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ABSTRACT

Least-squares reverse-time migration is a powerful approach for true amplitude seismic

imaging of complex geological structures, but the successful application of this method is

currently hindered by its enormous computational cost, as well as high memory require-

ments for computing the gradient of the objective function. We tackle these problems by

introducing an algorithm for low-cost sparsity-promoting least-squares migration using on-

the-fly Fourier transforms. We formulate the least-squares migration objective function in
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the frequency domain and compute gradients for randomized subsets of shot records and

frequencies, thus significantly reducing data movement and the number of overall wave equa-

tions solves. By using on-the-fly Fourier transforms, we can compute an arbitrary number of

monochromatic frequency-domain wavefields with a time-domain modeling code, instead of

having to solve individual Helmholtz equations for each frequency, which becomes computa-

tionally infeasible when moving to high frequencies. Our numerical examples demonstrate

that compressive imaging with on-the-fly Fourier transforms provides a fast and memory-

efficient alternative to time-domain imaging with optimal checkpointing, whose memory

requirements for a fixed background model and source wavelet is independent of the num-

ber of time steps. Instead, memory and additional computational cost grow with the number

of frequencies and determine the amount of subsampling artifacts and crosstalk. In contrast

to optimal checkpointing, this offers the possibility to trade both memory and computa-

tional cost for image quality or a larger number of iterations and is advantageous in new

computing environments such as the cloud, where compute is often cheaper than memory

and data movement.
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INTRODUCTION

Reverse-time migration (RTM) is an increasingly popular wave-equation based seismic imag-

ing algorithm that corresponds to applying the adjoint of the Born scattering operator to

observed reflection data (Baysal et al., 1983; Whitmore, 1983). Without extensive precondi-

tioning, applying the adjoint operator leads to an image with incorrect amplitudes, imprints

of the source wavelet, finite apertures and therefore blurred reflectors. To overcome these

issues and invert the Born scattering operator, imaging can be formulated as a linear least-

squares optimization problem, in which the mismatch between observed and modeled data

is minimized in a least-squares sense. Least-squares migration was introduced for ray-based

imaging methods first (Lambaré et al., 1992; Schuster, 1993; Nemeth et al., 1999) and later

extended to wave-equation based imaging (LS-RTM) (Valenciano, 2008; Tang and Biondi,

2009; Dong et al., 2012; Zeng et al., 2014).

The successful deployment of LS-RTM in practice is currently hampered by two dis-

tinct computational challenges. First of all, conventional LS-RTM requires the migra-

tion/demigration of all shot records in each iteration of gradient-based optimization algo-

rithms, making this approach prohibitively expensive for large-scale data sets with thou-

sands of individual shot records. To save computational resources, shots can therefore

be subsampled or combined into supergathers/simultaneous shots, which avoids having to

treat every shot separately in each iteration (Tang and Biondi, 2009; Herrmann, 2010; van

Leeuwen et al., 2011; Dai et al., 2011, 2012, 2013; Liu, 2013). The resulting LS-RTM for-

mulations can then be solved using stochastic optimization methods, such as stochastic

gradient descent or variants of the stochastic conjugate gradient method (e.g. Huang and

Zhou, 2014; Li et al., 2018). Since the migration of simultaneous shot records leads to cross-
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talk in the seismic image, the resulting artifacts need be addressed by additional constraints

such as smoothing constraints (Chen et al., 2015) or transform-domain sparsity (Herrmann

and Li, 2012; van Leeuwen et al., 2011; Lu et al., 2015; Tu and Herrmann, 2015). Common

transforms that lead to sparsity of seismic images include the wavelet, seislet or curvelet

transforms (Candès et al., 2006a; Herrmann et al., 2008; Fomel and Liu, 2010).

The second challenge of LS-RTM are the large requirements of data movement and fast

memory access for computing the gradient of the objective function with the adjoint-state

method (Tarantola, 1984; Plessix, 2006). The gradient for one shot record is computed

by solving an adjoint wave equation, with the data residual between the predicted and

observed data as the adjoint source, and requires access to the forward wavefields in reverse

order. The forward wavefields are obtained by forward propagating the seismic source

for the respective shot record, but they are typically too large to store in memory. To

overcome this issue, a common strategy is to either write compressed wavefields to disk,

or to store only a small subset of uncompressed wavefields, while the in-between wavefields

are recomputed from checkpoints (Griewank and Walther, 2000; Symes, 2007) or the model

boundary (McMechan, 1983). These approaches therefore offer a possible trade-off between

memory usage and computational cost, as more wavefields need to be recomputed for a

smaller number of checkpoints. Further alternatives for circumventing the storage of time-

domain wavefields are discussed in Nguyen and McMechan (2015). Storing or recomputing

wavefields is especially expensive for seismic imaging, since it is typically carried out at

higher frequencies than full-waveform inversion (FWI) and thus involves substantially larger

wavefields and models due to small grid spacings.

An alternative to recomputing time-domain wavefields from checkpoints, is to use time-

to-frequency conversions to extract monochromatic frequency-domain wavefields from a
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time-stepping loop and to compute gradients for a small subset of frequencies. This approach

circumvents the problem of having to store or recompute wavefields for a large number of

time steps, as frequency-domain gradients are computed individually for one frequency at

a time. Modeling frequency-domain wavefields with a time-domain modeling code is a well

established approach in scientific computing and several algorithms exist to perform time-

to-frequency conversions, including discrete on-the-fly Fourier transforms (DFTs) or linear

equation methods (refer to Furse, 1998, for an overview). A conversion method in the

context of seismic modeling using phase-sensitive detections (PSDs) is presented in Nihei

and Li (2007). Extracting single frequency-domain wavefields from a time-stepping loop is

even possible without any conversion at all and can be obtained by simply propagating a

monochromatic source function to a steady state (Watanabe, 2015).

Time-to-frequency conversion methods enjoy great popularity in the context of full-

waveform inversion (Sirgue et al., 2010; Etienne et al., 2010; Kim et al., 2013; Xu and

McMechan, 2014; Ha et al., 2015), as it is generally desirable to carry out the inversion for

single or few frequencies at a time (Bunks et al., 1995; Sirgue and Pratt, 2004). For seis-

mic imaging on the other hand, the goal is to obtain a high-definition image with a broad

frequency band, making it typically necessary to compute gradients for a large-number

of evenly-spaced frequencies. Hence, we present a workflow for least-squares RTM using

small subsets of randomly selected frequencies and shot records, with sparsity promotion

to address the subsampling related imaging artifacts. In contrast to earlier works by Her-

rmann and Li (2012) and Herrmann et al. (2015), we use on-the-fly Fourier tranforms to

compute gradients in the frequency domain with a highly optimized time-domain model-

ing code (Lange et al., 2016; Louboutin et al., 2017). On-the-fly DFTs not only allow us

to compute an arbitrary number of frequencies in a single time-stepping loop, but also to
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scale the inversion to high frequencies, without solving large-scale 2D, and in particular

3D, Helmholtz equations. In our numerical examples, we demonstrate that compressive

imaging with sparsity promotion (SPLS-RTM) and on-the-fly DFTs yields images of simi-

lar quality as time-domain LS-RTM, but without having to store or recompute time-domain

wavefields and with a significantly reduced number of wave equation solves, using as few

as two passes through the data. In the discussion, we analyze the asymptotic behaviour of

memory requirements and computational cost for imaging with on-the-fly DFTs and com-

pare it to optimal checkpointing. Thus, the contribution of this work is the formulation of

frequency domain LS-RTM with a time-domain modeling operator and on-the-fly Fourier

transforms using shot and frequency subsampling to overcome the prohibitively high cost

of least squares RTM. The shot and frequency-subsampling effectively turn LS-RTM into

an underdetermined compressed sensing problem, with computational flexibility regarding

batch sizes and number of iterations, which can be customized according to the available

computational resources. Furthermore, this paper introduces a forward-adjoint pair for

imaging the impedance in both the time and frequency domain (with or without on-the-fly

DFTs) and presents a quantitative and qualitative comparison of time-domain LS-RTM

and frequency-domain LS-RTM with on-the-fly DFTs.

FREQUENCY-DOMAIN LEAST-SQUARES MIGRATION WITH

TIME-DOMAIN MODELING

To circumvent the problem of having to store time-domain wavefields for computing the

adjoint-state gradient, we formulate the least-squares reverse-time migration objective func-

tion in the frequency domain, using the frequency-domain linearized Born scattering oper-
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ator J:

minimize
δm

ns∑
j=1

nf∑
k=1

1

2

∥∥∥J(m0, q̄jk) δm− d̄obs
jk

∥∥∥2
2
. (1)

The vector m0 denotes the vectorized migration velocity model in squared slowness and δm

is the unknown model perturbation (i.e. the seismic image). The vector d̄obs
jk is the observed

reflection data in the frequency-domain (denoted by bars) of the jth source location and the

kth frequency and q̄jk is the complex-valued monochromatic source. The objective function

is computed as the sum over all ns source positions and nf temporal frequencies. To model

the predicted linearized data in the Fourier domain, we have to compute the action of the

linearized Born modeling operator on the current image, d̄pred
jk = J(m0, q̄jk) δm, which

corresponds to solving:

d̄pred
jk = −PrH(m0)

−1diag

[
∂H(m0)

∂m
H(m0)

−1p∗s q̄jk

]
δm, (2)

where H(m0) is the frequency-domain modeling operator and Pr is a projection operator

that restricts the wavefield to the receiver locations. Accordingly, the vector p∗s is the

source injection operator, which is a column vector of zeros with value one at the source

location. The asterisk denotes the adjoint of complex vectors and matrices, also known as

the Hermitian adjoint.

