot records as input to the conditional
normalizing flow, we choose to condition the conditional normalizing flow on the reverse-time
migrated image, which can be estimated by applying the adjoint of the linearized Born scattering
operator to the shot records,

δmRTM =
N∑

i=1
J(m0, qi)⊤di. (14)

While di in the above expression is defined according to the linearized forward model in equation 13,
which does not involve linearization errors, our method can handle observed data simulated from
wave-equation based nonlinear forward modeling. Conditioning on the reverse-time migrated image
and not on the shot records directly may result in learning an approximation to the true posterior
distribution [75]. While technique from statistics involving learned summary functions [30, 40] can
reduce the dimensionality of the observed data, we propose to limit the Bayesian inference bias
induced by conditioning on the reverse-time migrated image via our physics-based latent variable
correction approach. We leave utilizing summary functions in the context of seismic imaging Bayesian
inference to future work.

To create training pairs, (δm(i), δm(i)
RTM), i = 1, . . . , 4750, we first simulate (see Figure 2) noisy

seismic data according to the above-mentioned acquisition design for all extracted seismic images
δm(i) from shallow sections of the imaged Parihaka dataset. Next, we compute δm(i)

RTM by applying
reverse-time-migration to the observed data for each image δm(i). As for the conditional normalizing
flow architecture, we follow Kruse et al. [28] and use hierarchical normalizing flows due to their
increased expressiveness when compared to conventional invertible architectures [41]. The expressive
power of hierarchical normalizing flows is a result of applying a series of conventional invertible layers
[41] to different scales of the input in a hierarchical manner (refer to Kruse et al. [28] for a schematic
representation of the architecture). This leads to a invertible architecture with a dense Jacobian
[28] that is capable of representing complicated bijective transformations. We train this conditional
normalizing flow on the pairs (δm(i), δm(i)

RTM), i = 1, . . . , 4750 according to the objective function
in equation 11 with the Adam stochastic optimization method [62] with a batchsize of 16 for one
thousand passes over the training dataset (epochs). We use an initial stepsize of 10−4 and decrease it
after each epoch until reaching the final stepsize of 10−6. To monitor overfitting, we evaluate the
objective function at the end of every epoch over random subsets of the validation set, consisting
of 530 seismic images extracted from the shallow sections of the imaged Parihaka dataset and the
associated reverse-time migrated images. As illustrated in Figure 4, the training and validation
objective values exhibit a decreasing trend, which suggests no overfitting. We stopped the training
after one thousand epochs due to a slowdown in the decrease of the training and validation objective
values.

3.2 Results and observations

Following training, the pretrained conditional normalizing flow is able to produce samples from
the posterior distribution for seismic data not used in training. These samples resemble different
regularized (via the learned prior) least-squares migration images that explain the observed data. To
demonstrate this, we simulate seismic data for a previously unseen perturbation model using the
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Figure 4: Training and validation objective values as a function of epochs. The validation objective
value is computed over randomly selected batched of the validation set at the end of each epoch.

forward model 13 with the same noise variance. Figure 5 shows an example of a single noise-free
(Figure 5a) and noisy (Figure 5b) shot record for one of 102 sources.

(a) (b)

Figure 5: A shot record generated from an image extracted from the Parihaka dataset. (a) Noise-free
linearized data. (b) Linearized data with bandwidth-limited noise.

We perform reverse-time migration to obtain the necessary input for the conditional normalizing
flow to obtain posterior samples. We show the ground-truth seismic image (to be estimated) and the
resulting reverse-time migrated image in Figures 6a and 6b, respectively. Clearly, the reverse-time
migrated image has grossly wrong amplitudes, and more importantly, due to limited-aperture shot
data, the edges of the image are not well illuminated.

We obtain one thousand posterior samples by providing the reverse-time migrated image and latent
samples drawn from the standard Gaussian distribution to the pretrained conditional normalizing flow
(equation 9). This process is fast as it does not require any forward operator evaluations. To illustrate
the variability among the posterior samples, we show six of them in Figure 7. As shown in Figure 7,
these image samples have amplitudes in the same range as the ground-truth image and better predict
the reflectors at the edges of the image compared to the reverse-time migration image (Figure 6b). In
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(a)

(b)

Figure 6: Amortized variational inference testing phase setup. (a) High-fidelity ground-truth image.
(b) Reverse-time migrated image with SNR −12.17 dB.

addition, the posterior samples indicate improved imaging in deep regions, which is typically more
difficult due to the placement of the sources and receiver near the surface.

Samples from the posterior provide access to useful statistical information including approximations
to moments of the distribution such as the mean and pointwise standard deviation (Figure 8). We
compute the mean of the posterior samples to obtain the conditional mean estimate, i.e., the expected
value of the posterior distribution. This estimate is depicted in Figure 8a. From Figure 8a, we observe
that the overall amplitudes are well recovered by the conditional mean estimate, which includes
partially recovered reflectors in badly illuminated areas close to the boundaries. Although the
reconstructions are not perfect, they significantly improve upon the reverse-time migrations estimate.
We did not observe a significant increase in the signal-to-noise ratio (SNR) of the conditional mean
estimate when more than one thousand samples from the posterior are drawn. We use the one
thousand samples to also estimate the pointwise standard deviation (Figure 8b), which serves as an
assessment of the uncertainty. To avoid bias from strong amplitudes in the estimated image, we
also plot the stabilized division of the standard deviation by the envelope of the conditional mean
in Figure 8c. As expected, the pointwise standard deviation in Figures 8b and 8c indicate that we
have the most uncertainty in areas of complex geology—e.g., near channels and tortuous reflectors,
and in areas with a relatively poor illumination (deep and close to boundaries). The areas with large
uncertainty align well with difficult-to-image parts of the model. The normalized pointwise standard
deviation (Figure 8c) aims to visualize an amplitude-independent assessment of uncertainty, which
indicates high uncertainty on the onset and offset of reflectors (both shallow and deeper sections),
while showing low uncertainty in the areas of the image with no reflectors.
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Figure 7: Samples drawn from posterior distribution using the pretrained conditional normalizing
flow via equation 9 with SNRs ranging from 8.08 dB to 8.92 dB.
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(a)

(b)

(c)

Figure 8: Amortized variational inference results. (a) The conditional (posterior) mean estimate with
SNR 9.44 dB. (b) The pointwise standard deviation among samples drawn from the posterior. (c)
Normalized pointwise standard deviation by the conditional mean estimate (Figure 8a).
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After incurring an upfront cost of training the conditional normalizing flow, the computational cost
of sampling the posterior distribution is low as it does not involve any forward operator evaluations.
However, the accuracy of the presented results is directly linked to the availability of high-quality
training data that fully represent the joint distribution for model and data. Due to our lack of access
to the subsurface of the Earth, obtaining high-quality training data is challenging when dealing with
geophysical inverse problems. To address this issue, we propose to supplement amortized variational
inference with a physics-based latent distribution correction technique that increases the reliability of
this approach when dealing with moderate shifts in the data distribution during inference.

