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ABSTRACT

Subsurface-offset gathers play an increasingly important role in seismic imaging. These gathers

are used during velocity model building and inversion of rock properties from amplitude

variations. While powerful, these gathers come with high computational and storage demands

to form and manipulate these high-dimensional objects. This explains why only limited

numbers of image gathers are computed over a limited offset range. We avoid these high costs

by working with highly compressed low-rank factorizations. These factorizations are obtained



via a combination of probings with the double two-way wave equation and randomized

singular value decompositions. In turn, the resulting factorizations give us access to all

subsurface offsets without having to form the full extended image volumes which are at best

quadratic in image size. As a result, we can easily handle situations where conventional

horizontal offset gathers are no longer focused. More importantly, the factorization also

provides a mechanism to use the invariance relation of extended image volumes for velocity

continuation. With this technique, extended image volumes for one background velocity

model can be directly mapped to those of another background velocity model. The proposed

low-rank factorization inherits this invariance property, so that factorization costs arise only

once when examining different imaging scenarios. Because all imaging experiments only

involve the factors, they are computationally efficient with costs that scale with the rank of

the factorization. Examples using 2D synthetics, including a challenging imaging example

with salt, validate the methodology. Instead of brute force explicit cross-correlations between

shifted source and receiver wavefields, our approach relies on the underlying linear-algebra

structure that enables us to work with these objects without incurring unfeasible demands

on computation and storage.
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INTRODUCTION

The formation of subsurface-offset gathers, such as common-image gathers (CIGs) (Rickett

and Sava, 2002; Symes, 2008; Stolk et al., 2009; Kalita and Alkhalifah, 2016), angle-domain

common-image gathers (ADCIGs) (de Bruin et al., 1990; Kühl and Sacchi, 2003; Sava

and Fomel, 2003; Mahmoudian and Margrave, 2009; ten Kroode, 2012; Dafni and Symes,

2016b,a; Kumar et al., 2018), and common-image point gathers (CIPs) (Sava and Vasconcelos,

2011; van Leeuwen and Herrmann, 2012) has become an essential component of modern

seismic imaging workflows (Etgen et al., 2009; Dell and Gajewski, 2011). Each type of

gathers provides crucial information on the quality of the velocity model and the scattering

mechanism. The latter is dependent on the subsurface itself and the acquisition geometry.

Contrary to CIGs, CIPs provide information on the complete scattering mechanism because

they are functions of the full omni-directional subsurface offset.

Usage of these gathers includes quality control during velocity-model building (Norris et al.,

1999), automatic model updates during migration-velocity analysis (Symes and Carazzone,

1991; Shen and Symes, 2008), and inferences made on rock properties from amplitude versus

offset analysis (de Bruin et al., 1990; Castagna and Backus, 1993; Castagna et al., 1998). All

of these usages rely on having access to high-quality subsurface image volumes. While access

to fast hardware and memory has made imaging modalities, such as reverse-time migration

(RTM)(Baysal et al., 1983; Symes, 2007), computationally feasible in 3D (Kukreja et al.,

2016; Luporini et al., 2018), the formation of subsurface-offset image volumes remains a

major challenge because it involves looping over the sources and multi-dimensional cross-

correlations between (shifted) spatio-temporal forward and adjoint wavefields. Aside from

the extra computational burden, subsurface-offset or angle image volumes add one or more
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dimensions to the image space making these volumes more challenging and costly to store

and manipulate.

By relying on the wave-equation itself, in combination with a (randomized) probing

technique, van Leeuwen et al. (2017) obtain access to full subsurface-offset image volumes

via actions of the double two-way wave equation on probing vectors. This double wave-

equation is the two-way wave-equation counterpart of Claerbout’s double square-root equation

(Claerbout, 1970; Symes and Carazzone, 1991; Biondi and Symes, 2004; Sava and Vasconcelos,

2011), which is based on the one-way wave equation, limiting its accuracy in media with

steeply dipping reflectors. The two-way wave equation remedies this shortcoming.

By choosing probing vectors consisting of a single-point scatterer, van Leeuwen et al.

(2017) are able to extract CIPs that are the same size as the original image but now become

a function of the omnidirectional subsurface offset. Unlike conventional CIGs, which are

generally computed as a function of the horizontal offset alone, CIPs contain offsets in all

directions, rendering important advantages in situations with steeply dipping reflectors in

which case CIGs no longer focus (see Figure 11 of van Leeuwen et al. (2017)).

While this probing method provides access to an object that can not be formed explicitly—

i.e., monochromatic extended image volumes (EIVs) (van Leeuwen et al., 2017) are quadratic

in the image size—the cost of this access scales with the number of probing vectors, limiting

its use. Despite this shortcoming, the formulation presented by van Leeuwen et al. (2017)

provides new insights into migration-velocity analysis and localized amplitude versus offset

analysis. These insights include corrections for geologic dips, the derivation of completely

novel approaches to velocity continuation (van Leeuwen and Herrmann, 2012; Kumar et al.,

2018) that arise from an invariance relation of the double two-way wave equation, and
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redatuming (Kumar et al., 2019).

Even though the derivation of the double two-way wave-equation results in a fundamentally

new approach on how to form and manipulate certain aspects of omnidirectional full-

subsurface EIVs, the proposed technique relies on frequency-domain propagators and access

to CIPs via probing. This reliance limits its potential application to more realistic imaging

scenarios that require time-domain propagators for the wave simulations and call for access to

many (geologic-dip) corrected CIGs. To overcome these shortcomings, we propose a low-rank

matrix factorization technique, based on the randomized singular value decomposition (rSVD)

(Halko et al., 2011) to form EIVs using time-domain wave-equation propagators. To allow

low-rank approximations at higher frequencies, where the singular values decay more slowly,

we propose a block Krylov method (Musco and Musco, 2015), which requires more costly

probings but leads to more accurate low-rank factored EIVs.

In addition to achieving a massive compression of EIVs, we will show that low-rank

factorizations provide us the access to CIPs and (geologic dip-corrected) CIGs without the

need to form EIVs explicitly or to solve additional wave equations—an observation also made

by Da Silva et al. (2019), who forms subsurface-offset gathers from a tensor factorization

based on the hierarchical Tucker format (Da Silva and Herrmann, 2015). Because EIVs

are solutions to the double two-way wave equation, which itself adheres to an invariance

relation, they also exhibit this invariance. Remarkably this property is inherited by the

proposed low-rank factorization. We will demonstrate that this invariance leads to imaging

workflows that incur the relatively high computational costs of the factorization only once.

All subsequent imaging costs scale with the rank of the factorization and this includes

imaging in different background velocity models. This is clearly a unique property as an

image-domain extension of early data-space factorization work by Hu et al. (2009).
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The novelty of our contribution is threefold. (1) We construct EIVs via probing

(van Leeuwen et al., 2017) with time-domain propagators extending earlier work on low-rank

factorization (Kumar et al., 2018) of EIVs with randomized Singular Value Decompositions.

(2) To manage the problem of handling and manipulating EIVs at high frequencies, we intro-

duce a power method with Krylov iterations designed to increase the accuracy of low-rank

factorizations in situations where the singular values decay slowly. A complexity analysis

shows the accuracy of the proposed extension. (3) By extending the invariance relation for

factored EIVs, we derive a practical velocity-continuation scheme that reduces both storage

and computational costs.

Our contributions are organized as follows. A first section reviews the definition of

monochromatic extended image volumes, their relation to the double two-way wave-equation,

and a low-rank factorization based on the rSVD. It will be shown how to use this low-rank

factorization to migrate and derive CIPs. To accommodate more realistic imaging scenarios,

the second half of the first section introduces representations for time-domain EIVs including

time-domain probing. Since we are now able to image at high frequencies, a second section is

dedicated to presenting and comparing more elaborate probing techniques that involve powers

of the double-wave equation. After demonstrating that these methods lead to more accurate

factorizations, a third section explains the formation of CIPs and (dip-corrected) CIGs from

factors directly without having to form EIVs explicitly. Next, we discuss time-harmonic and

time-domain versions of the invariance relationship for EIVs, which allow us to map the EIVs

from one background velocity model to another without refactorization. Finally, via carefully

selected experiments displayed in a fifth section, the presented factorization approach is

validated by comparing true CIPs and CIGs with their approximate counterparts calculated

by the proposed approach. We also carry out a realistic imaging scenario involving salt.
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During that experiment, we demonstrate that imaging scenarios with multiple background

velocity models are computationally feasible since we can work on the factors alone. This is

possible by virtue of the proposed velocity-continuation approach, derived from the invariance

relationship of EIVs (van Leeuwen and Herrmann, 2012; Kumar et al., 2018).

FULL SUBSURFACE EXTENDED IMAGE VOLUMES

Before discussing our novel approach to factorizing image volumes, we first briefly summarize

the formation and probing of image volumes in the frequency and the time domains. The

latter allows us to compute image volumes for large-scale problems, including 3D imaging

senarios. Compared to regular RTM where the zero-offset imaging condition is applied

(Claerbout, 1985), imaging with extended image volumes (EIVs) (Sava and Fomel, 2006;

Sava and Vasconcelos, 2011; van Leeuwen et al., 2017) involves the formation of a “lifted”

image volume dependent on two sets of spatial coordinates, one for the source wavefield, with

subsurface coordinate ~x and the other for the receiver wavefield, with subsurface coordinate

~x′. See Figure 1.