While formulating the LS-RTM objective in the frequency domain avoids storing the

history of the time-domain wavefields, it in principle requires inverting the Helmholtz ma-

trix for modeling observed data and computing gradients. To avoid inverting large-scale

Helmholtz systems, which are known to be ill-conditioned for large-scale systems with high

frequencies, we instead compute the frequency-domain data with a time-domain modeling

code (Furse, 1998; Nihei and Li, 2007; Sirgue et al., 2010). This combines the best of both

worlds, as we can use a highly optimized time-domain modeling code for the PDE solves,
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while computing gradients memory efficiently in the frequency domain, where gradients are

separable over frequencies. This means it is possible to compute the gradient for single

frequencies at a time, as an element-wise product of the corresponding forward and adjoint

monochromatic wavefields. In principal, modeling the frequency response of the linearized

modeling operator involves computing the inverse DFT of the source wavelet q̄jk, solving

the linearized wave equation in the time domain and then performing a time-to-frequency

conversion of the single scattered wavefields for all frequencies (i.e. using a DFT). This is

followed by extracting the kth frequency through a frequency restriction operator Rk and

restricting the wavefield to the receiver locations (through a receiver projection operator

Pr). Overall, we have:

d̄pred
jk = −PrRkFA(m0)

−1diag

[
∂A(m0)

∂m
A(m0)

−1F∗R∗kp
∗
s q̄jk

]
δm, (3)

where A(m) is the discretized time-domain wave equation and F is the discrete Fourier

matrix. As mentioned, Rk is a restriction operator that extracts the kth frequency of the

wavefield, while its adjoint zero-padds a frequency wavefield along the frequency axis, so

that we can compute its inverse temporal Fourier transform. However, in the actual imple-

mentation of equation 3, we combine the time-to-frequency conversion and the extraction

of one or multiple frequencies into a single step, by performing on-the-fly DFTs for the

respective frequencies, instead of an explicit DFT of all frequencies. Accordingly, we never

explicitly zero-padd the source wavelet to perform an inverse DFT, but simply inject the

time-domain wavelet.

To obtain the gradient of the frequency-domain LS-RTM objective function, we have

to compute the action of the complex conjugate linearized modelig operator on the data

residual, i.e.; ḡjk = J(m0, q̄jk)
∗(d̄pred

jk −d̄obs
jk ). The expression for the gradient can be derived
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by taking the conjugate transpose of equation 2 and boils down to calculating the pointwise

product of the (complex) forward and adjoint wavefields ūjk and v̄jk (Pratt, 1999):

ḡjk = −Re
[
diag

(
ω2
kūjk

)∗
v̄jk

]
. (4)

The scalar ω2
k is the squared angular frequency ωk = 2πfk and Re denotes the real part of

the gradient. Once again, we do not compute the forward and adjoint frequency-domain

wavefields by inverting the Helmholtz equation, but by solving time-domain wave equations,

followed by time-to-frequency conversions for the respective frequencies. In an analogous

manner to equation 3, we obtain the forward wavefield ūjk for the jth source location and

kth frequency by solving:

ūjk = RkFA(m0)
−1F∗R∗kp

∗
s q̄jk. (5)

The adjoint wavefield is obtained accordingly, by solving an adjoint time-domain wave

equation with the data residual as the adjoint source. In general, this is different from time

reversing the data residual and using the forward modeling operator, as it involves inverting

the correct adjoint of the forward modeling operator:

v̄jk = RkFA(m0)
−∗F∗R∗kP

∗
r(d̄

pred
jk − d̄obs

jk ), (6)

with A(m0)
−∗ being the solution of the adjoint time-domain wave equation. In summary,

we have derived an expression for computing the predicted linearized data in the frequency-

domain using a time-domain modeling code, as well as corresponding expressions for the

gradient of the LS-RTM objective function. Thus, these quantities can be computed with

highly-optimized time-domain modeling codes instead of Helmholtz solvers, whose success

heavily rely on the underlying preconditioners and linear solvers. However, the analytical

expressions in this section contain explicit Fourier transforms of the time-domain wavefields
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that require access to their full time history in memory, which is what we wanted to avoid

in the first place. Luckily, we can avoid having to explicitly compute discrete Fourier

transforms of the time-domain wavefields, by computing the DFTs on the fly.

COMPUTING ON-THE-FLY FOURIER TRANSFORMS

To avoid saving the full time-dependent wavefield in memory and taking its Fourier trans-

form after modeling, we compute Fourier domain wavefields for a given frequency fk during

the forward or reverse time loops on the fly. In the context of full-waveform inversion,

this approach has been introduced by Sirgue et al. (2010) and has since then appeared in

a number of publications related to FWI (e.g. Etienne et al., 2010; Kim et al., 2013; Xu

and McMechan, 2014; Ha et al., 2015). The on-the-fly Fourier transforms correspond to

computing the frequency-domain wavefields as a running sum over the current time-domain

wavefield ui of the ith time step within a time modeling loop, multiplied with a complex

exponential (Furse, 1998). To simplify the implementation and avoid complex arrays, we

individually compute the real and imaginary part of the frequency domain wavefields. The

on-the-fly Fourier transform of the forward wavefields is then given by:

ūreal
jk =

nt∑
i=1

cos(2πfki∆t)ui,

ūimag
jk = −

nt∑
i=1

sin(2πfki∆t)ui.

(7)

This expression can be fairly easily incorporated into an existing time-domain modeling code

and only involves initializing the two frequency-domain wavefields with zeros and adding

the current time-domain wavefield multiplied with the sine and cosine terms during each

time step. To obtain the linearized data in the frequency-domain (equation 3), we tech-

nically have to perform the on-the-fly DFT on the linearized (single-scattered) wavefields,
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rather than on the source wavefields. Alternatively, it is possible to model time-domain

shot records and perform the frequency conversion after modeling, since time-domain shot

records themselves are not as big as time-domain wavefields and can generally be stored

in memory. In the numerical examples section, we demonstrate, that this step is actu-

ally not necessary for LS-RTM, as we can simply use full time-domain sources and shot

records (data residuals) as forward and adjoint sources. This means, we only use on-the-fly

DFTs to compute wavefields for the gradient in the frequency-domain, but we work with

time-domain data and sources.

The adjoint frequency-domain wavefields (equation 6) that are necessary for computing

the LS-RTM gradient, are computed in the same manner as the forward wavefields, namely

by performing an on-the-fly DFT on the adjoint time-domain wavefields vi. These wavefields

are computed by solving an adjoint (i.e. time-reversed) wave equation A−?, just as in

conventional RTM. The LS-RTM gradient itself can be computed in the same time loop as

the adjoint frequency-domain wavefields. We replace the complex Fourier domain wavefield

ūjk in equation 4 with the real and imaginary parts as given by equation 7 and compute the

real part of the gradient through an on-the-fly DFT of the adjoint time-domain wavefield

vi:

ḡjk = −
nt∑
i=1

(2πfk)
2diag

[
ūreal
jk cos(2πfki∆t)− ūimag

jk sin(2πfki∆)
]
vi. (8)

This equation gives us an expression for calculating the LS-RTM gradient in the frequency

domain with a time-modeling code for any given frequency fk, not just evenly spaced

frequencies as obtained with an FFT. Unlike in the time domain or in equations 4 – 6,

we never need to store the full time-domain wavefield ui with i = 1, . . . , nt in history.

Instead, forward wavefields and gradients are computed as a running sum within forward

or adjoint time loops and only require the storage of two wavefields per frequency at a time
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(real and imaginary parts). During a single time-stepping loop, it is of course possible to

compute multiple monochromatic wavefields for different frequencies by creating an inner

loop within the on-the-fly DFT over the number of frequency-domain wavefields. While

this does not increase the number of time-stepping loops (PDE solves), every additional

frequency increases both memory requirements and computational cost within the respective

time loop.