4 A physics-based treatment to data distribution shifts during inference

For accurate Bayesian inference in the context of amortized variational inference, the surrogate
conditional distribution pϕ(x | y) must yield a zero amortized variational inference objective value
(equation 8). Achieving this objective is challenging due to lack of access to model and data pairs
that sufficiently captures the underlying joint distribution in equation 8. Additionally, due to potential
shifts to the joint distribution during inference, i.e., shifts in the prior distribution or the forward
(likelihood) model (equation 1), the conditional normalizing flow can no longer reliably provide
samples from the posterior distribution due to lack of generalization. Under such conditions feeding
latent samples drawn from a standard Gaussian distribution to the conditional normalizing flow may
lead to posterior sampling errors. To quantify the posterior distribution approximation error and to
propose our correction method, we will use the invariance of the KL divergence to differentiable
and invertible mappings [76]. This property relates conditional normalizing flow’s error in posterior
distribution approximation to its error in Gaussianizing the input model and data pairs.

4.1 KL divergence invariance relation

The errors that the pretrained conditional normalizing flow makes in approximating the posterior dis-
tribution can be formally quantified using the invariance of the KL divergence under diffeomorphism
mappings [76]. Using this relation, we relate the posterior distribution approximation errors (KL
divergence between true and predicted posterior) to the errors that the conditional normalizing flow
makes in gaussianizing its inputs (KL divergence between the distribution of “gaussianized” inputs
and standard Gaussian distribution). Specifically, for observed data yobs drawn from a shifted data
distribution p̂data(y) ̸= pdata(y), the invariance relation states

KL (pϕ(z | yobs) || N(z | 0, I)) = KL (ppost(x | yobs) || pϕ(x | yobs)) > 0. (15)

In this expression, pϕ(z | yobs) represents the distribution of conditional normalizing flow output
z = fϕ(x; yobs). That is, passing inputs x ∼ p(x | yobs) for one instance of observed data
yobs ∼ p̂data(y) to the conditional normalizing flow implicitly defines a (conditional) distribution
pϕ(z | yobs) in the conditional normalizing flow output space. We refer to this distribution as the
shifted latent distribution as it is the result of a data distribution shift translated through the conditional
normalizing flow to the latent space. The data distribution shifts can be caused by changes in number
of sources, noise distribution, wavelet source frequency, and geological features to be imaged.
Equation 15 states that the conditional normalizing flow fails to accurately Gaussianize the input
models x ∼ p(x | yobs) for the given data yobs. Failure to take into account the mismatch between
the shifted latent distribution pϕ(z | yobs) and N(z | 0, I) leads to posterior sampling errors as the KL
divergence between the predicted and true posterior distributions is nonzero (equation 15). In other
words, feeding latent samples drawn from a standard Gaussian distribution to f−1

ϕ (z; yobs) produces
samples from pϕ(x | yobs), which does not accurately approximate the true posterior distribution
under the assumption of data distribution shift. On the other hand, with the same reasoning via the
KL divergence invariance relation, feeding samples from the shifted latent distribution pϕ(z | yobs)
to the conditional normalizing flow yields accurate posterior samples. However, obtaining samples
from pϕ(z | yobs) is not trivial as we do not have a closed-form expression for its density. In the next
section, we introduce a physics-based approximation to the shifted-latent distribution.

4.2 Physics-based latent distribution correction

Ideally, performing accurate posterior sampling via the pretrained conditional normalizing flow—in
the presence of data distribution shifts—requires passing samples from the shifted latent distribution
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pϕ(z | yobs) to f−1
ϕ (z; yobs). Unfortunately, accurately sampling pϕ(z | yobs) requires access to the

true posterior distribution, which we are ultimately after and do not have access to. Alternatively, we
propose to quantify pϕ(z | yobs) using Bayes’ rule,

pϕ(z | yobs) =
plike(yobs | z) pprior(z)

p̂data(yobs)
, (16)

where the physics-informed likelihood function plike(yobs | z) and the prior distribution pprior(z) over
the latent variable are defined as

− log pϕ(z | yobs) = −
N∑

i=1
log plike(yobs,i | z) − log pprior(z) + log p̂data(yobs)

:= 1
2σ2

N∑
i=1

∥∥yobs,i − Fi ◦ f−1
ϕ (z; yobs)

∥∥2
2 + 1

2
∥∥z

∥∥2
2 + const.

(17)

In the above expression, the physics-informed likelihood function plike(yobs | z) follows from the
forward model in equation 1 with a Gaussian assumption on the noise with mean zero and covariance
matrix σ2I, and the prior distribution pprior(z) is chosen as a standard Gaussian distribution with mean
zero and covariance matrix I. The choice of the likelihood function ensures physics and data fidelity
by giving more importance to latent variables that once passed through the pretrained conditional
normalizing flow and the forward operator provide smaller data misfits while the prior distribution
pprior(z) injects our prior beliefs about the latent variable, which is by design chosen to be distributed
according to a standard Gaussian distribution.

Due to our choice of the likelihood function and prior distribution above, the effective prior distri-
bution over the unknown x is in fact a conditional prior characterized by the pretrained conditional
normalizing flow [42]. As observed by Yang and Soatto [77] and Orozco et al. [35], using a condi-
tional prior may be more informative than its unconditional counterpart because it is conditioned
by the observed data yobs. Our approach can be also viewed as an instance of online variational
Bayes [78] where data arrives sequentially and previous posterior approximates are used as priors for
subsequent approximations.

In the next section, we improve the available amortized approximation to the posterior distribution by
relaxing the standard Gaussian distribution assumption of the conditional normalizing flow latent
distribution.