[Figure 1 about here.]

Monochromatic extended image volumes

According to van Leeuwen et al. (2017), monochromatic EIVs, with subsurface offsets in all

directions, can be formed by a simple outer product. In the Fourier domain, this product

can be calculated at the ith angular frequency by multiplying the tall matrix Ui ∈ CN×ns ,

containing the discretized monochromatic forward source wavefields collected in its columns

for ns different sources and N = nx × nz (with nx, nz number of gridpoints in the x − z
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directions) grid points, with the corresponding flat matrix containing the adjoint receiver

wavefields V∗i ∈ Cns×N . Each monochromatic N ×N image volume is given by

Ei = −ω2
i ViU

∗
i , (1)

with ωi the ith angular frequency. In this expression, the symbol ∗ represents the complex

conjugate transpose of a matrix. This monochromatic image volume represents a discretized

version of full monochromatic subsurface image volumes E(~x; ~x′), where ~x = (x, z) refers

to the spatial subsurface “source” coordinates in 2D and ~x′ = (x′, z′) to a second set of

subsurface “receiver” coordinates. For simplicity the frequency dependence is dropped in our

notation. From these two sets of coordinates, we define

~m =
~x+ ~x′

2
and ~h =

~x− ~x′

2
, (2)

where ~m = (mx,mz) and ~h = (hx, hz) are the subsurface midpoint and offset coordinates

along each spatial coordinate. Semicolons ; are used to separate the coordinate directions so

that the discretized image volume can be represented as a matrix.

The above forward and adjoint wavefields satisfy the following forward and adjoint wave

equations respectively:

Hi(m)Ui = P>s Qi, (3)

H∗i (m)Vi = P>r Di, (4)

where Hi(m), i = 1 · · ·nf , nf is the number of frequencies, which represents the discretized

Helmholtz operator at the ith frequency. The Helmholtz operator itself is parameterized by

the discretized squared slowness collected in the vector m ∈ RN . The ns × ns matrix Qi

denotes the source matrix, where ns is the number of sources. The observed data are collected

in monochromatic nr ×ns complex-valued data matrices Di, i = 1 · · ·nf , where each column
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represents a single monochromatic source experiment with nr receivers. Matrices Ps and Pr

are projection operators that restrict the full wavefields to the source and receiver positions,

respectively. The symbol > denotes the matrix transpose. By substituting equations 3 and 4

into equation 1, the EIVs Ei, i = 1 · · ·nf can be expressed as a function of Qi and Di as

follows:

Ei = −ω2
i H
−∗
i P>r DiQ

∗
iPsH

−∗
i

= H−∗i P>r ḊiQ̇
∗
iPsH

−∗
i .

(5)

Here the symbol −∗ stands for the conjugate inverse, which is the conjugate transpose of

the matrix inverse denoted by the symbol −1. To simplify our notation, we introduce the ˙

symbol to denote the inclusion of the jωi factor into the definition of the source and data

matrices. With this notation, equation 5 corresponds to the solution of the double two-way

wave-equation (van Leeuwen et al., 2017), which is given by

H∗iEiH
∗
i = P>r ḊiQ̇

∗
iPs. (6)

During migration, EIVs are computed using a background velocity model that defines the

squared slowness in the above discretized Helmholtz operators. Assuming this background

velocity model is known, we are interested in finding ways to form and manipulate image

volumes in realistic imaging scenarios. Because N easily grows too large, it becomes unfeasible

to form, store, or even manipulate EIVs in explicit form. This issue is addressed by exploiting

the reported low-rank properties of EIVs (van Leeuwen et al., 2017; Kumar et al., 2018; Yang

et al., 2019). Without loss of generality, we will work exclusively on 2D imaging problems

that can feasibly be extended to 3D. Focus will be on accuracy and develop techniques that

cast EIVs into factored form, which allows for computationally feasible manipulation and

extraction of useful gathers for migration velocity analysis, amplitude-versus-offset analyses,

and redatuming (van Leeuwen et al., 2017; Kumar et al., 2019).
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As in earlier work by van Leeuwen et al. (2017), our approach relies on probing EIVs,

that is, computing the action of EIVs on certain probing vectors. Aside from giving us access

to (CIPs)—i.e. full omnidirectional subsurface-offset gathers, probings provide information

required for factoring EIVs using rSVDs (Halko et al., 2011). To enable scale up, we extend

earlier work by using wave propagators based on time stepping, in combination with a

more sophisticated randomized probing methodology. Before introducing probing with time

stepping, probing of monochromatic EIVs is briefly reviewed first. It is shown how this

probing technique leads to an alternative formation of subsurface zero-offset RTM.

Low-rank factorization of time-harmonic EIVs

To form N × N , with N the subsurface grid points, EIVs in a computationally feasible

manner, the action of these volumes is computed on a limited number, np, of monochromatic

probing vectors collected in the tall matrix Wi ∈ CN×np with np < ns � N . Following

van Leeuwen et al. (2017), the probing entails

Yi = EiWi = H−∗i P>r ḊiQ̇
∗
iPsH

−∗
i Wi, (7)

which involves 2np wave-equation solves. There are several different choices possible for Wi.

For now1, we choose the entries of Wi to be drawn from zero-centered Gaussian noise with

unit standard deviation to reap the range of Ei (Kumar et al., 2018).

In situations where EIVs can be approximated accurately by a low-rank matrix, the result

of the probing Yi accurately captures information on the range of Ei as long as np is slightly

larger than the rank k (Halko et al., 2011). Information reaped via the above probing, allows
1We can relax this assumption by using fast Fourier-based probing methods (van Leeuwen et al., 2017).
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us to approximate EIVs via the following low-rank factorization:

Ei ≈ LiR
∗
i , (8)

where the factors Li and Ri ∈ CN×np are computed with the rSVD (Halko et al., 2011) as

described in Algorithm 5, included in Appendix A. This algorithm takes the above probing

as input and produces {L,R} factors derived from an SVD on a flat system of equations

(see Algorithm 5). Compared to a regular SVD, which takes O(N3) to factorize an N ×N

matrix, the rSVD needs only O(2Nn2p) operations. However, the rSVD requires the action

of E and E∗ on vectors at a cost of 2np wave-equation solves each.

To illustrate the concept of factorizing EIVs with rSVDs, we consider a small EIV, with

(N = 100× 100), computed from a subset of the 2D synthetic Marmousi model (Versteeg,

1994) discretized at frequencies ranging between 5 Hz and 50 Hz with a step of 0.5 Hz. Given

these rSVDs, the behavior of the singular values and the frequency dependence of its low-rank

factored approximation is studied. In addition to allowing the formation of full subsurface-

offset image gathers, the low-rank factorization also privides access to zero subsurface-offset

migrated images via

δm̂ =

nf∑
i=1

diag(Ei) ≈
nf∑
i=1

(Li � R̄i)1. (9)

In this expression, diag( ) extracts, for each frequency, the diagonal from the EIVs. The

symbol � corresponds to elementwise multiplication also known as the Hadamard product.

The symbol ¯ represents complex conjugation and 1 corresponds to a column vector with np

1’s. In the first part of equation 9, the sum over frequencies corresponds to the zero time-

lag imaging condition (Claerbout, 1985; Berkhout, 1986), while extraction of the diagonal

corresponds to imposing the zero subsurface-offset imaging condition. Then, the second part

of equation 9 reminds that the diagonal extraction is equivalent to taking the Hadamard

11



product of the factors for each frequency, followed by summing over the columns.

Results of this procedure are summarized in Figure 2, where we show how to extract a

zero-subsurface offset migrated image (Figure 2b) from the diagonal of the EIV plotted in

Figure 2a. In addition to including information on the migrated image, EIVs also contain

CIPs. The latter can be formed by extracting columns from the EIVs, followed by summing

the real part over frequency. As with migration (cf. equation 9), this information is accessible

from the low-rank factored form given in equation 8. As long as we increase the rank from

np = 10 to 40 for the higher frequencies, the low-rank approximation in equation 9 yields

images and CIPs close to those obtained via regular RTM, which require a loop over all ns

sources. Compared to conventional CIGs, CIPs contain full-subsurface offsets in all directions

(van Leeuwen et al., 2017). As a result, they provide information on the directivity pattern

and geologic dip of the various reflectors, as one can see from the overlays in Figures 2c

and 2d.

[Figure 2 about here.]

The results in Figure 2 are obtained by making use of the relative faster decay for the

singular values of the EIVs compared to the decay for the singular values of the data matrix,

as illustrated in Figures 3 and 4. This suggests that the real aim is to factorize EIVs rather

than the data itself as proposed by Hu et al. (2009). However, this fast decay for the singular

values slows down as the frequency increases. This effect is illustrated in Figure 4, which

shows the rank to choose for each frequency in order to capture the singular values to within

a 1%, 5% or 10% of the largest singular value. Since the decay of the singular value decreases

with frequency, the minimal rank to select increases with frequency. Fortunately, this effect

does not appear to be as strong in the EIVs as it is in the data, and this explains why
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np = 9− 40 is sufficient in the example included in Figure 2.

[Figure 3 about here.]

[Figure 4 about here.]