A FORWARD-ADJOINT PAIR FOR IMAGING THE IMPEDANCE

The gradient of the LS-RTM objective function that we derived in the previous sections uses

the zero-lag cross-correlation imaging condition and maps seismic reflections in the observed

data to a perturbation in the medium parameters, which are in this case the velocity in

squared slowness (s−2 km2). One of the well known shortcomings of imaging velocity per-

turbations with the zero-lag cross-correlation imaging condition, are low frequency imaging

artifacts that result from backscattering of the source wavefield (e.g. Yoon and Marfurt,

2006; Guitton et al., 2007). This issue is especially problematic for imaging salt bodies, as

high velocity contrasts in the migration velocity model lead to reflections/backscattering of

the down-going wavefield, thus creating strong low-frequency artifacts in the image (Fig-

ure 1). This phenomenon has been well studied using radiation pattern analysis (Zhu et al.,

2009; Zhou et al., 2015) and can be addressed by directional filtering of the wavefields,

reparametrizations of the image or alternative imaging conditions. Here, we follow the ap-

proach from Op’t Root et al. (2012) and address this issue by deriving the gradient of the

LS-RTM objective function using the linearized inverse scattering imaging condition (ISIC).

The image/gradient with ISIC is given by the sum of two terms, in which the low frequency

artifacts have opposite signs and cancel each other, while the reflectors have equal signs
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and stack coherently (Whitmore and Crawley, 2012). In the frequency domain, the imaging

condition is defined as (Op’t Root et al., 2012):

ḡjk = −Re

[
diag

(
ω2
kūjk

)∗
diag

(
m0

)
v̄jk −

ndim∑
l=1

diag

(
∂ūjk
∂xl

)∗
∂v̄jk
∂xl

]
, (9)

where ndim is the number of spatial dimensions and ∂
∂xi

is the first spatial derivative of the

respective dimension. The first term of this equation corresponds to the cross-correlation

imaging condition as defined by equation 4 with an additional pointwise multiplication with

the background squared slowness vector m0, while the second term is the sum of pointwise

products of the first spatial derivatives of forward and adjoint wavefields. In Appendix

A, we show that the linearized inverse scattering imaging condition corresponds in fact to

imaging the acoustic impedance, making the gradient ḡjk an impedance update, rather than

a velocity perturbation (squared slowness) update. Since we want to use ISIC in the context

of imaging with on-the-fly Fourier transforms, we follow the approach from the previous

section and compute the gradient in a (reverse) time-stepping loop, in which the adjoint

frequency-domain wavefields v̄jk are obtained through an on-the-fly Fourier transform of

the adjoint time-domain wavefield vi:

ḡjk = −
nt∑
i=1

{
(2πfk)

2diag
[
ūreal
jk cos(2πfki∆t)− ūimag

jk sin(2πfki∆)
]
diag

(
m0

)
vi−

ndim∑
l=1

diag

[
∂ūreal

jk

∂xl
cos(2πfki∆t)−

∂ūimag
jk

∂xl
sin(2πfki∆)

]
∂vi
∂xl

}
.

(10)

As before, the frequency domain source wavefields ūjk are computed in a separate forward

time-stepping loop with an on-the-fly DFT of the forward time-domain wavefield (equa-

tion 7). As discussed earlier, we can think of the gradient expression as the action of an

adjoint linear operator J∗ on the LS-RTM data residual, which maps a perturbation in the

data to a perturbation in the model (the seismic image). To use ISIC/impedance imaging

in the context of LS-RTM, we need to derive the corresponding forward operator, i.e.; the
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linear map from the image domain to the data domain (Witte et al., 2017). Once again, we

model the linearized data with a time-stepping modeling code, followed either by an on-the-

fly DFT of the linearized wavefield or a time-to-frequency conversion of the time-domain

shot record. First, we compute the perturbed (single scattered) wavefield δui of the ith time

step, such that the expression is the (time-domain) adjoint operation of equation 9:

δui = −A(m0)
−1

{
diag

(
∂2ui
∂t2

)
diag

(
m0

)
δz−

ndim∑
l=1

∂

∂xl

[
diag

(
∂ui
∂xl

)
δz

]}
, (11)

where the vector δz denotes the impedance. The real and imaginary parts of the linearized

data are then obtained by performing the on-the-fly DFT on the scattered time-domain

wavefields δui and by restricting the wavefield to the receiver locations:

d̄
predr
jk = Pr

nt∑
i=1

cos(2πfki∆t)δui,

d̄
predi
jk = −Pr

nt∑
i=1

sin(2πfki∆t)δui.

(12)

To obtain linearized data for an impedance image δz in the time domain, we can simply

omit the on-the-fly DFT and directly apply the receiver restriction operator Pr to the time-

domain wavefield δui. This allows us to use the modeling operator in equation 11 also for

conventional time-domain LS-RTM with impedance imaging. The optimization algorithm

for LS-RTM with on-the-fly DFTs and sparsity-promotion that is described in the in the

following section, is independent of which imaging condition is used and works for imaging

the impedance using Equation 10, as well as imaging velocity contrasts (Equation 8). In

theory, the equations provided here for acoustic/impedance modeling and computing the

gradients using on-the-fly DFTs are exact adjoints and are able to pass adjoint tests if

implemented as described.

[Figure 1 about here.]
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SPARSITY-PROMOTING LEAST-SQUARES MIGRATION

The expressions we derived in the last sections allow us in principle to perform frequency-

domain LS-RTM using a time-modeling code and without having to store time histories

of wavefields. However, for conventional LS-RTM, the gradient is given by the full sum

of all frequencies and source locations. The number of frequencies is determined by the

recording length of the shot records and their sampling ratio (i.e. by the corresponding

Nyquist frequency) and is generally quite large. Performing on-the-fly DFTs for a large

number of frequencies in a single time loop is not only computationally expensive, but

also requires the storage of all those wavefields and therefore defeats the purpose of this

approach. Our method is therefore most useful, when we compute the gradients of the

LS-RTM objective function for a small subset of frequencies, rather than for all frequencies.

I.e.; for a single source index j, we compute n̂f � nf frequencies within one time loop,

which requires the storage of 2n̂f wavefields for the gradient.

In the context of FWI, computing the gradient for a subset of frequencies makes sense,

as it is generally desirable to invert the velocity model from low to high frequencies, using

single or few temporal frequencies at a time (Bunks et al., 1995; Sirgue and Pratt, 2004).

For seismic imaging on the other hand, the goal is to obtain a high resolution image from

data with a broad frequency spectrum. As pointed out in Miller et al. (1987), using all

temporal frequencies for seismic imaging is generally not necessary, as frequencies are typ-

ically oversampled and the sampling ratio depends on the scattering angles. This allows

us to image seismic data using subsets of evenly spaced frequencies, where the frequency

interval is determined by the recording length, which in turn depends on the target depth

and the overburden velocity (Mulder and Plessix, 2004). Alternatively, the field of com-
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pressed sensing (CS) has recently provided a theoretical framework for sampling signals

far below the Nyquist criterion using randomized sampling (Donoho, 2006; Candès et al.,

2006b). The core idea of CS is to break the coherency of subsampling artifacts (aliases)

into incoherent noise, by sampling on a non-uniform grid and to recover the signal us-

ing denoising techniques. Applied to LS-RTM, compressed sensing translates to working

with random subsets of shots and frequencies, rather than evenly spaced samples. As is

well known from compressive seismic imaging in the frequency domain (Herrmann and Li,

2012; Tu et al., 2013; Tu and Herrmann, 2015), migrating data that consists of subsets of

randomly selected frequencies leads to noise/crosstalk in the images, similar to artifacts

from simultaneous shots with source encoding (e.g. Romero et al., 2000; Tang and Biondi,

2009). This is demonstrated in Figure 2, which compares migration results in the time and

frequency domain for single and multiple shots and using frequency subsampling. While

migrating a single shot record using 20 randomly selected frequencies leads to an image with

seemingly strong coherent artifacts, these artifacts convert to random noise after stacking

10 migrated shots, where each shot is migrated with a different set of randomly selected

frequencies. Selecting the frequencies randomly is crucial for being able to recover the true

image with sparsity-promoting minimization, as it breaks the coherency of the subsampling

artifacts (namely aliases). Subsampling frequencies periodically, as well as truncating the

ends of the frequency spectrum, leads to coherent artifacts (aliases), which are more difficult

to separate from the signal.

[Figure 2 about here.]

Due to the fact that the frequency subsampling artifacts appear as incoherent noise in

the image, it is possible to apply post-migration denoising techniques (refer to Buades et al.,
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2005, for an overview) or to address the artifacts as part of the inversion process itself and by

modifying the least-squares RTM objective function. We follow the approaches in Herrmann

et al. (2008) and Herrmann et al. (2015) and formulate LS-RTM as a sparsity-promoting

minimization problem of the following form:

minimize
δz

λ||C δz||1 +
1

2
||C δz||22

subject to:

ns∑
j=1

nf∑
k=1

∥∥∥M−1
l J(m0, q̄jk)M

−1
r δz−M−1

l d̄obs
jk

∥∥∥
2
≤ σ.