4.2.1 Gaussian relaxation of the latent distribution

By definition, feeding samples from pϕ(z | yobs) to the pretrained amortized conditional normalizing
flows provides samples from the posterior distribution (see discussion beneath equation 15). To
maintain the low computational cost of sampling with amortized variational inference, it is imperative
that pϕ(z | yobs) is sampled as cheaply as possible. To this end, we exploit the fact that conditional
normalizing flows in the context of amortized variational inference are trained to Gaussianize the input
model random variable (equation 11). This suggests that the shifted latent distribution pϕ(z | yobs)
will be close to a standard Gaussian distribution for a certain class of data distribution shifts. We
exploit this property and approximate the shifted latent distribution pϕ(z | yobs) via a Gaussian
distribution with an unknown mean and diagonal covariance matrix,

pϕ(z | yobs) ≈ N
(
z | µ, diag(s)2)

, z ∈ Z. (18)

In the above expression, the vector µ corresponds to the mean and the vector diag(s)2 represents a
diagonal covariance matrix with diagonal entries s ⊙ s (with the symbol ⊙ denoting elementwise
multiplication) that need to be determined. We estimate these quantities by minimizing the reverse
KL divergence between the relaxed Gaussian latent distribution N

(
z | µ, diag(s)2)

and the shifted
latent distribution pϕ(z | yobs). According to the variational inference objective function associated
with the reverse KL divergence in equation 5, this correction can be achieved by solving the following
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optimization problem (see derivation in Appendix A),

µ∗, s∗ = arg min
µ,s

KL
(
N

(
z | µ, diag(s)2)

|| pϕ(z | yobs)
)

= arg min
µ,s

Ez∼N(z|0,I)

[
1

2σ2

N∑
i=1

∥∥yobs,i − Fi ◦ fϕ

(
s ⊙ z + µ; yobs

)∥∥2
2

+ 1
2

∥∥s ⊙ z + µ
∥∥2

2 − log
∣∣∣ det diag(s)

∣∣∣].

(19)

We solve optimization problem 19 with the Adam optimizer where we select random batches of latent
variable variables z ∼ N(z | 0, I) and data indices. We initialize the optimization problem 19 by
µ = 0 and diag(s)2 = I. This initialization acts as a warm-start and an implicit regularization [42]
since f−1

ϕ (z; yobs) for standard Gaussian distributed latent samples z provides approximate samples
from the posterior distribution—thanks to amortization over different observed data y. As a result,
we expect the optimization problem 19 to be solved relatively cheaply. Additionally, the imposed
standard Gaussian distribution prior on s ⊙ z + µ regularizes inversion for the corrections since
KL (pϕ(z | yobs) || N(z | 0, I)) is minimized during amortized variational inference (equation 15).
To relax the (conditional) prior imposed by the pretrained conditional normalizing flow, instead of
a standard Gaussian prior, a Gaussian prior with a larger variance can be imposed on the corrected
latent variable. Conditional normalizing flows’ inherent invertibility allows the normalizing flow
to represent any solution x ∈ X in the solution space. This has the additional benefit of limiting
the adverse affects of imperfect pretraining of fϕ in domains where access to high-fidelity training
data is limited, which is often the case in practice. The output of the conditional normalizing flow
can be further regularized by including additional regularization terms in equation 19 to prevent it
from producing out-of-range, non-physical results. Figure 9 summarizes our proposed method latent
distribution correction method.

Figure 9: A schematic representation of out proposed method. When dealing with nonzero amortized
variational inference objective value (equation 7) or in presence of data distribution shifts during
inference, we correct the latent distribution of the pretrained conditional normalizing flow via a
diagonal physics-based correction. After the correction, the new latent samples result in corrected
posterior samples when fed to the pretrained normalizing flow.

4.2.2 Inference with corrected latent distribution

Once the optimization problem 19 is solved with respect to µ and s, we obtain corrected posterior
samples by passing samples from the corrected latent distribution N

(
z | µ∗, diag(s∗)2)

≈ pϕ(z |
yobs) to the conditional normalizing flow,

x = f−1
ϕ (s∗ ⊙ z + µ∗; yobs), z ∼ N(z | 0, I). (20)

These corrected posterior samples are implicitly regularized by the reparameterization with the
pretrained conditional normalizing flow and the standard Gaussian distribution prior on z [35, 36, 42].
Next section applies this physics-based correction to a seismic imaging example, in which we use the
pretrained conditional normalizing flow from the earlier example.
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5 Latent distribution correction applied to seismic imaging

The purpose of our proposed latent distribution correction approach is to accelerate Bayesian in-
ference while maintaining fidelity to a specific observed dataset and physics. While this method is
generic and can be applied to a variety of inverse problems, it is particularly relevant when solving
geophysical inverse problems, where the unknown quantity is high dimensional, the forward operator
is computationally costly to evaluate, and there is a lack of access to high-quality training data that
represents the true heterogeneity of the Earth’s subsurface. Therefore, we apply this approach to
seismic imaging to utilize the advantages of generative models for solving inverse problems, including
fast conditional sampling and learned prior distributions, while limiting the negative bias induced by
shifts in data distributions.

The results are presented for two cases. The first case involves introducing a series of changes
in the distribution of observed data, for example changing the number of sources and the noise
levels. This is followed by correcting for the error in predictions made by the pretrained conditional
normalizing flow using our proposed method. In the second case, in addition to the shifts in the
distribution of the observed data (forward model), we also introduce a shift in the prior distribution.
We accomplish this by selecting a ground-truth image from a deeper section of the Parihaka dataset
that has different image characteristics than the training images, such as tortuous reflectors and more
complex geological features. In both cases, we expect the outcome of the Bayesian algorithm to
improve following the correction of latent distributions described above. We provide qualitative and
quantitative evaluations of the Bayesian inference results.

5.1 Shift in the forward model

In the following example, we introduce shifts in the distribution of observed data—compared to
the pretraining phase—by changing the forward model. The shift involves reducing the number of
sources (N in equation 1) by a factor of two to four, while adding band-limited noise with 1.5 to
three times larger standard deviation (σ in equation 3). We will demonstrate the potential pitfalls of
relying solely on the pretrained conditional normalizing flows in circumstances where the distribution
of observed data has shifted. With the use of our latent distribution correction, we will demonstrate
that we are able to correct for errors that are made by the pretrained conditional normalizing flow as a
result of changes to data distribution.