While the above approach allows for the formation and manipulation of EIVs in low-rank

factored form without explicitly forming the EIV matrix, scaling this approach to more

realistic imaging settings still entails several challenges, including larger 2D or even 3D

imaging problems and higher frequencies. Both of these call for computationally more

efficient wave propagators and randomized SVDs able to factor matrices that can not be

approximated accurately by low-rank factorizations using standard randomized probing

techniques. Before demonstrating our approach on more realistic examples, let us first

discuss how to probe with time-stepping propagators and how to handle the factorization of

high-frequency EIVs.

Time-domain EIVs

To substitute time-harmonic wave-equation solvers in equation 5 with scalable time-stepping

based on finite-difference operators, we introduce the discrete temporal forward, U, and

adjoint wavefields V as solutions of

A(m)[U] = P>s [Q] (10)

and

A>(m)[V] = P>r [D]. (11)

In these expressions, the symbols U ∈ Rnt×N×ns and V ∈ Rnt×N×nr are tensors representing

the forward and adjoint wavefields, respectively, where nt is the number of time samples. The
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linear operator A denotes the discretized wave-equation, which is solved via time stepping

using Devito2. Similarly, the adjoint wavefield is solved for via backward time-stepping

with the adjoint A>. The square brackets [ ] are used to indicate the application of linear

time-domain operators to wavefields represented as tensors. The source terms for these wave

equations are given by impulsive sources and data, collected in the tensors Q and D. These

terms are injected into the computational grid via transposes of linear operators Ps and Pr.

With these definitions for the time-domain wavefields, we can write the time-domain EIV

as follows:

E = V̇ ∗t U̇>

= F>[V̇ · U̇∗].
(12)

As before, we absorb time differentiation denoted by the dot symbol .̇ The symbol ∗t

stands for multi-dimensional temporal convolution3 between the two time-differentiated

wavefields V̇ and U̇>. The convolutions are implemented via matrix-matrix multiplications

of the monochromatic frequency slices V̇i and U̇∗i , i = 1 · · ·nf . In the second part of

equation 12, the · operator is introduced as a shorthand for carrying out these multi-

dimensional convolutions for each frequency. Finally, we obtain the time-domain EIV by

applying the inverse Fourier transform F> along the time coordinate.

To set the stage for the probing of EIVs formed with the above time-domain propagators,
2In our implementation, we use Devito (https://www.devitoproject.org) for the time-domain finite

difference simulations and gradient computations (Luporini et al., 2018) and JUDI (https://github.com/

slimgroup/JUDI.jl) as an abstract linear algebra interface to our Algorithms (Witte et al., 2019a).
3With some abuse of notation, we assume that the wavefields collected in the tensors are multiplied as an

outer product.

14

https://www.devitoproject.org
https://github.com/slimgroup/JUDI.jl
https://github.com/slimgroup/JUDI.jl


equation 12 can be rewritten as

E =

V̇︷ ︸︸ ︷
F ◦ A−> ◦ P>r [Ḋ] ·

U̇∗︷ ︸︸ ︷
(F ◦ A−1 ◦ P>s [Q̇])∗

= F ◦ A−> ◦ P>r ◦ F>[Ḋ · Q̇∗ · (F ◦ Ps ◦ A−>[I])].

(13)

In this expression, the symbol ◦ refers to the composition operator of time-domain operators.

The symbol E is used as a shorthand for {Ei}
nf

i=1. Clearly, the above expressions represent

the double two-way wave equation (cf. equation 6) as proposed by van Leeuwen et al. (2017)

but they are now based on wave propagators computed via time-stepping. The temporal

convolutions are carried out by the complex-valued matrix-matrix products in the temporal

Fourier domain. The tensor I contains a set of monochromatic identity matrices Ii ∈ CN×N ,

where i = 1 · · ·nf .

Time-domain probing

While equations 12 and 13 in principle allow us to form EIVs in the time or Fourier domain

using time-domain propagators, these expressions do not lend readily themselves to probing.

For instance, time-stepping propagators impose additional conditions on the wavefields they

propagate. This means that the source wavefield has to be bandwidth-limited in the time

domain to ensure stability of finite-difference schemes. To make sure that this requirement

is met, a single temporal source signature is defined for all sources. In addition, we the

sources are modelled by Dirac distributions in space—i.e., Q̇i = jωiαiIns , where αi is the

ith Fourier coefficient of the temporal source signature and Ins an identity matrix of size

ns × ns. Because of this particular choice, the action of the source commutes with the other

operators, so that probing (van Leeuwen et al., 2017) the EIVs with independent realizations
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of bandwidth-limited Gaussian random noise is possible; thus, this yields

Y = F ◦ A−> ◦ P>r [Ḋ ∗t (Ps ◦ A−>[W])]

= F ◦ A−> ◦ P>r ◦ F>[Ḋ · (F ◦ Ps ◦ A−>[W])].

(14)

In this expression, the probing is carried out by the tensor W ∈ Rnt×N×np , which contains

zero-centered Gaussian noise that is filtered by the time signature of the source-time function.

As explained below, the tall matrix Y contains the necessary information to factor EIVs from

which subsurface-offset gathers can be computed. Unlike subsurface-offset gathers calculated

via image-domain cross-correlations of the forward and adjoint wavefields, the size of each

being N × nt, the above probing for each probing vector involves a single matrix-vector

multiplication with the ns × nr × nf data matrices. Since ns × nr � N and nf � nt, the

probings are relatively cheap especially because they contain all necessary information to

compute subsurface image gathers as we will demonstrate below.

Equation 14 for time-domain probing forms the basis for the remainder of this work where

the randomized SVD and other manipulations are carried out for each frequency, indexed by

i = 1 · · ·nf , separately. To simplify notation, we will tacitly assume loops over frequency

whenever we referring to monochromatic entities. For instance, Y = f(X) corresponds to

Yi = f(Xi) for i = 1 · · ·nf and f(·) some arbitrary function. As before, migrated images

and CIPs are obtained by extracting the diagonal or various columns from the EIVs, followed

by summing over frequency. As we will show below, however, these image volumes can be

obtained without explicitly forming the EIVs.

Even though the use of time-domain propagators allows us to probe EIVs in a computa-

tionally feasible way, the singular values for high-frequency EIVs decay slowly (displayed in

Figure 4), which prevents us from forming low-rank factorizations at these frequencies. Unless

a solution is provided for this problem, the lack of low-rank representations for the EIVs
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prohibits manipulations such as extracting subsurface-offset images and CIPs. In addition,

the slow decay of the singular values calls for a larger number of probings, which may render

our approach computationally infeasible.

LOW-RANK FACTORIZATION WITH THE POWER METHOD

To address the problem of forming and manipulating EIVs at high frequencies, we propose

an alternative approach, where the decay of the singular values is increased via linear algebra

manipulations. More specifically, we follow recent work by Musco and Musco (2015), which

provably offers guarantees on the accuracy of low-rank factorizations in both the Frobenius

and spectral norms. This work also offers control on the accuracy of the factors themselves

compared to k-term factorizations based on unattainable singular value decompositions of

the original matrix, that is, the fully formed EIV in our case. Their core idea for improving

the accuracy is to use the fact that the decay of the singular values of a matrix increases

when this matrix is raised to some power. Due to this property, the accuracy of low-rank

factorizations improves as the truncation error decreases because of the increased decay of

the singular values. As one can see from Algorithm 1, however, such improvement comes

at the cost of having to solve more wave equations. This increase in computational cost

depends on the selected power q in line 1 of Algorithm 1, which involves depending on q

multiple applications of E and its adjoint.

For each frequency, Algorithm 1 computes a rank k factorization using np > k probings

(actions of the double wave equations on random probing factors, see equation 14), a QR-

factorization on a tall matrix and an SVD on a flat matrix of size np ×N . After the QR

factorization, the range of EIVs in the matrix Q is captured, not to be confused with the

source matrix as introduced earlier. After applying the SVD, the left and right singular
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Algorithm 1 Monochromatic rSVD with simultaneous power iterations (SI)
0. Input: q and np random Gaussian vectors W = [w1, · · · ,wnp ]

1. K := (EE∗)qEW,K ∈ CN×np with probing according to equation 14

2. [Q,∼] = qr(K),Q ∈ CN×np

3. Z = E∗Q,Z ∈ CN×np

4. [Φ,Σ,Ψ] = svd(Z∗), svd computes the top np singular vectors

5. set Φ← QΦ

6. L = Φ
√

Σ,R = Ψ
√

Σ

7. Output: factors {L, R} yielding E ≈ LR∗

vectors collected in Φ and Ψ are calculated. The matrix Σ, is a diagonal k × k matrix with

the singular values on its diagonal. As with the rSVD, the output of Algorithm 1 are the left

and right factors L and R for each frequency. While these factors, formally approximate

EIVs, these volumes are never formed explicitly.