(13)

The goal of this problem is to minimize the combined `1-`2-norm of the unknown parameters,

which are in our case the curvelet coefficients of the acoustic impedance δz, obtained through

multiplication with the forward curvelet transform C. This is subject to the constraint that

the predicted linearized data, given by the action of the linearized modeling operator J on

δz, fits the observed reflections d̄obs
jk within some noise level σ. The matrices M−1

l and M−1
r

are left- and right-hand preconditioners intended to improve the condition number of the

system, such as mutes, depth scalings or half integrations (Herrmann et al., 2008). In the

numerical examples, we use image mutes to set the water column to zero, as well as depth

scalings to compensate for spherical divergence of the amplitudes.

In terms of image transforms, it is generally possible to choose any transform that

leads to sparsity of the image in the transform domain, meaning the image can be well

approximated by a small subset of coefficients (Figure 3). For seismic images, we are

interested in local details, such as edges and singularities, which can be captured by wavelets

or first differences. However, curvelets are not only multi-scale (like wavelets), but also

multi-directional and thus are able to capture both point and line singularities, as well as

smoothness along curved reflectors (Candès et al., 2006a; Ma and Plonka, 2010). As such,

the curvelet transform is able to preserve structures in seismic images, even for a small
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number of coefficients, while sparse approximations of the original image coefficients lead to

gaps in the subsurface structures (Figure 3). Another structure preserving transform that

has been successfully used in the context of sparse seismic imaging, is the seislet transform

(Fomel and Liu, 2010; Dutta, 2017). The seislet transform requires an estimation of the

local slopes of events using plane wave deconstruction, while the curvelet transform detects

dips automatically (Candès et al., 2006a).

[Figure 3 about here.]

The objective function in equation 13 is a modified formulation of the basis pursuit

denoise (BPDN) problem (Donoho, 2006) and consists of a combined `1- and `2-norm,

where λ is a trade-off (penalty) parameter that balances the two terms. The combined

`1- and `2-norm is referred to as an elastic net in machine learning and has the effect of

making the objective function strongly convex (Lorenz et al., 2014a). This allows us to

optimize equation 13 with the linearized Bregman method, a simple to implement solver

with few hyper parameters (Yin, 2010; Lorenz et al., 2014b), in which the penalty parameter

λ plays a fundamentally different role than in comparable algorithms such as iterative

soft thresholding (ISTA). A comparison of these two algorithms in the context of seismic

imaging and the role of the thresholding parameter can be found in Herrmann et al. (2015).

Practically, the `2-norm of the curvelet coefficients has no direct influence on the final image

and in fact, for a large enough value of λ, the solution of equation 13 is equivalent to the

solution of the BPDN problem, which is the same problem without the `2 regularization

term in the objective function. However, we have to include this term to make the objevtive

function strongly convex and the `2-term has to act on the same coefficients as the `1-term.

Strong convexity enables us to solve the problem with the linearized Bregman method, which
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has nicer numerical properties than the related ISTA algorithm. Furthermore, there exists

theoretical justification for using the linearized Bregman method to solve overdetermined

problems, such as LS-RTM, by working with random subsets of rows/measurements in each

iteration (Lorenz et al., 2014b). In the extreme case of working with single rows (shots)

of the linear operator and data, the method is then equivalent to the sparse Kaczmarz

solver (Mansour and Yilmaz, 2013). The linearized Bregman method is a fairly recent

optimization algorithm, but is closely related to older, well-established algorithms, such as

the augmented Lagrangian method and the alternating direction method of multipliers (e.g.

Yin, 2010).

Sparsity-promoting LS-RTM in the frequency domain as a BPDN problem has been

described, amongst others, in Herrmann and Li (2012) and the adaption of the linearized

Bregman method to this problem has been discussed in Herrmann et al. (2015). In contrast

to the approach presented here, these publications solve Helmholtz equations rather than

performing time-to-frequency conversion and are thus limited in their scalability to large-

scale high frequency data sets. However, as the algorithm for solving equation 13 only

differs in the way how the linearized data and gradients are computed, we refer to these

publications for details on sparsity-promoting LS-RTM and the linearized Bregman method.

For the sake of completeness and reproducibility, we include the algorithm for minimizing

equation 13 with the linearized Bregman method in Algorithm 1. The method works for

imaging velocity contrasts as well as acoustic impedance and basically consists of three

simple steps: modeling the predicted linearized data (equation 3 or 12), computing the

gradient by migrating the data residual (equation 7 or 10) and soft thresholding the curvelet

coefficients of the updated image. Each iteration involves choosing a random subset of

n̂s � ns sources and n̂f � nf frequencies for which the gradient is computed. The step
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length t can be chosen to be either constant or based on a dynamic update rule (Lorenz et al.,

2014a) (a constant step size was used in all numerical examples). The penalty parameter

λ is set according to the maximum amplitude of the gradient in the first iteration, i.e.;

λ = c‖t1ḡ‖∞ with ‖x‖∞ = max (|x1|, ..., |xn|) being the infinity norm. The constant c

determines how many coefficients pass the threshold in the first iteration. For c = 1, λ is

set to the magnitude of the largest coefficient, causing no coefficient to pass the threshold

in the first iteration. A smaller value of c, such as c = 0.1, results in a threshold that keeps

all coefficients with magnitudes larger than 1
10 of the maximum magnitude. In practice,

this results in more coefficients entering into the solution early on. A detailed geophysical

interpretation of each step of the algorithm is provided in Appendix B.

NUMERICAL EXAMPLES

In the following numerical examples, we will demonstrate that the method presented here,

allows to perform least-squares migration at a fraction of the cost of conventional LS-

RTM and without having to store or recompute time-domain wavefields. By using time-to-

frequency conversion methods, the proposed algorithm does not rely on solving Helmholtz

equations and scales to almost arbitrary model sizes and high frequencies. As part of our

numerical examples, we will analyze the trade-off between memory usage and computa-

tional cost through varying the number of frequencies per iteration (frequency batch size)

and compare it to time-domain imaging with optimal checkpointing. All of our numerical

examples are computed with the Julia Devito Inversion (JUDI) framework (Witte et al.,

2019), an open-source software package for seismic modeling and inversion based on Devito,

a domain-specific language compiler for automated finite-difference computations (Lange

et al., 2016; Louboutin et al., 2017). All wave equations were implemented using second
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Algorithm 1: The linearized Bregman method for sparsity-promoting LS-RTM with ran-

domized subsets of shots and frequencies. For each selected shot, a different subset of

frequencies is selected; thus leading to a larger number of different frequencies in each im-

age update. The algorithms consists of modeling the predicted linearized data d̄pred
S and

migrating the data residual for obtaining the gradient. The image xi is updated by applying

the soft-thresholding function to the dual variable zi.

1. Initialize x1 = 0, z1 = 0, q, λ, batch sizes n̂s � ns and n̂f � nf

2. for i = 1, ..., n

3. Select subset of shots and frequencies S = (∫shot, ∫freq), |∫shot| = n̂s, |∫freq| = n̂f

4. d̄pred
S = M−1

l JSM
−1
r x

5. ḡS = M−>
r J>SM−>

l Pσ
(
d̄pred
S − d̄obs

S
)

6. zi+1 = zi − tiḡS

7. xi+1 = Sλ(zi+1)

8. end

note: Sλ(z) = sign(z) ·max(0, |z| − λ)

Pσ
(
d̄pred
S − d̄obs

S
)

= max
(

0, 1− σ

‖d̄pred
S −d̄obs

S ‖

)
·
(
d̄pred
S − d̄obs

S
)

order finite differences in time and 8th order finite differences in space, unless specificed

otherwise. To simulate wave propagation in an infinite domain, we use simple absorbing

boundary conditions (ABCs) using a damping mask, as described in Clayton and Engquist

(1977). Optimal checkpointing in Devito is implemented through a Python wrapper around

the original Revolve library by Griewank and Walther (2000; Kukreja et al., 2018). The

results shown in this section are reproducible with JUDI and scripts are provided on Github

(Witte et al., 2019). The framework is implemented in the Julia programming language and
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uses a combination of distributed memory parallelism to parallelize over the shot locations

and shared memory parallelism with OpenMP for the wave equation solves.

Sigsbee 2A

For our first numerical example, we use the Sigsbee 2A velocity model (Bergsma, 2001), a

challenging salt model of 24.6 by 9.2 km. Due to the size of the model and the number of

time steps that are required to propagate the wavefield to all parts of the domain, storing the

forward wavefields in random access memory (RAM) can already be problematic. For our

experiments, we model wave propagation for 10 seconds, which corresponds to 14, 095 time

steps, using the time interval provided by the Courant-Friedrichs-Lewy (CFL) condition

(Courant et al., 1967). Storing 14, 095 wavefields in RAM as single precision arrays with a

grid spacing of 7.62 m requires 237 GB of memory, while saving the wavefields in memory

at a sampling interval of 4 ms (2, 500 wavefields) requires 42 GB. These numbers can be

prohibitively expensive, especially if we want to compute multiple gradients in parallel on

the same computational node. For this reason, wavefields, or a compressed version of them,

are typically written to secondary storage devices. Alternatively, optimal checkpointing and

on-the-fly Fourier transforms allow us to compute the gradients using substantially less or

memory or to write only a small subset of wavefields to disk. For a fair comparison, we fix

the allowed amount of memory for both methods to 700 MB, which corresponds to saving

40 real-valued or 20 complex wavefields in RAM.