Following the description of the problem setup, we will also provide comparisons between the
conditional mean estimation quality before and after the latent distribution correction step. Before
moving on to our results relating to uncertainty quantification on the image, we demonstrate the
importance of the correction step by visualizing the improvements in fitting the observed data. Lastly,
we perform a series of experiments to verify our Bayesian inference results.

5.1.1 Problem setup

To induce shifts in the data distribution, we reduce the number of sources and increase the standard
deviation of the added band-limited noise. Consequently, we have reduced the amount of data
(due to having fewer source experiments) and decreased the SNR of each shot record (due to being
contaminated with stronger noise). As a consequence, seismic imaging becomes more challenging,
i.e., more difficult to estimate the ground truth image, and it is expected that the uncertainty associated
with the problem will also increase.

We use the same ground-truth image as in the previous example (Figure 6a), while experimenting
with 25, 51, 102 sources and adding band-limited noise that has 1.5, 2.0, 2.5, and 3.0 times larger
standard deviation than the pretraining setup. For each combination of source number and noise
level (12 combinations in total), we compute the reverse-time migrated image corresponding to that
combination. Next, we perform latent distribution corrections for each of the 12 seismic imaging
instances. All latent distribution correction optimization problems (equation 19) are solved using
the Adam optimization algorithm [62] for five passes over the shot records (epochs). We did not
observe a significant decrease in the objective function after five epochs. The objective function is
evaluated each iteration by drawing a single latent sample from the standard Gaussian distribution
and randomly selecting (without replacement) a data index i ∈ {1, . . . , 25}. We use a stepsize of
10−1 and decrease it by a factor of 0.9 at the end of every two epochs.
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After solving the optimization problem 19 for the different seismic imaging instances, we obtain
corrected posterior samples for each instance. The next section provides a detailed discussion of the
latent distribution correction that was applied to one such instance that had a significant shift in data
distribution.

5.1.2 Improved Bayesian inference via latent distribution correction

The aim of this section is to demonstrate how latent distribution correction can be used to mitigate
errors induced by data distribution shifts. Specifically, we present the results for the case where
the number of sources is reduced by a factor of four (N = 25) as compared to the pretrained data
generation setup. The 25 sources are spread periodically over the survey area with a source sampling
of approximately 200 meters. Moreover, we contaminate the resulting shot records with band-limited
noise with an increased standard deviation of 2.5 times when compared to the pretraining phase.
The overall SNR for the data thus becomes −2.78 dB, which is 7.95 dB lower that the SNR of the
observed data during pretraining (Figure 5b). Figure 10 shows one of the ‘25 shot records.

(a) (b)

Figure 10: A shot record from the shifted data distribution. (a) Noise-free linearized data (same as
Figure 5a). (b) Noisy linearized data with 2.5 larger band-limited noise standard deviation (SNR
−2.78 dB).

Utilizing the above observed dataset, we compute the reverse-time migrated image as an input to our
pretrained conditional normalizing flow (Figure 11a). In contrast to the reverse-time migrated image
shown in Figure 5b, this migrated image is, as expected, noisier, and it displays visible near-source
imaging artifacts as a result of coarse source sampling. Additionally, we compute the least-squares
migrated seismic image that is obtained by minimizing the negative-log likelihood (see the likelihood
term in equation 3). This image, shown in Figure 11b, was constructed by fitting the data without
incorporating any prior information. It is evident from this image that there are strong artifacts caused
by noise in the data, underscoring the importance of incorporating prior knowledge into solving
seismic imaging.

5.1.2.1 Improvements in posterior samples and conditional mean estimate To obtain amor-
tized (uncorrected) posterior samples, we feed the reverse-time migrated image (Figure 11a) and
latent samples drawn from the standard Gaussian distribution to the pretrained normalizing flow.
These samples, which are shown in the left column of Figure 12, contain artifacts near the top of
the image. These artifacts are related to the near-source reverse-time migrated image artifacts (Fig-
ure 11a). Since the reverse-time migrated images used during pretraining do not contain near-source
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(a)

(b)

Figure 11: Latent distribution correction experiment setup. (a) Reverse-time migrated image corre-
sponding to the shifted forward model with SNR −8.22 dB. (b) Least squares imaging, which is
equivalent to the minimizing

∑N
i=1

∥∥di − J(m0, qi)δm
∥∥2

2 with respect to δm with no regularization.
The SNR for this estimate is 6.90 dB.

imaging artifacts—due to fine source sampling—the pretrained normalizing flow fails to eliminate
them. Further, the uncorrected posterior samples do not accurately predict reflectors as they approach
the boundaries and deeper sections of the image.

To illustrate the improved posterior sample quality following latent distribution correction, we feed
latent samples drawn from the corrected latent distribution to the pretrained normalizing flow (right
column of Figure 12). Comparing the left and right columns in Figure 12 indicates an improvement
in the quality of samples from the posterior distribution, which can be attributed to the attenuation of
near-top artifacts and an improvement in the image quality close to the boundary and deeper reflectors
in the image. Moreover, the SNR values of the posterior samples after correction are approximately
3 dB higher, which represents a significant improvement.

To compute the conditional mean estimate, we simulate one thousand posterior samples before
and after latent distribution correction. As with the posterior samples before correction, drawing
samples after correction is very cheap once the correction is done as it only requires evaluating the
conditional normalizing flow over the corrected latent samples. Figures 13a and 13b show conditional
mean estimates before and after latent distribution correction, respectively. The conditional mean
estimate before correction reveals similar artifacts as the posterior samples before correction, in
particular, near-top imaging artifacts due to coarse sources sampling and less illumination of reflectors
located closer to the boundary and deeper portions of the image. The importance of our proposed
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Figure 12: Samples from the posterior distribution (left) without latent distribution correction with
SNRs ranging from 4.57 dB to 5.21 dB; and (right) after latent distribution correction with SNRs
ranging from 7.80 dB to 8.53 dB.
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latent distribution correction can be observed by juxtaposing the conditional mean estimate before
(Figure 13a) and after correction (Figure 13b). The conditional mean estimate obtained after latent
distribution correction eliminates the aforementioned inaccuracies and enhances the quality of the
image by approximately 4 dB. We gain similar improvements in SNR compared to the least-squares
migrated image (Figure 11b) with virtually the same cost, i.e., five passes over the shot records. This
is significant improvement in SNR also is complimented by access to information regarding the
uncertainty of the image.