Compared to the original rSVD (see Algorithm 5 in Appendix A), Algorithm 1 includes

more involved probing (line 1), which now includes the action of E and (EE∗)q. The latter

requires q iterations of K := (EE∗)K where K is initialized by K = EW. Actions of EE∗

in the definition of K involve 4np additional wave-equation solves. This leads to a total

of (4q + 2)np PDE solves to build the matrix K without increasing the storage size. For

increasing powers of q, the accuracy improves (Musco and Musco, 2015) as ε = O( logN
q ),

which in practice means that the low-rank factorizations at the higher frequencies become

more accurate. Nevertheless, this comes at the price of having to carry out an extra 4qnp

probings as shown in the computational cost analysis of Step 1 listed in Table 1. The

memory imprint of Algorithm 1 is roughly the same as that of the original rSVD presented

in Appendix A.
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While the simultaneous power iterations (SI) in Algorithm 1 allow for an improvement in

accuracy by increasing the largest singular values in comparison to the small singular values

in the tail, the error decays only linearly in q because of issues related to finite precision

arithmetic. To overcome this problem, we follow Musco and Musco (2015) and introduce

Algorithm 2, which involves more intricate block Krylov iterations (BKI) that are better

capable of capturing the tail of the singular values using finite precision arithmetic. The

use of these iterations (Musco and Musco, 2015) results in reducing the error (ε = O( logN
q2

)),

which now decreases quadratically with q. As a consequence, algorithms based on BKI allow

for smaller q to attain the same accuracy. However, as line 1 of Algorithm 2 shows, such

improvement comes at the expense of extra memory use because the algorithm now works with

multiple vectors defined in terms of the intermediate iterations used to compute (EE∗)qK.

Aside from extra memory use, these additional vectors lead to higher computational costs

during the subsequent QR and SVD factorizations, which now involve (q + 1) · np vectors

rather than np vectors as before. The number of probings, however, remains the same.

Algorithm 2 Monochromatic rSVD with block Krylov (BKI) iterations.
0. Input: q and np random Gaussian vectors W = [w1, · · · ,wnp ]

1. K := [EW, (EE∗)EW, · · · , (EE∗)qEW],K ∈ CN×(q+1)np

2. [Q,∼] = qr(K),Q ∈ CN×(q+1)np

3. Z = E∗Q,Z ∈ CN×(q+1)np

4. [Φ,Σ,Ψ] = svd(Z∗), svd computes the top np singular vectors

5. set Φ← QΦ, Q chooses the first np singular vectors

6. L = Φ
√

Σ,R = Ψ
√

Σ

7. Output: factors {L, R} yielding E ≈ LR∗

[Table 1 about here.]
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[Table 2 about here.]

In an effort to deal with the challenge of factorizing large-scale EIVs at high frequencies,

we introduce an algorithm based on probing alone, rSVD (see Algorithm 5 in Appendix

A), and more involved algorithms based on SI (Algorithm 1) and BKI (Algorithm 2). The

latter approaches handle situations where the singular values decay more slowly. These three

algorithms differ in attainable accuracy as a function of the number of probings, memory

use, and computational expense required to carry out the QR and SVD factorizations. With

these three approaches, we have the freedom to select the algorithm that best fits our needs.

Tables 1 and 2 summarize this selection and provide the following observations: (1) the

accuracy of the factorizations based on SI and BKI increases as the power q increases; (2) as

q increases, the computational cost increases for both SI and BKI ; and (3) as q increases, the

memory use and computational cost of BKI increase, and the error decreases quadratically.

Recall that these errors refer to differences between computationally feasible SVDs, based on

random-probings, and the computationally infeasible ground truth given by the k-term SVD

derived from fully formed EIVs.

Given the fact that the computational budget is usually limited, our main goal is to

obtain the most accurate k-term factorization of EIVs through np = k random probings with

the double wave equation (cf. equation 14). Because all subsequent manipulations on the

factored form of these EIVs scale with k, whether CIPs are extracted, subsurface-offset images

are formed, data are redatum, or velocity continuation (van Leeuwen and Herrmann, 2012;

Kumar et al., 2018) is carried out, the error needs to be controlled. Unlike truncation errors

in conventional SVD-based approximations, factorizations based on randomized probing

have additional inaccuracies related to the tail of the singular values. Thus, when moving to
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higher frequencies, we need to control these additional errors because the singular values

decay more slowly at these frequencies.

To illustrate the performances of SI and BKI compared to those of conventional rSVD,

we conduct additional experiments on a small 25Hz monochromatic frequency slice of the

EIV included in Figure 2. Because this example is small, we are able to explicitly form

the EIV itself and compute its factorization via a conventional SVD. Numerical results are

summarized in Figure 5, which displays a plot of the first np singular values for factorization

based on probings with np = 8, 16, 30. A comparison of the bar plots in Figure 5a, 5c,

and 5e leads to the following observations. First, inaccuracies in the estimates for the singular

values are greater with a large truncation error, that is, when a substantial amount of energy

remains in the tail. In this case, the actual singular values (depicted in dark blue) and the

singular values obtained by the standard rSVD method differ significantly. These errors are

much smaller when factorizations are based on SI and BKI for either q = 1 or q = 2. Smaller

errors in the singular values lead to smaller errors in the factorization. The plots of the

relative errors in Figure 5b, 5d, and 5f show a rapid increase towards the smaller singular

values. Even for a probing size np as high as 30 where only 0.4% of the total energy is left

in the tail, the relative error for the 30th singular value calculated by rSVD exceeds 7% .

Both SI and BKI power methods accurately recover the singular values and decrease the

relative errors. On the other hand, for a very small probing size of np = 8, where 11.4%

of the energy in the tail remains, the BKI method with power q = 2 recovers the first np

singular values with much smaller errors, while SI with power q = 1, 2 leaves errors in the

recovery. Finally, for np = 16, the remaining energy in the tail decreases to 5%, and the BKI

recovers the np singular values very well with q = 1, 2. We also find that BKI with q = 1

recovers the np singular values more accurately than SI with q = 2. In summary, both the SI
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and BKI methods help in decreasing the relative errors in the singular values. Nevertheless,

with the same probing size np and power q, BKI always outperforms the other methods.

Typically, BKI with q = 1 satisfies the requirement of accurate recovery of the first np

singular values. As Figure 6 shows, the errors in the RTM recovered by the rSVD method

(cf. Figures 6a and 6b) for np = 8 are more obvious than those from the BKI with q = 1

(cf. Figures 6a and 6c). For the rSVD, coherent energy is lost (cf. Figures 6d and 6e that

contain difference plots with respect to the conventional SVD plotted in Figure 6a ). Only

the first eight singular values are used in this experiment—i.e., np = 8� ns with ns = 100.

[Figure 5 about here.]

[Figure 6 about here.]

SLICING AND DICING

Now that we have established a method of factorizing EIVs based on randomized probing

with time-domain propagators, we will discuss how to extract various gathers without having

to explicitly form the EIVs themselves (see also Da Silva et al. (2019), who accomplishes

the same when using a tensor factorization based on the hierarchical Tucker format). Aside

from having major advantages regarding memory use and storage, all described operations

scale with the rank of the factorization, and as long as this rank k < ns
4 , we benefit

computationally compared to methods that loop over shots. In addition, after factoring

the EIVs, no additional wave-equation solves are needed to extract the gathers. Three

different gathers will be considered, namely Common Image Point gathers (CIPs), Common

Image Gathers (CIGs), and geologic dip-corrected CIGs. The latter correspond to CIGs

that entail computation of the subsurface offset in the direction parallel to the geologic
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dip. As outlined by van Leeuwen et al. (2017), including this rotation has advantages for

amplitude-versus-offset analyses. We will also show that it leads to improved focusing.

To set the stage, we use the following notation for the discretized image volume

E[iz, ix; jz, jx] with iz = 1 · · ·nz, ix = 1 · · ·nx, the indices along the spatial coordinates

(using the column-major convention where the first index indicates the rows) and with

jz = 1 · · ·nz, jx = 1 · · ·nx, the indices that run over the second set of coordinates. For

notational simplicity, the frequency index is dropped. By summing over different gathers for

each frequency, the zero-time imaging condition is imposed.

While formally a matrix of size N ×N , the discretized image volume can be considered

as a four-dimensional array. Similarly, the factors can be regarded as multi-dimentional

arrays—i.e., we have L[iz, ix; ip] with ip = 1 · · ·np and R[jz, jx; ip] as depicted in Figure 7a).

However, whenever we operate on the factors we consider them as matrices of size N ×np, so

they can be multiplied. To extract vectors or matrices from these multi-dimensional arrays,

the symbol : is introduced and refers to all entries along the corresponding dimension.

According to van Leeuwen et al. (2017), a CIP gather indexed by a single point (iz, ix) is

given by the following 2D slice E[iz, ix; :, :], indicated by the horizontal plane in Figure 7b. To

avoid forming EIVs explicitly, we implement the extraction of CIPs directly from the factors

as performed in Algorithm 3. By applying this algorithm, the vector l = L[iz, ix; :] ∈ C1×np is

extracted, followed by a loop over depth, during which this vector is applied to the transpose

of the matrix R[j, :; :] ∈ Cnx×np for j = 1 · · ·nz.

CIG gathers for the horizontal subsurface offset correspond to taking out E[iz, ix; jz =

iz, :], iz = 1 . . . nz, as depicted by the inclined plane in Figure 7b. Algorithm 4 extracts

CIGs along all depths and at a single lateral index ix, by taking out the vector l = L[j, ix, :

23



Algorithm 3 Pseudo code for CIP gather extraction
0. Input: location CIP (iz, ix) and low rank factors {L,R}

1. extract the vector l = L[iz, ix; :] ∈ C1×np

2. for j=1:nz

3. E[iz, ix; j, :] = lR∗[j, :; :]

4. end

5. Output: Real part of E[iz, ix; :, :]

] ∈ C1×np within the loop over the vertical coordinate, followed by a multiplication with the

matrix R∗[j, :; :]. The resulting CIG correspondes to the real part of E[iz, ix; jz = iz, :] for

iz = 1 · · ·nz.