For practical purposes, we compute gradients with the full time-domain source wavelet

and data residuals as forward and adjoint sources, rather than modeling with monochro-

matic sources/residuals as indicated by equations 3 and 6. In other words, instead of per-
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forming Fourier transforms of the time-domain data, extracting the required frequencies and

an inverse Fourier transform back to the time-domain, we use the unmodified time-domain

wavelets and data residuals for modeling. This avoids having to extract monochromatic fre-

quencies of the source wavelet and shot records, which is cumbersome if the frequencies do

not lie on the corresponding time axis and therefore need to be interpolated. Overall we only

need to perform two on-the-fly DFTs per frequency to compute the gradient for one shot

record: one for the forward wavefield and one for the adjoint wavefield. Using the broadband

wavelets and shot records as sources is possible, as extracting a monochromatic Fourier-

domain wavefield for a given frequency from its corresponding monochromatic source, yields

the same result (up to a constant) as modeling with the full time-domain source (Figure 4).

Strictly speaking, this modification destroys the exact adjoint property of our demigration-

migration operator pair, since we inject additional energy, but the introduced error is purely

a scaling error and does not affect the position of reflectors.

[Figure 4 about here.]

In our first numerical experiment, we compare time-domain SPLS-RTM with optimal

checkpointing and frequency-domain SPLS-RTM with on-the-fly Fourier transforms. The

data set consists of 935 observed shot records with 10 seconds recording time and a peak

frequency of 15 Hz and maximum frequency of 40 Hz. We simulate a marine streamer

acquisition with 100 m minimum offset, 12 km maximum offset and 1200 evenly spaced

hydrophones. We perform 20 iterations of the linearized Bregman method with 100 ran-

domly selected shots per iteration (with replacement), which corresponds to approximately

two passes trough the data. This means, in expectation, every shot record is migrated only

twice. We found that the effect of the trade-off between batch size and number of iterations

23



is negligible, as long as we avoid either extremes, i.e. using a very small batch size or very

few iterations. For frequency-domain SPLS-RTM with on-the-fly Fourier transforms, we

randomly select 20 different frequencies for each shot and each iteration. The frequencies

are selected from a continuous frequency band between 3 and 40 Hz, according to the spec-

trum of the source wavelet. For this, we convert the frequency spectrum of the source to a

cumulative probability function, generate uniform random values between 0 and 1, and se-

lect the corresponding frequencies on the x−axis of the probability function. This strategy

ensures that a large number of random frequencies approximates, in expectation, the full

spectrum of the source wavelet. Alternatively, the spectrum of the data can be used for this

process, if the source wavelet has not been estimated prior to migration. The noise level σ

in the algorithm was set to zero, since the observed data is noise free and a constant step

size t was used for all SPLS-RTM examples. For every run, we used the largest possible

step size that preserves numerical stability of the modeling scheme during all iterations. As

a reference for our results, we also compute the time- and frequency-domain RTM images,

which correspond to one full data pass, since every shot record is migrated once. The RTM

and SPLS-RTM results for the frequency domain are shown in Figure 5 and a close-up

comparison of all images is provided in Figure 6. While the frequency-domain RTM image

is noisy due to frequency-subsampling artifacts, SPLS-RTM is able to map the incoherent

noise to a coherent image and provides the same high-quality image as the time-domain

method. The only post-processing that was applied to the results, is a linear depth scaling,

to emphasize deeper reflectors.

[Figure 5 about here.]

[Figure 6 about here.]
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As mentioned, the amount of memory for both optimal checkpointing and on-the-fly

Fourier transforms is fixed to 700 MB in the previos experiments (40 real-valued or 20

complex wavefields). For optimal checkpointing, the amount of memory defines the trade-off

between the number of checkpoints and the computational cost for recomputing wavefields.

Decreasing the memory increases the computational cost, as fewer checkpoints can be saved

and more wavefields need to be recomputed. For imaging with on-the-fly Fourier transforms

however, this relationship does not apply. Decreasing the available memory decreases the

number of wavefields that can be stored, but it also decreases the amount of computations,

since less on-the-fly DFTs have to be computed. However, in this case, the trade-off is

related to the amount of frequency subsampling artifacts in the images and to how many

iterations of SPLS-RTM have to be performed to achieve the same quality of the final

image. To demonstrate this relationship, we carry out a second numerical experiment

in which we perform frequency-domain SPLS-RTM with on-the-fly DFTs using only 10

randomly selected frequencies per shot instead of 20. As expected, the convergence of the

SPLS-RTM data misfit for 10 frequencies is considerably slower than for 20 frequencies and

more iterations are necessary to bring the misfit of the current subset of shots and the image

error down to a comparable level (Figure 7). On the other hand, each iteration requires only

half the amount of memory and half the number of DFTs, which decreases the runtime for

computing gradients. This is illustrated in Figure 8, in which we plot the time-to-solution

for computing the gradient for a single shot record with on-the-fly DFTs as a function of

the number of frequencies. For comparison, we also provide the runtime for computing a

gradient using optimal checkpointing. All timings were obtained using a single CPU with

10 threads. A detailled description of the configuration and utilized hardware is given in

Appendix C.
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Furthermore, we demonstrate the effect of varying the batch size of shots versus the

batch size of frequencies. For this, we repeat the previous experiment, but using twice as

many shots, while keeping the numbers of frequencies fixed to 10. As evident from the

convergence plots of the data residual and model error (Figure 7), increasing the batch size

to 200 with a frequency batch size of 10 yields almost identical results as the example with

100 shots and 20 frequencies. This once again emphasizes, that the quality of the final

results is similar if the product of number of iterations, shots and frequencies is kept con-

stant. This observation is important, as it provides the possibility to adapt the optimization

parameters (batch size, number of data passes) to the available computational resources.

For example, if many computational nodes are available, we can increase the batch size of

shots and decrease the number of frequencies, whereas we can decrease the batch size and

increase the number of frequencies if only few nodes are available. Overall the time-domain

result has the smallest data residual and model error, but also comes at higher compu-

tational cost, since all all wavefields have to be saved or reconstructed for computing the

gradient. The convergence rate of the linearized Bregman method has not been analyzed

in the literature, but is linear at best. Standard stochastic optimization methods, such as

stochastic gradient descent, have a sub-linear convergence rate O(1/n), with n being the

iteration number. However, in practice, the sublinear convergence rate is mostly problem-

atic at very high iteration numbers when 1
n is very small and we want to solve the problem

to convergence. During early iterations, the behavior of the algorithm is mostly dominated

by a constant (algorithm-dependent) factor O(1), rather than the asymptotic behaviour,

making the algorithm effective when only a small number of data passes is affordable.

[Figure 7 about here.]
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[Figure 8 about here.]

In our final experiment using the Sigsbee 2A model, we investigate the sensitivity of the

results to the choice of the regularization parameter λ (i.e. the soft thresholding value) and

the effect of sparsity-promoting techniques to weak events in the seismic image. For this, we

repeat the previous SPLS-RTM experiments with on-the-fly DFTs and a fixed number of

shots and frequencies, but with varying values of λ. Namely, we use 100 randomly selected

shots and 20 randomly selected frequencies per iteration with a total number of 20 iterations.

In the previous examples, we chose the thresholding parameter through parameter testing,

such that after the maximum number of iterations, most reflection events were recovered,

but no incoherent noise was present in the final image. We now conduct two additional

experiments in which we set λ = 0 (no sparsity promotion) and λ = 4e − 4 (stronger

sparsity promotion than before), while previously, we used a value of λ = 1e− 4.

The effect of sparsity promotion and the choice of the thresholding parameter on two

areas of the Sigsbee model is shown in Figures 9 to 11. Figure 9 shows a close-up view

of the top-of-salt region, in which we have the best illumination in the model. Figure 9 b

shows the result using no sparsity promotion, which means that no thresholding is applied

to the coefficients. Even though no sparsity-promotion was used, the result shows a very

high signal-to-noise ratio, since most of the incoherent noise stacked out over the course

of the inversion. Furthermore, we can observe that in the cases where sparsity promotion

was used, the final results are expectedly not very sensitive to the choice of λ (Figures 9 c

and d). However, the situation is different for areas with poor illumination, such as in the

sub-salt region shown in Figure 10. Here, we can observe that no sparsity promotion leads

to a worse signal-to-noise ratio (Figure 10 b), but that the result is also more sensitive to
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λ. Namely, a larger value of λ (i.e. stronger thresholding) removes weak events such as the

diffractors (Figure 10 c and d). This observation is further emphasized in one-dimensional

well-log comparisons (Figure 11), which were extracted at 12.1 km horizontal position.