(a)

(b)

Figure 13: Improvements in conditional mean estimate due to latent distribution correction. (a) The
conditional (posterior) mean estimate using the pretrained conditional normalizing flow without
correction (SNR 6.29 dB). (b) The conditional mean estimate after latent distribution correction
(SNR 10.36 dB).

5.1.2.2 Data-space quality control As the latent distribution correction step involves finding
latent samples that are better suited to fit the data (equation 19), we can expect an improvement in
fitting the observed data after correction. Predicted data is obtained by applying the forward operator
to the conditional mean estimates, before and after latent distribution correction. Figures 14a and 14b
show the predicted shot records before and after correction, respectively. In spite of the fact that both
predicted data appear to be similar to ideal noise-free data (Figure 10a), the data residual associated
with the conditional mean without correction reveals several coherent events that contain valuable
information about the unknown seismic image. The latent distribution correction allows us to fit
these coherent events as indicated by the data residual associated with the corrected conditional mean
estimate.
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(a) (b)

(c) (d)

Figure 14: Quality control in data space. Data is simulated by applying the forward operator to the
conditional mean estimate (a) before (SNR 11.62 dB); and (b) after latent distribution correction
(SNR 16.57 dB). (c) Prediction errors associated with Figure 14a. (d) Prediction errors associated
with Figure 14b (after latent distribution correction).

24



5.1.2.3 Uncertainty quantification—pointwise standard deviation and histograms We exploit
cheap access to corrected samples from the posterior in order to extract information regarding
uncertainty in the image estimates. Figure 15a displays the pointwise standard deviation among the
one thousand corrected posterior samples. The overprint by the strong reflectors can be reduced by
normalizing the standard deviation using a stabilized division by the conditional mean (Figure 15b).
The pointwise standard deviation plots indicate high uncertainty in areas near the boundaries of the
image and in the deep parts of the image where illumination is relatively poor. This observation is
more evident in Figure 16, which displays three vertical profiles as 99% confidence intervals (orange
colored shading) illustrating the expected increasing trend of uncertainty with depth. We additionally
observe that the ground truth (dashed black) falls within the confidence intervals for most of the areas.

(a)

(b)

Figure 15: Uncertainty quantification with latent distribution correction. (a) The pointwise standard
deviation among samples drawn from the posterior after latent distribution correction. (b) Normalized
pointwise standard deviation by the conditional mean estimate (Figure 13b).

To demonstrate how the corrected posterior is informed by the observed data, we calculated histograms
at three locations in Figure 15a. Prior histograms are calculated by feeding latent samples drawn from
the standard Gaussian distribution to the pretrained conditional normalizing flow without using data
conditioning (see Kruse et al. [28] and Siahkoohi and Herrmann [33] for more information). These
samples in the image spaces are indicative of samples from the prior distribution implicitly learned
by the conditional normalizing flow during pretraining. The resulting prior histograms are shown
in Figure 17. Corresponding histograms are also obtained for the uncorrected amortized posterior
distribution (equation 12). As mentioned before, the uncorrected posterior distribution serves as
an implicit conditional prior for the subsequent step of correction of the latent distribution. The
green histograms in Figure 17 represent the uncorrected amortized posterior distribution. A similar
procedure is followed to obtain histograms after latent distribution correction (blue histograms). As

25



(a)

(b)

(c)

Figure 16: Confidence intervals for three vertical profiles. Traces of 99% confidence interval (shaded
orange color), corrected conditional mean (solid blue), and ground truth (dashed black) at (a) 1.28 km,
(b) 2.56 km, and (c) 3.84 km horizontal location.

expected, the histograms of the posterior distribution are considerably narrower than those of the
learned prior, which indicates that the posterior is further informed by the specific observed dataset
and physics. As a means of evaluating the effect of latent distribution correction, we provide a vertical
solid line showing the ground truth value’s location. All three corrected posterior histograms for each
location are shifted towards the ground truth, and their (conditional) mean plotted with the dashed
vertical line indicates improved recovery of the ground truth. Compared to the amortized uncorrected
histograms, the corrected histograms in Figures 17a – 17b are further contracted, suggesting that the
latent distribution correction step has further informed the inference by the data.

5.1.3 Bayesian inference verification

While we investigated the accuracy of the conditional mean estimate after correction, we do not
have access to the underlying true posterior distribution to verify our proposed posterior sampling
method. This is partly due to our learned prior and the implicit conditional prior used in latent variable
correction, which make traditional MCMC-based comparisons challenging. To further validate our
Bayesian inference procedure, we conduct a series of experiments in which we investigate the effect
of gradual increase in the number of sources (N ) and reduction of the noise level. As the number of
sources increases and the noise level decreases, we expect to see an increase in seismic image quality
and a decrease in uncertainty.
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(a)

(b)

(c)

Figure 17: Pointwise prior (red), uncorrected amortized posterior (green), and latent distribution
corrected posterior (blue) histograms along with the true perturbation values (solid black line) and
the corrected conditional mean (dashed black line) for points located at (a) (1.2 km, 0.875 km), (b)
(1.4 km, 2.5 km), and (c) (4.0 km, 1.875 km).
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5.1.3.1 Estimation accuracy The accuracy of the Bayesian parameter estimation method is
directly affected by the amount of data that has been collected [2]. That is to say with more observed
data (larger N ), we should be able to obtain a more accurate seismic image estimate. The same
principle allows us to stack out noise when increasing the fold in seismic data acquisition. In order to
assess whether our Bayesian inference approach has this property, we repeat the latent distribution
correction process while varying the number of sources (using N = 25, 51, 102 sources) and the
amount of band-limited noise (standard deviations 1.5, 2.0, 2.5, and 3.0 times greater than the noise
standard deviation during pretraining). Each of the 12 instances of latent distribution correction
problems is treated similarly with respect to the number of passes made over the shot records and
other optimization parameters. For each of the 12 combinations of source numbers and noise levels,
we calculate the corrected conditional mean estimate and plot the SNRs as a function of the noise’s
standard deviation in Figure 18.