Algorithm 4 Pseudo code for CIG gather extraction
0. Input: lateral index of the CIG ix and low rank factors {L,R}

1. for j=1:nz

2. extract the vector l = L[j, ix; :] ∈ C1×np

3. E[j, ix; j, :] = lR∗[j, :; :]

4. end

5. Output: Real part of E[iz, ix; jz = iz, :] for iz = 1 · · ·nz

[Figure 7 about here.]

In addition to CIPs and CIGs, geologic dip-corrected CIGs can be formed, which combine

information from both gathers by estimating the geologic dip as a function of depth along the

CIG. This geologic dip is calculated by maximizing the stack power of CIPs. As shown by

van Leeuwen et al. (2017) and Biondi and Tisserant (2004), CIGs computed with horizontal

offsets poorly focus when reflectors are steeply dipping. According these authors, there is a
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complete lack of focusing of vertical reflectors when using horizontal subsurface offsets. The

same applies to horizontal reflectors when using vertical subsurface offsets. Following the

work, we compute the geologic dip and subsequently correct for this dip so that the selected

subsurface offset direction is always parallel to the geologic dip. Our approach differs from

recent work (Dafni and Symes, 2016b,a) because we rely on cheap access to CIPs for each

depth level without the need to carry out expensive cross correlations on spatio-temporal

wavefields. Our method also does not require additional wave-equation solves and excessive

storage.

INVARIANCE RELATIONSHIP OF EIVS

So far, we have focused on finding representations for EIVs using factorizations informed by

randomized probings. Our factorizations incur an upfront cost dominated by the number of

randomized probings that determines the number of wave-equation solves. All subsequent

manipulations, such as forming CIPs and (angle corrected) CIGs, do not involve wave-

equation solves, so they are relatively inexpensive. Moreover, the number of probing vectors

is often smaller than the number of source experiments, i.e., np � ns.

To allow for more realistic imaging workflows, during which various imaging scenarios

are conducted involving different background velocity models, we leverage an important

invariance property of EIVs. This invariance of the double two-way wave equations, which

model EIVs, allows us to carry out velocity continuation (van Leeuwen and Herrmann, 2012;

Kumar et al., 2018)—i.e., to directly map an image volume obtained for one background

velocity model to an image volume yielded by another background velocity model without the

need to remigrate involving a loop over ns shots. To arrive at this formulation, this invariance

of the double two-way wave equation is applied directly to the low-rank factorizations of
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EIVs as introduced earlier. Since np � ns, this formulation allows for imaging with varying

background velocity models—e.g., for different picks of top salt, at a greatly reduced cost.

To firmly establish this possibility, we first introduce the invariance relationship in factored

form in the Fourier domain, followed by its time-domain counterpart.

Monochromatic invariance relationship

By using the observation that the right-hand-side of the double two-way wave-equation

(cf. equation 6) does not depend on the background velocity model, van Leeuwen et al. (2017)

and Kumar et al. (2018) derive an invariance relationship directly relating image volumes E1

and E2 that pertain to two different background velocity models mi, i = 1, 2 (For simplicity,

we abandon the frequency subscript, so the subscript now specifies extended image volumes

associated with the velocity models of scenarios 1 and 2). According to the double two-way

wave equation, these image volumes can be related via

H∗1 ·E1 ·H∗1 = H∗2 ·E2 ·H∗2, (15)

where the Helmholtz operators Hi = H(mi), i = 1, 2 depend on the two different background

velocity models for the two imaging scenarios. This relationship allows us to directly calculate

EIV E2 for imaging scenario 2 from the EIV of imaging scenario 1 via the relationship

E2 = H−∗2 ·H
∗
1 ·E1 ·H∗1 ·H−∗2 . (16)

Since EIVs can be represented in factored form, the factors for both imaging scenarios are
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also related by

L2 = H−∗2 ·H
∗
1 · L1,

R2 = H−12 ·H1 ·R1.

(17)

With this established relationship, EIVs only need to be factored once, i.e., for the velocity

model of scenario 1. All subsequent factorizations for various imaging scenarios can be

derived with equation 17, precluding the computationally expensive step of randomized

probing, followed by the BKI. As a result, we arrive at a formulation where the factorization

costs of EIVs are incurred only once up-front. After the initial factorization, only 2np wave-

equation solves per factor are needed per factor, which eliminates the computational overhead

associated with the initial factorization. This finding is significant in situations where the

background velocity model contains uncertainties. In the next section, we will discuss the

implementation of these invariance relationships based on time-domain wave-equation solvers.

Velocity continuation in the time domain

The combination of low-rank factorizations with the above invariance relationship enables

us to directly form factored EIVs for various velocity models without the need to redo the

factorization, including the probing. According to equation 17, we need access only to the

factors in the current velocity model, the action of the forward and adjoint wave equation in

the current and the new velocity model, and the solution to these wave equations for the two

velocity models.

While the monochromatic invariance relationship allows for a mapping of the factors from

one velocity model to another, the formulation hinges on the action of discrete wave-equation

operators and their inverses. Unfortunately, the need for the latter may become problematic
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since Helmholtz solvers do not scale well to high frequencies and 3D models. To address

this issue, we employ wave-equation solvers, including the action of the wave-equation itself

and not its inverse, based on time-stepping and finite differences implemented with Devito

(Louboutin et al., 2018). Based on this time-domain implementation, the new factors, which

now become tensors, can be written as follows:

L2 = F ◦ A−>2 ◦ A>1 [L1] with L1 = F>[L1],

R2 = F ◦ A−12 ◦ A1[R1] with R1 = F>[R1].

(18)

Here A−12 represents forward modeling in velocity model m2 for scenario 2, and A−>2 is the

corresponding adjoint operator. The linear operator A1 is the inverse forward modeling

operator for imaging scenario 1 with the velocity model m1, and A>1 is the corresponding

adjoint operator. As in the monochromatic case, the direct mapping of the factored form of

one EIV onto another velocity model involves only 2np actions of the forward/adjoint wave

equations and their inverses. Note that compared to the frequency domain formulation, the

computational costs of the time-domain operators and their inverses is roughly the same

while the cost of applying the Helmholtz operator is low compared to applying its inverse.

In addition to reducing the cost (from O(ns) to O(np) actions with wave operators and

their inverses), the main advantage of working with factored EIVs is that we incur only

the costs of the initial factorization once, which involves randomized probing and a SVD

based on BKI. After this initial cost, factorizations of the EIVs can be performed for various

imaging scenarios with different velocity models repeatedly. This is possible because the

mapping in equation 18 preserves the accuracy of the original factorization. We make this

claim because the action of the wave-equation operators on their inverses is by definition

the identity; that is, if we apply the wave operator to a factor, we will undo possible wave

simulation errors, such as numerical dispersion. In view of these properties, we argue the
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benefits of developing a strategy that requires as few factors (np) as possbile calculated with

as high accuracy as possible.

NUMERICAL EXPERIMENTS

In this section, we present carefully selected numerical experiments to demonstrate our ability

to represent and manipulate EIVs with low-rank factorizations obtained via randomized

probing and BKI. We argue that these factorizations are natural parameterizations for

full-subsurface EIVs. We show how to apply these factorizations to a series of imaging

problems with an emphasis on how to make informed choices on the rank and the order of

the BKI method given computational constraints. As we observed from the example with

the explicit EIV calculated from a small subset of the Marmousi model, the BKI method

with power q = 1 outperforms the rSVD and SI. Therefore, we will employ BKI for q = 1 for

will be employed for the remainder of the paper.

Our first imaging experiments will be conducted on the Marmousi model and are designed

to demonstrate our ability to compute RTM images, CIPs, CIGs, and geologic dip-corrected

CIGs, with factorizations obtained from randomized probing and BKI. To establish the

accuracy of the proposed method, a comparision is made between true CIPs and CIGs and

their approximate counterparts derived from the low-rank factorization without having to

form the full EIV. To handle imaging problems with steep dips, we show how to calculate

CIGs that correct for the local geologic dips. We conclude by examining a large-scale complex

imaging problem with salt. To mimic realistic imaging, we examine a scenario where the

background velocity model for the top salt is wrong. We demonstrate that our velocity

continuation technique is capable of mapping the low-rank representation from the wrong

velocity model to corrected factors that produce a well-focused image without refactorization.
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Validation of the factored EIV representation

To verify the validity of the proposed factorization method, a series of imaging experiments

are conducted involving the Marmousi model. This model is 8 km wide and 3.2 km deep

and discretized on a 6 m ×6 m grid. The data is acquired from 650 co-located sources and

receivers positioned at a depth of 18 m and sampled with a 12 m interval horizontally. Data

are simulated with the acoustic constant density wave equation with absorbing boundaries

all around and a Ricker wavelet centered 23 Hz. Before imaging, the direct wave from the

simulated “observed” data is removed.