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

It is important to consider, that we use a fixed number of data passes and therefore

iterations for our examples, and that running a sufficiently large number of iterations will

eventually recover the missing coefficients. However, for a larger value of λ, more iterations

are necessary to recover the small coefficients, while choosing λ too large, causes incoherent

noise to enter the solution after a few iterations. The right choice of λ is therefore a trade-off

between noise, missing coefficients and the number of iterations. Using a smaller batch size

of shots, does not inherently increase the incoherent noise, but leads to a poorer illumination

and therefore increases the sensitivity to the choice of λ and the likelihood that coherent

signal is accidentally removed or that noise in introduced into the solution.

BP Synthetic 2004

The results for the Sigsbee 2A model were obtained under ideal conditions, in which the

noise-free observed data was generated with the same linearized modeling operator that

was used for the inversion (inverse crime). To demonstrate that our proposed approach also

works in a more realistic setting and scales to large-scale models, we test our algorithm on
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the BP synthetic 2004 model (Billette and Brandsberg-Dahl, 2005). The model has a size of

67.4 by 11.9 km and is interpolated to a grid spacing of 6.25 m (10, 789×1, 911 grid points).

We generate the observed data with the same acquisition geometry as the original data

released by BP, using a 15 km streamer, 12 seconds recording time and 1340 shot locations.

However, unlike the original data, we model the data without surface-related multiples and

with a peak frequency of 20 Hz instead of 27 Hz. To provide a non-inversion crime setting, we

model the data with the acoustic forward modeling operator and not with the demigration

operator. We generate the data using the true velocity and density models, whereas for

inversion, we only use a smooth migration velocity model, but no density. Furthermore,

we model the observed data with a 16th order finite-difference (FD) stencil, while using an

8th order FD stencil for the inversion. Changing the discretization order is easily possible

in JUDI, as the software uses Devito to automatically optimize and generate completely

new source code for solving a specified wave equation in every individual run (Louboutin

et al., 2018; Luporini et al., 2018). Since we use a different acoustic wave equation without

density for inversion and change the finite-difference stencil order, this leads to different

sets of source code for modeling the observed data and running SPLS-RTM. Furthermore,

we add Gaussian noise to all observed shot gathers with a signal-to-noise ratio of 17 dB

(8.13 dB after muting the direct wave).

[Figure 12 about here.]

As before, we compare frequency-domain RTM with on-the-fly DFTs and 20 randomly

selected frequencies per shot to frequency-domain SPLS-RTM with randomized shots (Fig-

ures 12 and 13). For this example, we run the inversion for 20 iterations, using 200 randomly

selected shots per iteration with 20 frequencies per shot. As for the Sigsbee example, the
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frequencies are selected from a continuous frequency band between 3 and 45 Hz, using the

spectrum of the source wavelet as the probability distribution. As a reference solution, we

also compute the time-domain SPLS-RTM image using optimal checkpointing (Figure 13

a). As indicated by a close-up comparison of the results, SPLS-RTM is once gain able

to map the frequency subsampling artifacts in the RTM image into coherent energy and

provide an image of similar quality as the time-domain method (Figures 12 – 15). Since

the observed data is not generated with the demigration operator that is used for inversion

and is generated using a density model, the amplitudes of the predicted data can never

exactly match the amplitudes of the observed data, which is why the data misfit for the

current subset of shots only decays by 32 percent (Figure 16 a). This amplitude mismatch

in combination with a smooth migration velocity model without sharp salt boundaries is

also responsible for the the slight blur of the salt dome’s top reflector.

[Figure 13 about here.]

[Figure 14 about here.]

[Figure 15 about here.]

As in our Sigsbee example, we measure the time-to-solution for computing the gradient

for a single shot record as a function of the number of frequencies (Figure 16 b). The timings

are obtained with the same computational set up as before, using a single Intel Xeon CPU

with 10 cores (Appendix C). In this particular case, computing one gradient with optimal

checkpointing takes longer than computing a gradient for 64 frequencies with on-the-fly

DFTs, but less time than 128 frequencies. In the RTM and SPLS-RTM example, we only

use 20 randomly selected frequencies per shot record, making the computation of a single
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gradient approximately three times faster than the computation of a time-domain gradient

with optimal checkpointing and the same amount of computational resources. While the

frequency-domain SPLS-RTM result using only 20 randomly selected frequencies per shot is

considerably faster than the its time-domain equivalent, it also still exhibits a slight amount

of low-amplitude noise, which underlines the trade-off between number of frequencies and

quality of the result that is inherent to this approach. While increasing the number of

frequencies yields a result that is closer to the time-domain image, it also diminishes the

computational speed up in comparison to optimal checkpointing.

[Figure 16 about here.]

DISCUSSION

The main challenges of least-squares reverse-time migration are the large number of shots

that have to be migrated in each iteration of gradient-based optimization algorithms, as

well as the necessary access to the forward wavefields in reverse order for computing the

gradient. A straight-forward implementation of time-domain LS-RTM is to forward propa-

gate the source wavefield for all time steps, store the wavefields in memory and access them

in reverse order during the adjoint time loop. The obvious drawback of this approach is

that the required memory grows linearly with the number of time steps and the approach

quickly becomes infeasible for any realistically sized models and recording times. Similarly,

saving and reconstructing the wavefields from the boundary scales linearly with the num-

ber of time steps as well, but the asymptotic behavior has a smaller constant than saving

the full wavefields, as the wavefield is only saved in a subset of the domain. Alternatively,

the problem can be addressed by storing only a small subset of forward wavefields and by

31



recomputing the in-between wavefields from the last checkpoint during the reverse time

loop. Checkpointing therefore provides the user with a possible trade-off between memory

usage and the number of time steps that have to be recomputed, which is captured in the

recomputation ratio. This parameter is given by the total number of time steps (including

recomputations) divided by the original number of forward time steps. In an important

series of publications, Griewank and Walther (2000) describe an algorithm for computing

the optimal trade-off between these quantities and show that the amount of required mem-

ory and the recomputation ratio for optimal checkpointing grow logarithmically with the

number of time steps nt (Table 1).

[Table 1 about here.]

For compressive imaging with on-the-fly Fourier transforms, the asymptotic behavior

of the required memory and additional computations is fundamentally different, as these

quantities grow as a function of the number of frequencies and not with the number of time

steps (Table 1). Both memory and computational cost grow linearly with the number of

frequencies and therefore have worse asymptotic behavior than optimal checkpointing, but

they are independent of the number of time steps. This leads us to the critical question

of how many frequencies nf are required for computing the gradient. One could argue

that for a fair comparison, the number of frequencies should be equal to the number of

computational time steps—i.e. the LS-RTM gradient should be computed as the sum over

all nf = nt frequencies, as this yields the same gradient as in the time-domain, where the

gradient is computed as a sum over all computational time steps. However, our numerical

experiments have shown that, in practice, we can get away with a much smaller number of

frequencies than time steps and still achieve satisfactory imaging results, if we cast LS-RTM
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as an `1-norm minimization problem. Furthermore, our examples show that the number of

frequencies influence the convergence of the algorithm and determine how many iterations

we need to run to obtain results of comparable quality. In general, computing the gradient

with a smaller subset of frequencies leads to stronger subsampling artifacts and requires a

more aggressive thresholding of the image’s curvelet coefficients to remove the noise, which

in turn increases the necessary number of iterations. However, a quantitative relationship

between the number of frequencies, the amount of noise and the required number of it-

erations is at this point not available and will require further investigations. A possible

reference point is the compressive sensing literature itself, which provides theoretical rela-

tionships between the sparsity of a signal, the amount of necessary measurements and the

reconstruction error. In particular, Donoho (2006) shows that the the number of required

measurements grows with O(ns log nl), where ns is the number of most important coeffi-

cients of the signal in some transform domain and nl is the signal length. For compressive

imaging with on-the-fly DFTs, this means that the number of necessary frequencies and

shots will depend on the sparsity of the unknown image and the number of gridpoints, but

not on the number of time steps.

In our analysis (Table 1), we assume that the number of grid points is fixed, but it is

worth mentioning that the methods have different asymptotic behaviors as a function of

the model size. Namely, assuming we have n grid points in each dimension, the boundary

reconstruction method scales with O(n) in 2D and O(n2) in 3D, while all other methods

scale with O(n2) in 2D and O(n3) in 3D. In practice, the asymptotic behavior of the

memory requirements can only serve as a guideline, as it describes its limiting behavior and

the question of which approach requires the least amount of memory, needs to be evaluated

on a case by case basis and depends on the specific number of dimensions, time steps and
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grid points. However, for a large enough number of time steps, optimal checkpointing will

eventually always require less memory than the saving the wavefields at the boundary.