For a fixed number of sources (25, 51, and 102 sources shown with red, green, and blue colors
respectively), we plot the corrected conditional means SNR as a function of the noise standard
deviation. There is a clear increase in SNR trend as we decrease the noise level. In the same way, for
each fixed noise level, the SNR increases with the number of sources. This verifies the our Bayesian
inference method yields a more accurate estimate of the conditional mean for larger number of
sources and smaller noise levels.

Figure 18: Estimation accuracy as a function of number of sources and noise levels. Colors correspond
to different source numbers.

5.1.3.2 Bayesian posterior contraction An alternative Bayesian inference verification method
involves analyzing the Bayesian posterior contraction, that is, the decrease of uncertainty with more
data. To examine whether or not our Bayesian inference method possesses this property, we visually
inspect the resulting pointwise standard deviation plots in Figure 19 for the 12 possible combinations
of source numbers and noise levels. Each row corresponds to the pointwise standard deviation plot
for a fixed noise standard deviation (σ), where the number of sources (N ) decreases from left to right.
In each column, we maintain the number of sources and we plot the pointwise standard deviation
as we increase the noise standard deviation from top to bottom. There is a consistent increase in
standard deviation values as we move from the top-left to the bottom-right corner. In other words, the
posterior contract (shrinks) when we have more data (more numbers of sources, Figure 19 from right
to left) and when we have less noise (Figure 19 from bottom to top), which effectively means more
data.

Figure 20 offers an alternate method of visualizing posterior contraction, displaying box plots of
the standard deviation values for each of the 12 images in Figure 19. In each of the three box plots,
the vertical axis corresponds to the noise standard deviation, and the horizontal axis represents the
possible values in the posterior pointwise standard deviation plots. The box indicates the values that
are between the first and third quartiles (where half of the possible values fall) and the line in the
middle indicates the median value. Figures 20a to 20c show box plots for experiments with 25, 51,
and 102 sources, respectively, with each box plot color reflecting a particular noise level. In each
of the Figures 20a to 20c, we observe a decrease in the range of posterior standard deviation values,
including median and quantiles, as we lower the noise level from left to right. Similarly, for the same
noise levels, that is, box plots of the same color, the standard deviations decrease from Figure 20a to
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Figure 19: Bayesian posterior contraction: visual inspection. Pointwise standard deviations for
varying number of sources (decreasing left to right) and noise variances (increases top to bottom).

Figure 20c (increasing number of sources). The observed trends in Figures 19 and 20 verify that our
Bayesian inference method exhibits the Bayesian posterior contraction property.

(a) (b) (c)

Figure 20: Box plots of pointwise standard deviation values as a function of noise level for number
of sources (a) N = 25, (b) N = 51, and (c) N = 102.
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5.2 Shift in the forward model and prior distribution

This example is intended to demonstrate how our latent distribution correction method can perform
Bayesian inference when the unknown ground truth image has properties that differ from the seismic
images in the pretraining dataset. This expectation is based on the invertible nature of conditional
normalizing flows, which allows them to represent any image in the image space [42].

As a means to mimic this scenario, unlike images used in pretraining, we have extracted two 2D
seismic images from deeper sections of the Parihaka dataset. In these sections, there are fewer
continuous reflectors and more complex geological features. Figures 21a and 21b show two images
with drastically different geological features when compared to Figure 6a. Following the pretraining
data acquisition setup, we add a water column on top of these images to reduce the near-source
artifacts. Similar to the previous experiment involving forward model shifts, we use only 25 sources
with 200 meters sampling distance and add noise with a 2.5 fold larger standard deviation than during
the pretraining phase. With this setup, the noisy observed data associated with experiments involving
seismic images in Figures 21a and 21b have a SNR of −1.56 dB and −2.41 dB, respectively.

As part of our analysis, we compute the reverse-time (second row in Figure 21) and least-squares
(third row in Figure 21) migrated images for these two ground-truth images, where the former images
serve as inputs to the pretrained conditional normalizing flows. Similar to the previous example, the
reverse-time migrated images contain the near-source artifacts and are contaminated by the input
noise. Moreover, the least-squares migrated images highlight the importance of including prior
information in this imaging problem, since this image contains strong noise-related artifacts, which
might impact downstream tasks, such as horizon tracking.

5.2.1 Conditional mean and pointwise standard deviations

To obtain samples from the posterior distribution, we feed the reverse-time migrated images (Fig-
ures 21c and 21d) into the pretrained conditional normalizing flow. The posterior is sampled using
either standard Gaussian distributions or corrected latent samples. It is apparent, once more, that the
uncorrected conditional mean estimates are significantly contaminated by artifacts in the near-source
region (Figures 22a and 22b). Another type of noticeable error in these predicted images includes
lower amplitudes in deeper and closer to boundary reflectors. A comparison of the conditional means
estimates before (Figures 22a and 22b) and after (Figures 22c and 22d) latent distribution correction
indicates attenuation of near-source artifacts as well as an improvement in reflector illumination
near the boundary and deeper sections where images are more difficult to capture. Following latent
distribution correction, the conditional mean estimate SNR is improved by three to four decibels for
both images. To provide more quantitative results, we ran the experiments as set up in this section for
eight additional seismic images sampled from deeper sections of the Parihaka dataset, sampled from
deeper sections of the Parihaka dataset. The SNR of the estimated seismic images before and after
latent distribution are 5.91 ± 0.49 dB and 9.15 ± 0.73 dB, respectively.

Careful inspection at the boundaries in the corrected conditional mean estimates reveals some nonre-
alistic events near the boundaries. The plots of pointwise standard deviations (Figures 23a and 23b)
associated with corrected conditional means, however, clearly indicate that there is uncertainty for
these events. This illustrates the importance of uncertainty quantification and not relying on a single
estimate when addressing ill-posed inverse problems. To diminish the imprint of strong reflectors in
the pointwise standard deviations plots, we also display these images when normalized with respect
to the envelopes of the conditional mean estimates in Figures 23c and 23d.