As illustrated previously, the quality of the factorization of EIVs depends on the probing

size np, which also determines the computational cost. To choose a value for the probing

size, we plot in Figure 8 the rank of the SVD we need to capture 95% of the energy in the

observed data. According to this plot, the observed data need to be approximated with a

rank 266 factorization to reduce the error to 5%. As observed in Figure 4, the singular values

of EIVs decay roughly twice as fast suggesting np = 130 for the factorization with BKI and

q = 1.

Given this factorization, we compute a migrated image via equation 9 for comparison

with a regular RTM image computed over all ns = 650 � 130 sources. Aside from some

noise, the migrated images obtained from the factorization and conventional RTM are close

(cf. Figure 9b and 9a). Although the quality of the extracted RTM from the recovered

low-rank factorization of the EIV is high, the image as shown by Figure 9 is not perfect

due to the loss of energy in the singular values beyond the 130th singular value. Since the

factorization is approximate, the image is somewhat noisy and has slightly less well resolved

amplitudes. However, this is not surprising because the factorization is approximate with an
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error that can be controlled by increasing np. Nevertheless, this slight image deterioration is

a relatively small price to pay compared to the benefit of having access to full subsurface

offset image volumes that include information on the underlying scattering mechanism and

the quality of the velocity model. This information can be calculated without the need to

compute additional wave-equation solves.

To demonstrate access to full-subsurface-offset gathers, a comparision is made in Figure 10

between a true CIP, obtained by the time-domain probing of the EIV with a single bandwidth-

limited point source located at (z = 870m, x = 5250m) (for details, see van Leeuwen et al.

(2017)), and a CIP computed from the factors using Algorithm 3. As with the RTM image

itself, the CIP derived from the factors, albeit noisy, captures most of the energy. As with

the true CIP, the approximate CIP shows a clear directivity pattern with a rotation that

is consistent with the geologic dip. Remember that the approximate CIP does not require

additional wave-equation solves. Finally, we also include comparisions for three CIGs located

at x = 1.8, 3.6, 5.4km over an offset range from −150 to 150m. Figure 11 juxtaposes true

CIGs and their approximations computed from the factorization with Algorithm 4. As before,

the approximate CIGs are consistent with the true CIGs. Except for the presence of some

noise, the approximate CIGs (Figure 11b) capture the behavior of the true CIGs (Figure 11b).

As expected, the energy is well focused for flat reflectors because the background velocity

model is kinematically correct. All approximate results are computed from a factorization

with the BKI method for q = 1 and np = 130.

[Figure 8 about here.]

[Figure 9 about here.]
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[Figure 10 about here.]

[Figure 11 about here.]

To improve the focus of CIGs for steeply dipping reflectors, we apply dip-corrected CIP

at x = 5.4 km. This correction compensates for geologic dips so that the subsurface offset is

always in the direction parallel to the specular reflector. As Figure 12a shows, the focus of

the CIG is not clear in locations where the geologic dip is steep. By computing the stack

power of CIPs for each depth level along lines with various angles this dip can be estimated.

As plotted in Figure 12 for three different depth levels, the stack power is maximum when

the angle is close to that of the geologic dip. Using the angles with maximum stack power,

the geologic dip can be corrected by rotating the direction of the subsurface offset by 90◦

with respect to the angle where the stack power is maximum. The dashed white lines in

Figure 12a correspond to the estimated geologic dips, which are close to the true geologic

dips. The CIG computed with this correction is included in Figure 12c. Compared to the

original CIG in Figure 12a, the focus of the corrected CIG is much clearer in areas with

steep geologic dips.

The above examples demonstrate the capability of our factored formulation to acquire

accurate imaging results. In addition to approximating RTM images well, the factored

formulation also provides rapid access to CIPs and (dip-corrected) CIGs without additional

wave-equation solves or expensive cross-correlations between spatio-temporal wavefields. This

is made possible by working with the low-rank factored form without forming the full EIVs.

[Figure 12 about here.]
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Robustness with respect to additive noise

So far, we assume ideal noise-free data. To test the robustness of our low-rank factorization

with respect to noise, we add band-limited noise with an energy equal to 50% of the data’s

energy, resulting in SNR of 6.02. Approximate CIGs derived from the low-rank factorization

for the noisy data, and their differences with respect to the noise-free case plotted in

Figure 11b, are included in Figure 13. From this figure we observe that additive noise has

a relative minor effect on the CIGs, a behavior that is consistent with migration where

incoherent noise is known to “stack out”.

[Figure 13 about here.]

Salt imaging scenario

Although EIVs in factored form provide us with access to accurate RTM images and

subsurface-offset gathers at limited costs, imaging in complex areas remains challenging

because of inaccuracies in the background velocity model. For instance, errors in top salt

can result in a rapid deterioration of the imaging quality beneath the salt. In practice, this

means that imaging teams must go through several cycles of updating the velocity model,

followed by imaging. Thus, by using the invariance relationship for EIVs, we propose to

use a velocity-continuation technique instead. This technique is based on our factorization

method and captured by equation 17. By applying these formulas, the left and right factors

of one velocity model can be mapped directly to those of another background velocity model

without the need to recompute the factorization. In this way, we incur a cost of 4np, which

is relatively small when np is small. Also, these costs are much smaller than a conventional

imaging requiring loops over shots.
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To mimic a realistic subsalt imaging scenario, we compare three scenarios that derive

from a subset of the Sigsbee model (Paffenholz et al., 2002). In the first scenario, an image

for a background velocity model is computed where the top salt is wrong. We compare this

result to that of the second scenario, in which the background velocity model is corrected but

from which we remigrate the data by recomputing the factorization. In the third scenario, we

use equation 17 to compute the image by mapping the EIV in factored form. To avoid salt-

related imaging artifacts, the inverse-scattering imaging condition (Whitmore and Crawley,

2012,Witte et al. (2017),Crawley et al. (2018)) is used on linearized data simulated from the

correct background velocity model depicted in Figure 14b and the true perturbation given by

the difference between the 2.7km ×5.4 km true velocity model and the correct background

velocity model, sampled on a 6 m ×6 m grid. Data are simulated for 450 co-located sources

and receivers spread over the top of the model and located at a depth of 18m sampled with

12 m intervals. The source signature is a 23 Hz Ricker wavelet.

As before, we choose np according to the rank needed to capture 95% of the energy in

the data. We plot this rank in Figure 15. Because the singular values of EIVs decay more

rapidly, np = 100 is chosen, which corresponds to roughly half of the maximum rank needed

to accurately represent the data at 70Hz. Figure 16a contains the image obtained with a

background velocity model that contains errors in the definition of top salt (Figure 14a).

Compared to the image obtained with the correct background velocity model (Figure 14b),

the image of Figure 14a misses key details on the salt-sediment boundary and this has a

detrimental effect on the image beneath the salt. Not only is the bottom salt out of focus,

so are the sediments and fault beneath the salt. By carrying out a complete new probing,

factorization, and application of equation 9, for the correct background velocity model, the

improved result plotted in Figure 14b was obtained, which is of reasonably high quality. This
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shows that our factorization is capable of handling complex imaging problems in salt areas,

an observation confirmed by the CIPs (cf. Figures 17a and 17b) and CIGs (cf. Figures 18a

and 18b). While all slightly noisy, the images and subsurface-offset gathers behave as expected

with energy focused onto the reflectors. More importantly, when we directly map the original

factorization, obtained for the wrong velocities in scenario one, to the factorization for the

correct velocity model using equation 17 instead of recomputing the factorization after probing,

the same image quality is attained for the RTM and subsurface-offset gathers. As a result, we

are able to obtain the RTM image (Figure 16c), CIP (Figure 17) and CIGs (Figure 18) during

scenario three with only 4np additional wave-equation solves. For comparison, conventional

RTM, without having access to EIVs, would have cost 2ns wave-equation solves; scenario

two, according to Table 2 for q = 1, would have cost 2np + 4np + 4np = 10np solves while the

direct map would have cost only 4np. Due to the chosen np = 100� ns = 450, we incur only

a slightly higher cost compared to conducting a single migration (i.e., 1000 wave-equation

solves versus 900 for conventional RTM). After the factorization, each additional RTM

costs only 400 wave-equation solves. Moreover, factored EIVs also provide easy access to

subsurface-offset gathers.

[Figure 14 about here.]

[Figure 15 about here.]

[Figure 16 about here.]

[Figure 17 about here.]

[Figure 18 about here.]
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DISCUSSION

In addition to incurring the cost of solving two wave equations per source, conventional

imaging sustains substantial costs for computing subsurface-offset gathers such as CIGs

(Rickett and Sava, 2002; Symes, 2008; Stolk et al., 2009) or angle-domain CIGs (de Bruin

et al., 1990; Sava and Fomel, 2003; Kühl and Sacchi, 2003; Mahmoudian and Margrave, 2009;

ten Kroode, 2012; Dafni and Symes, 2016b,a). CIGs are routinely used during migration-

velocity and amplitude-versus offset analysis (de Bruin et al., 1990) and in quality control

during (automatic) velocity model building (Symes and Carazzone, 1991; Shen and Symes,

2008). The calculation of these gathers often occurs via brute force cross-correlations between

the space, or sometimes, time-shifted versions of the forward and adjoint wavefields (Sava

and Fomel, 2006). Depending on the number of offsets and the number of CIGs, conducting

these multi-dimensional cross-correlations (Sava and Vasconcelos, 2011) can be as costly as

calculating the wave-equation solves themselves.