The second important question is how much additional computations have to be carried

out for a given amount of memory, which will determine how fast the two approaches perform

in practice. In our first numerical example, we fix the available memory for both on-the-fly

DFTs and optimal checkpointing to 700 MB, which corresponds to 20 frequency-domain

wavefields or 40 time-domain checkpoints. The recomputation ratio with 40 checkpoints

for 14, 095 time steps is estimated by the Revolve library as 3.06, which means that ap-

proximately 2nt additional forward time steps have to be modeled for computing a gradient

(Griewank and Walther, 2000). For time-to-frequency conversion with on-the-fly DFTs, the

main additional computational cost results from multiplying the time-domain wavefield of

the current time step with the sine and cosine terms of equation 7. Multiple frequencies can

be computed in a single time loop, but result in an inner loop over the number of frequencies

at each time step. The additional computational cost for on-the-fly DFTs therefore depends

on the number of frequencies and how the DFT is implemented. Evaluating trigonometric

functions is generally expensive, but since the sine and cosine terms in the equation 7 are

not spatially varying, they can be precomputed and used for all grid points. Furthermore,

it is possible to compute the DFT on a coarser time grid than the computational time

axis (e.g. at the Nyquist rate), which reduces the number of floating point operations. For

optimal checkpointing, the computational cost of remodeling a given number time steps

depends on the type of wave equation and the order of the finite-difference (FD) stencil.

Modeling anisotropic or elastic wave equations is more expensive than solving acoustic wave

equations and the amount of floating point operations increases further for higher order FD

stencils. On the other hand, on-the-fly DFTs are independent of the discretization order
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(at least for a fixed grid spacing), but they also become more expensive for wave equations

with coupled wavefields, as the cost increases linearly with the number of DFTs that have

to be computed for each wavefield. In our numerical examples with the Sigsbee 2A and BP

Synthetic 2004 model, we found that computing the gradient for one source using optimal

checkpointing with log nt checkpoints, was timewise equivalent to computing a frequency-

domain gradient with approximately 70 to 100 frequencies. Since we only used 10 or 20

frequencies per shot record for our imaging examples with on-the-fly DFTs, we were able

to reduce the time-to-solution per gradient by a factor of 3 to 4 in comparison to optimal

checkpointing, with the same amount of computational resources.

Regarding the effects of sparsity-promoting minimization in the context of seismic imag-

ing, our numerical examples demonstrate that seismic images are generally well approxi-

mated by a small percentage of curvelet coefficients, but that not running the optimization

algorithm to convergence can harm the reconstruction quality. Similar to large-scale ma-

chine learning problems, seismic imaging is computationally too expensive to run optimiza-

tion algorithms to convergence and typically only a fixed number of data passes (i.e. PDE

solves) are possible. In this scenario, the reconstruction is sensitive to the choice of hyper-

parameters. Specifically, for the linearized Bregman method, a value of λ that is too large

removes too many coefficients from the image, while a value that is too small, allows noise

to re-enter the solution. Running the algorithm for a fixed number of data passes there-

fore does not guarantee that all coefficients such as weak reflectors or diffractors are able

to re-enter the solution. Our examples show that these effects are typically less severe in

parts of the image with good illumination, but that areas with poor illumination are more

sensitive to hyper-parameters. On the other hand, the areas of poor illumination are also

the parts of the images that exhibit the strongest subsampling artifacts and where the ben-
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efit of sparsity-promotion is the most apparent. Generally, making exact predictions about

the behavior of the approximation error is challenging, as non-linear image approximations

(i.e. keeping a fixed percentage of sorted coefficients), are not as well understood as linear

image approximations.

CONCLUSIONS

Least-squares reverse-time migration in the frequency domain avoids the problem of having

to store or recompute a large number of time-domain wavefields for computing gradients

with the adjoint-state method. Conventionally, the gradient has to be computed for each

frequency separately by solving the corresponding Helmholtz equation. On-the-fly Fourier

transforms offer the possibility to compute monochromatic wavefields with a time-domain

modeling code and to obtain an arbitrary number of frequencies within a single time-

stepping loop. Formulating least-squares migration as a sparsity-promoting minimization

problem allows us to work with small random subsets of shots and frequencies, thus making

it possible to perform least-squares imaging at a fraction of the cost of conventional LS-RTM,

using as few as two passes through the data set and without having to save or recompute

time-domain wavefields.

On-the-fly discrete Fourier transforms offer a fast and easy-to-implement alternative to

optimal checkpointing, in which the amount of memory and computational overhead does

not depend on the number of time steps, but on the number of frequencies for which the

gradient is computed. By varying the batch size of shots or frequencies, the method allows

to choose a trade-off between the amount of computations and memory versus the number

of iterations and the quality of the final result. Optimal checkpointing on the other hand,

provides a trade off between memory usage versus the amount of additional computations,
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as fewer checkpoints require more time steps that need to be recomputed. This makes

imaging with on-the-fly Fourier transforms interesting for applications where both storage

and CPU time are expensive, such as cloud computing, as we can trade image quality for

computational resources. Another advantageous scenario for our approach is the case where

only a small amount of computational resources are available for a long time, in which case

we can trade computational resources for a large number of iterations, where each iteration

only uses a small number of frequencies and is cheap in terms of both storage and compute.
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APPENDIX A

A comparison of reverse time-migration with the linearized inverse scattering imaging condi-

tion (ISIC) (Op’t Root et al., 2012; Whitmore and Crawley, 2012) and seismic imaging with

the acoustic impedance (Douma et al., 2010), reveals that the respective sensitivity kernels

at equivalent. The sensitivity kernel (i.e. the image) for the acoustic impedance KZ(x) is
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defined in Douma et al. (2010) as the sum of the sensitivity kernels of the spatially varying

bulk modulus κ and density ρ:

KZ(x) = Kκ(x) +Kρ(x), (A.1)

where the sensitivity kernel is defined as:

Kκ(x) = − 1

κ

nt∑
i=1

diag
(
u̇i
)
v̇i, (A.2)

and u̇i, v̇i are first time-derivatives of forward and adjoint wavefields. The sensitivity kernel

for the density is given by:

Kρ(x) =
1

ρ

nt∑
i=1

diag
(
∇ui

)
∇vi, (A.3)

where the second term denotes the pointwise products of the spatial derivatives of forward

and adjoint wavefields. Combining the two equations and substituting the bulk modules by

the velocity and density yields:

KZ(x) = −
nt∑
i=1

[
1

ρv2
diag

(
u̇i
)
v̇i −

1

ρ
diag

(
∇ui

)
∇vi

]
. (A.4)

A comparison of this expression with equation 9 reveals that the impedance kernel is equiv-

alent to the linearized inverse scattering imaging condition for ρ(x) = 1. This is indepen-

dent of whether we consider the frequency-domain formulation of ISIC (Op’t Root et al.,

2012) or its time-domain equivalent (Whitmore and Crawley, 2012). Multiplication of the

frequency-domain source wavefield with ω2 corresponds to a second time derivative of the

forward time-domain wavefield, or to first time derivatives of both forward and adjoint

wavefields.
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APPENDIX B

The linearized Bregman method used in our paper to solve the `1-minimization problem

in Equation 13 is a specialized case of a broader class of optimization problems for solving

convex, but potentially non-differentiable objective functions with (in-)equality constraints.

Namely, the linearized Bregman method is a simplification of the more general Bregman

iterative regularization method, and can be derived by linearizing the quadratic data fidelity

term in classic Bregman iterations (Yin et al., 2008).

The advantage of the linearized Bregman algorithm in comparison to the more general

Bregman iterative regularization or the augmented Lagrangian method, is that every it-

eration involves only two matrix-vector products; Jx and J>
(
dpred − dobs

)
. In the case

of seismic imaging, where J is the linearized Born scattering operator, these matrix-vector

products correspond precisely to linearized Born modeling (Step 4) and reverse-time mi-

gration (Step 5). The Born scattering operator for a full seismic survey is overdetermined,

i.e. there are (significantly) more observed data points than coefficients in the seismic image.

However, because working with the full Born scattering operator in each iteration is pro-

hibitively expensive, as it involves the demigration/migration of all shots, we can work with

random subsets of frequencies and shots (or simultaneous shots) (Lorenz et al., 2014b). This

has the effect of turning the overdetermined problem, into an underdetermined problem,

but, as demonstrated in Figure 16, also leads to a noisy image (variable z in the algorithm).

By using sparsity-promoting minimization, it is possible to remove the noise and recover

the true image in the subsequent iterations. However, in order for sparsity promotion to be

successful, it is crucial that the noise is in fact incoherent and does not contain any aliases.

By choosing the subsets of frequencies (and shots) randomly in each iteration, we guaran-
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Algorithm 2: Simplified version of the linearized Bregman algorithm from algorithm 1

without preconditioners.