5.2.2 Data residuals

As before, we confirm that the latent distribution correction improves the fit of the data. Figure 24
shows the predicted data as well as the data residuals for all conditional mean estimates. The predicted
data are obtained by applying the forward operator to the conditional mean estimates, both before and
after latent distribution correction. The predicted data before and after correction are presented in the
first and second columns, respectively. The corresponding data residuals before and after correction,
which are computed by subtracting the predicted data from ideal noise-free data, can be seen in the
third and last columns of Figure 24. Evidently, the latent distribution correction stage has resulted in
a better fit with the observed data, as coherent data events show up in Figures 24c and 24g, but are
attenuated in the corrected residual plots (Figures 24d and 24h).
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(a) (b)

(c) (d)

(e) (f)

Figure 21: Setup for experiments involving shifts in the prior distribution. (a) and (b) Two high-
fidelity ground-truth images from deeper sections of the Parihaka dataset. (c) and (d) Reverse-time
migrated image corresponding ground-truth images in Figures 21a (SNR −8.02 dB) and 21b (SNR
−8.49 dB), respectively. (e) and (f) Least squares imaging results (no regularization) corresponding
ground-truth images in Figures 21a (SNR 4.94 dB) and 21b (SNR 5.59 dB), respectively.
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(a) (b)

(c) (d)

Figure 22: The improvement in conditional mean estimate due to latent distribution correction.
(a) and (b) Amortized uncorrected conditional (posterior) mean estimates with SNRs 5.47 dB and
6.17 dB, respectively. (c) and (d) Conditional (posterior) mean estimates after latent distribution
correction with SNRs 9.40 dB and 9.11 dB, respectively.

6 Discussion

The examples presented demonstrate that deep neural networks trained in the context of amortized
variational inference can facilitate solving inverse problems in two ways: (1) incorporating prior
knowledge gained through pretraining; and (2) accelerating Bayesian inference and uncertainty
quantification. Despite the fact that amortized variational inference is capable of sampling the
posterior distribution without requiring forward operator evaluations during inference, the extent to
which it is considered reliable is dependent upon the availability of high quality training data. We
demonstrate this limitation of amortized variational inference via a seismic imaging example where
we alter the number of sources, variance of noise, and the present geological features to be imaged
in comparison to the pretraining phase. These variations shift the data distribution, and in certain
cases, e.g., imaging slightly different geological features, this can be also thought as evaluating
the pretrained conditional normalizing flow over data samples from the low probability regions of
the training distribution. Due to shifts in the data distribution, the obtained posterior samples via
amortized variational inference in our numerical experiments had unusual near-source artifacts and
less illuminated reflectors, which we can be partly attributed to lack of these artifacts in the training
reverse-time migrated images.

As part of our efforts to extend the application of the supervised amortized variational inference
methods to domains with limited access to high-quality training data, we developed an unsupervised,
physics-based variational inference formulation over the latent space of a pretrained conditional
normalizing flow that mitigates some of the posterior sampling errors induced by data distribution
shifts. In this approach, a diagonal correction to the latent distribution is learned that ensures that
the conditional normalizing flow output distribution better matches the desired posterior distribution.
Based on observations and other research [35, 36, 42], we found that normalizing flows, because of
their invertibility, are capable of partially mitigating errors related to changes in data distributions
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(a) (b)

(c) (d)

Figure 23: Uncertainty quantification with latent distribution correction. (a) and (b) The pointwise
standard deviation estimates among samples drawn from the posterior after latent distribution correc-
tion. (b) Pointwise standard deviations normalized by the envelop of conditional mean estimates.

when they are used to solve inverse problems. We leave the delineation of which data distribution
shifts can be handled by our diagonal correction approach to future work. Needless to say, by adhering
to more complex transformations in the latent space, e.g., via a neural network, a wide range of data
distribution shifts can be handled but it would potentially require a more computationally costly
correction step.

Latent distribution correction requires several passes over the data (five in our example), which
includes evaluation of the forward operator and the adjoint of its Jacobian. Due to the amortized
nature of our approach, these costs are significantly lower than those incurred by other non-amortized
variational inference methods [19, 46, 48, 49], specifically tens of thousands of forward operator
evaluations reported by Zhao et al. [47] in the context of travel-time tomography. By amortizing
over the data, the pretrained conditional normalizing flow provides posterior samples for previously
unseen data (drawn from the same distribution as training data) without the need for latent distribution
correction. In presence of moderate data distribution shifts, the learned posterior is adjusted to new
observed data via the latent distribution correction step, which could be considered an instance of
transfer learning [79]. In contrast, existing methods that perform variational inference in the latent
space [50, 52] require a more substantial modification to the latent distribution, as the pretrained
model in these methods originally provides samples from the prior distribution. For large-scale
inverse problems, such as seismic imaging, where solving a partial differential equation is required to
evaluate the forward operator, reduced computational costs of Bayesian inference are particularly
important. Our approach reduces the computational costs associated with Bayesian inference in
such problems while also complementing the inversion with a learned prior. In order to quantify the
extent to which a diagonal correction to the latent distribution mitigates errors resulting from data
distribution shifts, more research is required.

While the examples we presented in this paper were in regards to linear inverse problem, variational
inference can be also applied to nonlinear problems [20, 23, 25, 48, 80]. However, in the context
of amortized variational inference there are two main considerations that need to be taken into
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 24: Quality control in data space. The first and second row correspond to experiments
involving Figures 21a and 21b, respectively. (a) and (e) Predicted data before correction with SNRs
9.13 dB and 9.02 dB, respectively. (b) and (f) Predicted data after latent distribution correction with
SNRs 15.27 dB and 14.52 dB, respectively. (c) and (g) Data residuals (before correction) associated
with Figures 24a and 24e, respectively. (d) and (h) Data residuals (after correction) associated with
Figures 24b and 24f, respectively.
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account when dealing with large-scale nonlinear inverse problems. First, the parametric surrogate
(conditional) distribution should be capable of approximating multi-modal densities. Invertible neural
networks [41] are a suitable choice for this parameterization as they are known to be universal
approximators [67, 68], meaning that invertible networks are capable of approximating a general
class of diffeomorphisms. In other words, as long as there is a smooth invertible map between
the latent space and the desired posterior distribution, invertible neural networks can be used to
approximate the posterior distribution. The second consideration is regarding finding low-dimensional
summary statistics [30] of observed data to avoid training the conditional normalizing flow over
high dimensional data. In our linear seismic imaging example, we “summarized” seismic data (shot
records) via the reverse-time migrated image. The conditions for which this summarization does
not negatively bias the outcome of Bayesian inference (in the context of linear inverse problems) is
described by Orozco et al. [81]. Further work is needed to design low-dimensional summary statistics
for nonlinear inverse problems in order to successfully apply our framework to large-scale nonlinear
inverse problems.