Probing techniques based on the double two-way wave equation (cf. equation 6) avoid

some of these costs by computing CIPs for all subsurface offsets at the price of only two

wave-equation solves and a multi-dimensional convolution with the data matrix per probing

vector. While this probing technique, introduced by van Leeuwen et al. (2017), provides

access to objects (e.g., CIPs) that we would normally not have access to, its complexity scales

linearly with the number of CIPs, which rapidly becomes computationally infeasible. Using

randomized probing techniques in combination with block Krylov iterations, we overcome

this shortcoming by casting EIVs in an approximate low-rank factored form. As we have

shown, this factored form allows access to conventional RTM images (cf. equation 9), various

subsurface-offset gathers (Algorithms 3 and 4), and multi-scenario imaging at costs that
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scale with the number of factors np. This number is typically much smaller than the number

of source experiments –i.e., ns � np.

Although all of the presented examples are in 2-D, the proposed formulation is suitable

to scale to 3-D for the following reasons: (1) the use of highly optimized time-domain finite-

difference propagators from Devito (Luporini et al., 2018), which in addition to embracing

parallelism over source experiments, supports parallelism via domain decomposition, through

the Message Passing Interface (MPI)(Walker, 1992), and through multi-threading via Open

Multi-Processing (OMP) (Eichenberger et al., 2013); (2) the Fourier-domain implementation

of the multi-dimensional convolutions with the data matrix (see equations 7 or 14), which

allows us to work with subsets of frequencies in parallel; and (3) the factorizations themselves,

for which parallel algorithms are available (Demmel et al., 2012; Sayadi et al., 2014) to

handle large problem sizes. Because we work with subsets of frequencies, we are able to

limit the use of memory and computation for the factorizations. For now, we implement

the probing with the regular Fourier transform, followed by subsampling, which requires

storage of the full wavefield. As shown recently by Witte et al. (2019b), we do not have to

store the full wavefield when using on-the-fly Fourier transforms. Since the factors are in the

Fourier domain, implementing the zero-time lag imaging condition can be done via a simple

summation over frequency.

In addition to the computationally feasible and manipulatable representation for EIVs,

our factorization method allows for the establishment of a completely new iterative seismic

imaging workflow during which

1. we follow the heuristic explained in the experiment section and select np, followed by

probing with random Gaussian vectors to calculate K := [EW, (EE∗)EW, · · · , (EE∗)qEW]
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(line 1 Algorithm 2) requiring 6np wave-equation solves when we set q = 1. From

K, we compute its QR factorization, followed by another probing with E∗ at 2np

wave-equation solves, in turn followed by an SVD producing the factorization {L,R}

with E ≈ LR∗ for each frequency.

2. we have access to migrated images via equation 9, to CIPs (via Algorithm 3), and

(geologic dip-corrected) CIGs (via Algorithms 4) at costs that scale with np and that

do not require additional wave-equation solves. We compute these gathers for each

frequency, followed by summing over frequency to impose the zero-time lag imaging

condition.

3. we have the option to repeat step 2 with a different background velocity model and

without the need to factor the EIV again but instead, we use equation 18 at the cost

of only 2np actions of the forward/adjoint wave equation and their inverses.

Aside from having access to different kinds of subsurface offset CIGs or angle-domain

CIGs (Dafni and Symes, 2016b), this new imaging scheme has the advantage of recomputing

CIGs with a different background velocity model via velocity continuation at a relatively

low cost. We consider this as a highly desirable feature. For instance, this feature would

allow us to recompute CIGs for quality control during velocity model building or as part of

the evaluation of different background velocity model scenarios during redatuming (Kumar

et al., 2019).

Subsurface-offset image gathers, which exist in various forms, are generally parameterized

by horizontal subsurface offsets as in CIGs or by angles as in angle-domain CIGs (ADCIGs).

In either case, the parameterization of these gathers and their recent extensions including dip-

angle decompositions (Dafni and Symes, 2016b,a) or micro-local parameterizations (see ten
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Kroode (2012)), does not make use of the underlying low-rank structure of EIVs. By explicitly

using this low-rank structure, based on probing, factorizing, and velocity continuation, we

offer an alternative formulation where the underlying linear algebra enables a natural and

scalable parameterization of full-subsurface-offsete EIVs. Informed by the singular-value

decay of the data and the tolerance for errors, we can make a calculated decision on the

underlying rank np. This number determines the overall computational complexity. As long

as np is sufficiently small, our formulation can arguably compete computationally while

offering unique features such as access to arbitrary subsurface-offset or angle gathers, to

geologic dips, and to the option to recompute these gathers for different background velocity

models at a significantly reduced cost.

The above workflow, during which we produce geologic dip-corrected CIGs, is one example

of what this factored approach can offer. Other imaging schemes are possible. Since we

have access to omnidirectional subsurface-offset gathers, we have the flexibility to derive

filters designed to remove certain imaging artifacts as recently proposed by Dafni and Symes

(2016a). Since CIPs contain the full scattering information for each point in the subsurface,

we have access to the local geologic dip and to the intricacies of the wavefield interactions

with the reflectors. The geologic dip corresponds to the specular dip angle of reflection

introduced in recent work by Dafni and Symes (2016a).

Besides from carrying out possible filtering operations, the proposed low-rank factorization

method also allows us to include recently introduced preconditioners relatively easily so that

the resulting extended image volumes we produce become approximate pseudo-inverses of

the extended Born modeling operator (Hou and Symes, 2015, 2017). These preconditioners

remove certain imaging artifacts that may have an adverse effect on migration velocity

analysis. For example, Figure 1 of a paper by Hou and Symes (2018) showed that wrong
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inferences can be made on the velocity because of these imaging artifacts. By including a

combination of data- and image-space corrections, these imaging artifacts can be removed.

In addition to allowing for manipulations of full subsurface-offset EIVs, the proposed

formulation essentially boils down to an imaging paradigm with a computational complexity

that scales with the number of probing factors np instead of with the number of shots ns. We

empirically find that the singular values of EIVs decay faster than those of monochromatic

data matrices. This enables us to choose a probing size that is smaller than the number of

shots ns and arguably also smaller than a low row-rank approximation of the data matrix

as proposed by Hu et al. (2009). As a result, we end up with an imaging paradigm where

all imaging costs scale with the rank of the EIV factorization. In future work, we plan to

select the rank adaptively per frequency, which should further enhance the performance of

our low-rank factorization method.

CONCLUSIONS

Wave equation-based imaging techniques such as reverse-time migration, including the

formation and manipulation of subsurface-offset gathers, are becoming more and more

commonplace in modern seismic imaging workflows. While subsurface-offset image gathers

carry important information on the velocity model and the local scattering mechanism, they

are difficult to form and manipulate because of their high dimensionality. By combining

the probing of full subsurface offset-extended image volumes via the double two-way wave

equation with techniques from randomized linear algebra, we are able to cast these extended

image volumes into a highly compressed and manipulatable factored form. To meet the

demands of high-resolution imaging, we base the proposed low-rank factorization on probing

with the time-domain wave equation and an advanced block Krylov randomized singular-value
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decomposition technique. The latter is designed to increase the accuracy of the factorization

for high frequencies where the singular values decay more slowly. Given this factorization,

we demonstrate how various subsurface image gathers can be computed without having to

explicitly form the extended image volume.

While the initial cost of the factorization may exceed the cost of regular reverse-time

migration, the factors provide access to gathers as a function of the omni-directional subsurface

offset. These gathers allow for the computation of geologic dip-corrected common-image

gathers that remain focused in situations where the reflectors are strongly dipping. Common

image gathers based on a horizontal offset alone are not focused in this scenario even when

the background velocity model is correct.

Because we are able to map directly the factors from one background velocity model

to another without having to factorize again, the relatively high initial factorization costs

are justifiable. This direct mapping of the factors is known as velocity continuation. We

argue that our approach is one of the first concrete examples that show how this technique

may result in a viable workflow for imaging involving salt. We demonstrate the capability

of carrying out a completely new imaging experiment without having to refactorize and

accomplished by using the invariance relation of extended image volumes whose applicability

extends to its factored form. Since our factorization is low rank, the costs of repeated imaging

experiments are small since the rank is typically much smaller than the number of shots in

an imaging experiment.
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APPENDIX A

EIV’S LOW-RANK FACTORIZATION VIA RSVD

Due to the low-rank property of the EIV, we expect to express the monochromatic Ei as the

products of small or tall matrices. For instance, Ei can be approximated with the singular

value decomposition truncated for the np larger singular values of Ei:

Ei ≈ ΦiΣiΨ
∗
i , (A.1)

where Φi and Ψi are the N × np matrices containing the np left and right singular vectors,

respectively, associated to the np larger singular values listed in the np × np diagonal matrix

Σi. As np � N , we expect to be able to store the matrices Φi, Ψi and the diagonal of

matrix Σi, and extract information such as RTM or CIPs by matrix-vector multiplication

successively.

In the same spirit, we may write E as the product

Ei ≈ LiR
∗
i , (A.2)

with Li and Ri being two N × np matrices, obtained from the SVD (A.1):

Li = Φi

√
Σi,

Ri = Ψi

√
Σi.

