LIST OF TABLES

1	Storage and computational cost for simultaneous power iterations, where	
	$N = n_x \times n_z$ corresponds to the size of the model and n_p stands for the	
	number of probing vectors	72
2	Storage and computational cost for block Krylov iterations, where $N=n_x\times n_z$	
	corresponds to the size of the model and n_p stands for the number of probing	
	vectors	73

Step	Size	Cost
1. Form $\mathbf{Y} = (\mathbf{E}\mathbf{E}^*)^q \mathbf{E}\mathbf{W}$	$N \times n_p$	$2n_p + 4qn_p$ PDE-solves
2. Construct $[\mathbf{Q}, \sim] = qr(\mathbf{Y})$	$N \times n_p$	$\mathcal{O}(Nn_p^2)$ flops
3. Form $\mathbf{Z} = \mathbf{E}^* \mathbf{Q}$	$N \times n_p$	$2n_p$ PDE-solves
4. $[\Phi, \Sigma, \Psi] = \operatorname{svd}(\mathbf{Z}^*)$	$n_p \times n_p, n_p, N \times n_p$	$\mathcal{O}(Nn_p^2)$ flops
5. Update $\Phi \leftarrow \mathbf{Q}\Phi$	$N \times n_p, n_p, N \times n_p$	•

Table 1: Storage and computational cost for simultaneous power iterations, where $N=n_x\times n_z$ corresponds to the size of the model and n_p stands for the number of probing vectors.

Step	Size	Cost
1. Form $\mathbf{K} = [\mathbf{E}\mathbf{W}, \cdots, (\mathbf{E}\mathbf{E}^*)^q \mathbf{E}\mathbf{W}]$	$N \times (q+1)n_p$	$2n_p + 4qn_p$ PDE-solves
2. Construct $[\mathbf{Q}, \sim] = qr(\mathbf{K})$	$N \times (q+1)n_p$	$\mathcal{O}(N(q+1)n_p^2)$ flops
3. Form $\mathbf{Z} = \mathbf{E}^* \mathbf{Q}$	$N \times (q+1)n_p$	$2(q+1)n_p$ PDE-solves
4. $[\Phi, \Sigma, \Psi] = \text{svd}(\mathbf{Z}^*)$ with only n_p singular vectors	$n_p \times n_p, n_p, N \times n_p$	$\mathcal{O}(N(q+1)n_p^2)$ flops
5. Update $\Phi \leftarrow \mathbf{Q}\Phi$	$N \times n_p, n_p, N \times n_p$	

Table 2: Storage and computational cost for block Krylov iterations, where $N=n_x\times n_z$ corresponds to the size of the model and n_p stands for the number of probing vectors.