As far as seismic imaging is concerned, uncertainty can be attributed to two main sources [82–84]: (1)
data errors, including measurement noise; (2) modeling errors, including linearization errors, which
diminish with the accuracy of the background velocity model. The scope of our research is focused
on the first source of uncertainty, and we will explore how variational inference models can be used
to capture errors in background models in future work. In contrast to the problem highlighted in this
paper, capturing the uncertainty caused by errors in the background model would require generating
training data involving imaging experiments for a variety of plausible background velocity models,
which would be computationally intensive. Recent developments in Fourier neural operators [85, 86]
may prove to be useful in addressing this problem.

7 Conclusions

In high-dimensional inverse problems with computationally expensive forward modeling operators,
Bayesian inference is challenging due to the cost of sampling the high-dimensional posterior distri-
bution. The computational costs associated with the forward operator often limit the applicability
of sampling the posterior distribution with traditional Markov chain Monte Carlo and variational
inference methods. Added to the computational challenges are the difficulties associated with select-
ing a prior distribution that encodes our prior knowledge while not negatively biasing the outcome
of Bayesian inference. Amortized variational inference addresses these challenges by incurring an
offline initial training cost for a deep neural network that can approximate the posterior distribution
for previously unseen observed data, distributed according to the training data distribution. When
high-quality training data is readily available, and as long as there are no shifts in the data distribution,
the pretrained network is capable of providing samples from the posterior distribution for previously
unknown data virtually free of additional costs.

Unfortunately, in certain domains, such as geophysical inverse problems, where the structure of the
Earth’s subsurface is unknown, it can be challenging to obtain a training dataset, e.g., a collection of
images of the subsurface, which statistically captures the strong heterogeneity exhibited by the Earth’s
subsurface. Furthermore, changes to the data generation process could negatively influence the quality
of Bayesian inferences with amortized variational inferences due to generalization errors associated
with neural networks. To address these challenges while exploiting the computational benefits of
amortized variational inference, we proposed a data-specific, physics-based, and computationally
cheap correction to the latent distribution of a conditional normalizing flow, pretrained to via an
amortized variational inference objective. This correction involves solving a variational inference
problem in the latent space of the pretrained conditional normalizing flow where we obtain a diagonal
correction to the latent distribution such that the predicted posterior distribution more closely matches
the desired posterior distribution.

Using a seismic imaging example, we demonstrate that the proposed latent distribution correction,
at a cost of five reverse-time migrations, can be used to mitigate the effects of data distribution
shifts, which includes changes in the forward model as well as the prior distribution. Our evaluation
indicated improvements in seismic image quality, comparable to least squares imaging, after the latent
distribution correction step, as well as estimate on the uncertainty of the image. We presented the
pointwise standard deviation as a measure of uncertainty in the image, which indicated an increase
in variability in complex geological areas and poorly illuminated areas. This approach will enable
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uncertainty quantification in large-scale inverse problems, which otherwise would be computationally
expensive to achieve.

8 Related material

The latent distribution correction optimization problem (equation 19) involves computing gradients
of the composition of the forward operator and the pretrained conditional normalizing flow with
respect to the latent variable. Computing this gradient requires actions of the forward operator and
the adjoint of its Jacobian. In our numerical experiments, these operations involved solving wave
equations. For maximal numerical performance, we use JUDI [87] to construct wave-equation solvers,
which utilizes the just-in-time Devito [88, 89] compiler for the wave-equation based simulations.
The invertible network architectures are implemented using InvertibleNetworks.jl [90], a memory-
efficient framework for training invertible nets in Julia programming language. For more details on
our implementation, please refer to our code on GitHub.
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10 Appendix A

10.1 Derivation of latent distribution correction objective function

The optimization problem for correcting the latent distribution involves minimizing the KL divergence
between the Gaussian relaxation of the latent distribution N

(
z | µ, diag(s)2)

and the shifted latent
distribution pϕ(z | yobs), which is conditioned on an instance of out-of-distribution data yobs ∼
p̂data(y). This is an instance of non-amortized variational inference (see equations 4 and 5) defined
over the latent variable:

arg min
µ,s

KL
(
N

(
z | µ, diag(s)2)

|| pϕ(z | yobs)
)

= arg min
µ,s

Ez∼N(z|µ,diag(s)2)

[
− log pϕ(z | yobs) + log N

(
z | µ, diag(s)2)]

.
(21)

The above expression can be further simplified by rewriting the expectation with respect to N
(
z |

µ, diag(s)2)
as the expectation with respect to a standard Gaussian distribution, followed by an

elementwise scaling by s and a shift by µ [see reparameterization trick in 64], i.e.,

arg min
µ,s

Ez∼N(z|0,I)

[
− log pϕ(s ⊙ z + µ | yobs) + log N

(
s ⊙ z + µ | µ, diag(s)2)]

. (22)

The last term in the expectation in equation 22 is the log-density of a Gaussian distribution, which is
equal to:

log N
(
s ⊙ z + µ | µ, diag(s)2)

= −D

2 log(2π) − 1
2 log

∣∣∣ det diag(s)2
∣∣∣ − 1

2
(
s ⊙ z + µ − µ

)⊤ diag(s)−2(
s ⊙ z + µ − µ

)
= − log

∣∣∣ det diag(s)
∣∣∣ − 1

2
∥∥z

∥∥2
2 + const

= − log
∣∣∣ det diag(s)

∣∣∣ + const.

(23)

In the above equation, D is the dimension of z, and the constants represent terms that are not a
function of µ or s. By inserting equation 23 into equation 22 we arrive at the following objective
function for the latent distribution correction:

arg min
µ,s

Ez∼N(z|0,I)

[
− log pϕ(s ⊙ z + µ | yobs) − log

∣∣∣ det diag(s)
∣∣∣] (24)
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Finally, we use use Bayes’ rule and inserting the shifted latent density function from equation 17 to
arrive at the objective function for latent distribution correction (equation 19):

arg min
µ,s

Ez∼N(z|0,I)

[
1

2σ2

N∑
i=1

∥∥yobs,i − Fi ◦ fϕ

(
s ⊙ z + µ; yobs

)∥∥2
2

+ 1
2

∥∥s ⊙ z + µ
∥∥2

2 − log
∣∣∣ det diag(s)

∣∣∣].

(25)
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