(A.3)

Note that for this monochromatic Ei, matrix Σi is real, positive and diagonal, so the

computation of its square root is implemented element-wisely on the diagonal. Once the SVD
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decomposition of Ei performed, the construction of Li and Ri is really cheap. The basic

SVD method, however, has limitations in computation that involves (1) 2ns PDE solves that

are extraordinarily expensive for large-scale models, and (2) the cost of SVD on the full EIV,

which is of the order of O(N3) according to Holmes et al. (2007).

To circumvent the computational cost of the basic SVD, we propose using the randomized

SVD-based approach (Halko et al., 2011) to obtain the low-rank representation of the full

EIV. Note that we have already wrapped up the monochromatic EIV as a linear operator

Ei based on Helmholtz equation solves, and EIVs along frequency as a linear operator E

based on time-stepping solves. To keep it simple and concise, we adopt the monochromatic

notations in all the low-rank recovery algorithms below and follow up with explanations

of the implementation in both the frequency harmonic domain and the time-domain. The

randomized SVD algorithm with the subscript neglected, is listed as Algorithm 5:

Algorithm 5 Monochromatic randomized SVD algorithm from (Halko et al., 2011).
0. generate np random Gaussian vectors W = [w1, . . . ,wnp ]

1. Y = EW, Y ∈ CN×np

2. [Q,T] = qr(Y),Q ∈ CN×np , build an orthonormal basis of the range of E

3. Z = E∗Q,Z ∈ CN×np

4. [Φ,Σ,Ψ] = svd(Z∗), svd computes the top np singular vectors

5. set Φ← QΦ

6. L = Φ
√

Σ, R = Ψ
√

Σ, here L and R are (N × np) matrices

7. E ≈ LR∗

Here in line 0 the vector wnp is one Gaussian vector. The following steps in Algorithm 5

are implemented monochromatically. Corresponding step 0 in the time-domain version

generates tensor W, which is the band-limited noisy simultaneous shots located at every
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subsurface grid point used in the time-domain probing method. Analogously, the following

steps in the time-domain version get the corresponding monochromatic tensors: Y, Q, Z, Φ,

Ψ, L and R. Also the qr and svd factorizations are overloaded and implemented over all

frequency slices of the corresponding tensors Y and Z∗. Finally this algorithm combined

with time-domain wave equation solver can get the recovered EIVs along all frequencies.
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Figure 1: Subsurface image volume as a function of the source and receiver subsurface
coordinates ~x and ~x′, where the stars and triangles stand for the sources and receivers
respectively. The vectors ~m and ~h represent the full multidimensional subsurface midpoint
and offset coordinates defined as in equation 2.
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(a) (b)

(c) (d)

Figure 2: Extended image volume computed for a small subset of the Marmousi model
for a frequency range of [5, 50] Hz with a step of 0.5 Hz. (a) full EIV after summing over
frequency to impose the zero-time lag imaging condition; (b) RTM image given by the
extracted diagonal of the EIV in (a); (c) common image-point gather at (7110m, 480m)
extracted from the 3987th column of the EIV, overlaid with the migration velocity; (d) the
same but now at (7360m, 300m) extracted from the 6494th column of the EIV.
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(a) (b)

Figure 3: Extended image volume computed for a small subset of the Marmousi model
(Figure 2) at 5Hz: (a) singular value decay of the data matrix D and (b) singular value decay
of the corresponding EIV matrix E.
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Figure 4: Estimated rank for the extended image volume computed for a small subset of the
Marmousi model with respect to the frequency [5, 50] Hz with step 0.5 Hz. This figure shows
the rank of the data matrix D and the EIV E when truncated at 1%, 5% and 10% of the
highest singular values.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Comparison between recovered singular values calculated with the rSVD, SI,
and BKI methods (a), (c), and (e) plot the singular values for increasing probing size, i.e.,
np = 8, 16, 30. The corresponding relative errors of the singular values are plotted in (b), (d),
(f).
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(a) (b)

(c) (d)

(e)

Figure 6: Comparison between RTMs obtained by carrying out conventional SVD (a), the
rSVD (b), and BKI for q = 1 (c). Difference plots with respect to the conventional SVD
are included in (d) and (e). These plots show that the image obtained from a factorization
based on BKI is significantly more accurate. Only the first eight singular values are used,
i.e., np = 8� ns with ns = 100. 58



(a) (b)

Figure 7: Gather extractions from EIVs. (a) low-rank representation of EIVs by their factors
L and R organized into a 2D matrix. The diagonal indicated by the dashed line corresponds
to a zero subsurface-offset RTM image; (b) EIV E[:, ix; :, :] for a fixed later position ix. The
horizontal cross section E[iz, ix; :, :] corresponds to a single CIP gather at iz, ix, and the
inclined slice E[iz, ix; jz = iz, :], iz = 1 · · ·nz corresponds to a sigle CIG gather at ix along
the entire depth of the image.
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Figure 8: Selected rank for capturing 95% of the energy of the data as a function of frequency.
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(a)

(b)

Figure 9: Comparison of RTM images. (a) The true conventional RTM image obtained by
migrating 650 shot records and (b) the RTM image computed from a factorization with the
BKI method for q = 1 and np = 130.
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(a) (b)

Figure 10: Comparison of CIP images at (z = 870, x = 5250) m. (a) The true CIP image
via probing with a bandwidth-limited point source and (b) the CIP image extracted with
Algorithm 3. Approximate CIPs were computed from a factorization with the BKI method
for q = 1 and np = 130.

62



(a)

(b)

Figure 11: True and approximate CIGs at x = 1.8, 3.6, 5.4 km, the offset range of which is
±150 m. (a) The true CIGs and (b) the recovered CIGs from the low-rank representation
via Algorithm 4. Approximated CIGs were computed from a factorization with the BKI
method for q = 1 and np = 130.
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(a) (b) (c)

Figure 12: Geologic dip-corrected CIGs. (a) The original CIG image at x = 5.4 km with
offset range ±150 m, overlaid with the migration velocity; (b) the stack power curves at
depth z = 0.432, 1.44, 2.07 km; (c) the dip-corrected CIG image. Approximated dip-corrected
CIGs were computed from a factorization with the BKI method for q = 1 and np = 130.
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(a)

(b)

Figure 13: Comparison of approximate CIGs from noise-free (see Figure 11b) and noisy data
extracted at x = 1.8, 3.6, 5.4 km, the offset range of which is ±150 m. (a) Approximate CIG
from noisy data and (b) the difference between approximate CIGs for noise-free and noisy
data.
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(a)

(b)

Figure 14: Two different background velocity models used for our velocity-continuation test.
(a) The initial guess of the background model where the top salt is incorrect and (b) the
kinematically correct background velocity model.
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Figure 15: Selected rank for capturing 95% of the energy of “observed” data as a function of
frequency.
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(a)

(b)

(c)

Figure 16: RTMs extracted from the recovered low-rank factors of the EIVs. (a) RTM
based on initial background velocity model; (b) RTM based on the kinematically correct
background velocity model; (c) RTM based on mapping of the factors computed from the
initial background velocity model. All calculations were carried out for np = 100 and q = 1.68



(a) (b) (c)

Figure 17: CIP images extracted from the recovered EIVs at x = 2640 m, z = 1590 m. (a)
CIP image of the EIV from the initial background velocity model; (b) CIP image of the EIV
from the correct background velocity model; (c) CIP image of the EIV obtained by mapping
the factorization computed from the initial background velocity model. All calculations were
carried out for np = 100 and q = 1.
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(a)

(b)

(c)

Figure 18: CIGs extracted from the low-rank factorizations. (a) CIGs derived from the initial
background velocity model (as depicted in Figure 14a); (b) CIGs for the correct background
velocity model (as plotted in Figure 14b) obtained by computing a new factorization; (c)
the same as (b) but calculated by using the invariance relationship, which allows us to map
the factors obtained for the original background velocity model to those yield by the correct
background model. All calculations were carried out for np = 100 and q = 1.
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Step Size Cost

1. Form Y = (EE∗)qEW N × np 2np + 4qnp PDE-solves
2. Construct [Q,∼] = qr(Y) N × np O(Nn2p) flops
3. Form Z = E∗Q N × np 2np PDE-solves
4. [Φ,Σ,Ψ] = svd(Z∗) np × np, np, N × np O(Nn2p) flops
5. Update Φ← QΦ N × np, np, N × np -

Table 1: Storage and computational cost for simultaneous power iterations, whereN = nx×nz
corresponds to the size of the model and np stands for the number of probing vectors.

72



Step Size Cost

1. Form K = [EW, · · · , (EE∗)qEW] N × (q + 1)np 2np + 4qnp PDE-solves
2. Construct [Q,∼] = qr(K) N × (q + 1)np O(N(q + 1)n2p) flops
3. Form Z = E∗Q N × (q + 1)np 2(q + 1)np PDE-solves
4. [Φ,Σ,Ψ] = svd(Z∗) with only np singular vectors np × np, np, N × np O(N(q + 1)n2p) flops
5. Update Φ← QΦ N × np, np, N × np

Table 2: Storage and computational cost for block Krylov iterations, where N = nx × nz
corresponds to the size of the model and np stands for the number of probing vectors.
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