1. Initialize x1 = 0, z1 = 0, q, λ, batch sizes n̂s � ns and n̂f � nf

2. for i = 1, ..., n

3. Select subset of shots and frequencies S = (∫shot, ∫freq), |∫shot| = n̂s, |∫freq| = n̂f

4. d̄pred
S = JSx

5. ḡS = J>S
(
d̄pred
S − d̄obs

S
)

6. zi+1 = zi − tiḡS

7. xi+1 = C>Sλ(Czi+1)

8. end

with Sλ(z) = sign(z) ·max(0, |z| − λ)

tee that the image contains only incoherent noise and no aliases or wrap-around effects, as

would be the case for periodic subsampling.

In step 7 of the algorithm, we compute the curvelet transform of the noisy image zi,

since we want to promote sparsity of the image in the curvelet domain. This is followed by

applying the soft-thresholding function to the noisy coefficients, which effectively sets all

coefficients smaller than λ to zero and shrinks the magnitude of the remaining values by λ.

In the early iterations, this sets not only the noise, but also coefficients of reflectors to zero.

During the subsequent iterations, the amplitude of the reflector coefficients is continuously

increased, such that toward the final iterations, the soft thresholding function removes

(ideally) only the noise. This is illustrated in Figure 17, which shows the variables z1 and

x1 in comparison to z20 and x20, i.e. both variables during the first and final iteration.

[Figure 17 about here.]
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APPENDIX C

The timings shown in Figure 8 were computed for the Sigsbee 2A velocity model with a

grid spacing of 7.62 m, which corresponds to 3, 201× 1, 201 grid points. The time stepping

interval according to the CFL condition is 0.71 ms, resulting in 14, 095 time steps for 10

seconds modeling time. The timings for the BP model (Figure #f9b) were computing using

a grid spacing of 6.25 m (10, 789× 1, 911 grid points) and 12 seconds modeling time with a

time stepping interval of 0.548 ms (21, 898 time steps).

All timings were computed with an Intel Xeon E5 v2 processors (2.8 GHz) with 10

cores and 128 GB RAM. Each shown time measurement is the smallest runtime of three

individual runs. The examples were computed using 10 threads, in which each thread is

pinned to a specific core (thread pinning).

The following software was used for the timings and numerical case studies: Julia

(v0.6.3), JUDI (v0.2.1:dft-paper), Python (v3.6.5), Devito (v3.2.0:dft-paper), Intel com-

piler (v16.0.3).
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17 After the first iteration of the linearized Bregman method, the dual variable

z (a) is a noisy version of the seismic image. The sparse primal variable

x (b) is obtained by soft-thresholding of the curvelet coefficients of (a). In

the early iterations, x contains only reflectors with the largest (curvelet)

coefficients, but the smaller coefficients re-enter the solution in the subsequent

iterations. After the final iteration, all reflectors have been restored in the

primal variable (d), while the dual variable (c) is still noisy (but less than
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Figure 1: Comparison of RTM with the zero-lag cross-correlation imaging condition (c)
versus the linearized inverse scattering imaging condition (d). The top row shows the smooth
migration velocity model (a) and the true image (b). Both results were computed for a
single shot record using 20 randomly chosen frequencies, which expectedly leads to crosstalk
(spectral leakage) in the image and one-sided illumination of the salt body. However, the
migration result with the cross-correlation imaging condition also suffers from strong low-
frequency backscattering artifacts, whereas the inverse-scattering imaging condition is able
to successfully suppress this energy.
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Figure 2: Comparisons of reverse-time migration in the time and frequency domain with on-
the-fly Fourier transforms and frequency subsampling. Figure (a) is the migration velocity
model and (b) is the true image. Figures (c) and (d) are the results of migrating a single shot
and 10 shots in the time domain. Figures (e) and (f) are the corresponding results in the
frequency domain with a subset of 20 randomly selected frequencies per shot. The migrated
shot record in the frequency domain for 20 randomly selected frequencies (e) shows a very
weak signal-to-noise ratio in comparison to its time-domain equivalent (c). However, when
stacking the migration results of 10 shots, where each migrated shot consists of a different
set of randomly selected frequencies, the reflectors stack coherently, while the subsampling
artifacts appear as incoherent noise (f).
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Figure 3: Sparse approximations of the true image in the image domain itself (left-hand
column) and the curvlet domain (right-hand column). Figures (a) and (b) are sparse approx-
imations using the largest 5 percent coefficients of the images in their respective domain and
figures (c) and (d) are approximations using the largest 1 percent coefficients. The seismic
image can be almost perfectly approximated by only 1 percent of the curvelet coefficients, as
the sorted coefficients decay faster by magnitude than the original image coefficients. This
makes the curvelet transform well suited for seismic imaging based on sparsity promotion.

58



Figure 4: Comparison of monochromatic wavefields computed with on-the-fly DFTs using
the full broadband source wavelet or the corresponding monochromatic source. The plots
show vertical (a) and horizontal (b) slices of a monochromatic 10 Hz wavefield from the
Sigsbee 2A model.
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Figure 5: Reverse-time migration with 20 randomly selected frequencies per shot (a), in
comparison to sparsity-promoting LS-RTM after 20 iterations, using 100 shots with 20
frequencies each per iteration (b). With only two passes through the full dataset, SPLS-
RTM is able to remove the noise from frequency randomization, as well as the imprint of
the source wavelet. The only post-processing that was applied to the results, is a linear
depth scaling.
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Figure 6: A close-up comparison of the images from time-domain RTM (a), time-domain
SPLS-RTM (b), frequency-domain RTM (c) and frequency-domain SPLS-RTM (d). While
RTM with on-the-fly Fourier transforms and randomized subset of frequencies leads to a
noisy image, sparsity-promoting LS-RTM is able to convert noise to coherent reflectors and
provide the same high-fidelity image as time-domain SPLS-RTM with optimal checkpoint-
ing. However, due to the limited number of iterations, not all energy is converted back into
coherent energy, as apparent by the slightly weaker diffractors in (d). A comparison be-
tween the additional computational cost of checkpointing and on-the-fly DFTs is provided
in the discussion.

61



Figure 7: Normalized `2-norm data misfit (a) and `2-norm reconstruction error (b) for
compressive LS-RTM in the time domain and with on-the-fly DFTs, using the linearized
Bregman method. For a smaller number of frequencies nf , more iterations have to be
performed to reduce the data misfit to a comparable level, but each iteration requires
less memory and computations. Keeping the product of the batch size of shots ns and
frequencies nf constant, yields results of comparable quality.
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Figure 8: Timings for computing the gradient of the full Sigsbee model for a single shot
record as a function of the number of frequencies and in comparison to optimal checkpointing
(leftmost bar).
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Figure 9: Close-up views of the top-of-salt region for different values of the regularization
parameter λ. Figure (a) is the true image, (b) is the result for λ = 0 (no sparsity-promotion),
(c) is the result for λ = 1e − 4 and (d) for λ = 4e − 4. Since the top-of-salt region is well
illuminated, the resulting image is not very sensitive to the choice of the thresholding
parameter and the effect of sparsity promotion is less apparent than in the sub-salt area.
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Figure 10: Close-up views of the sub-salt region of the true image (a) and results after 20
iterations of SPLS-RTM with the linearized Bregman method using λ = 0 (b), λ = 1e− 4
(c) and λ = 4e− 4 (d). Compared to the top-of-salt area, the benefit of sparisty-promotion
is greater, but the result is also more sensitive to the choice of λ.
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Figure 11: Trace comparisons of the results after 20 iterations of SPLS-RTM using time-
domain modeling and on-the-fly DFTs (a) and for different values of λ (b).
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Figure 12: Comparisons of frequency-domain RTM (a) and SPLS-RTM (b) using on-the-fly
Fourier transforms with 20 randomly selected frequencies per shot record. The SPLS-RTM
image is shown after 20 iterations of the linearized Bregman method, using 200 random
shots per iteration, which corresponds to three passes through the data.
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Figure 13: Close-up comparison of time-domain SPLS-RTM with optimal checkpointing
(a), frequency-domain RTM (b) and frequency-domain SPLS-RTM (c). The results for
frequency-domain RTM and SPLS-RTM were computed with 20 randomly selected fre-
quencies per shot record. A depth scaling was applied to the RTM image, to make up for
the lack of the depth-scaling pre-conditioner that was used for SPLS-RTM.
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Figure 14: Close-up views of the time-domain SPLS-RTM result (a, d), frequency-domain
RTM (b, e) and frequency-domain SPLS-RTM (c, f). The top row shows a shallow part
of the image with good illumination in comparison to the sub-salt area, which is affected
stronger by frequency subsampling (bottom row).
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Figure 15: Trace comparisons of the imaging results at various locations of the model. Plots
(a) and (b) are well-log plots of different depths at 10 km lateral position. The traces in
(c) were extracted at 40 km lateral position.
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Figure 16: Relative data misfit for the current subset of shots during SPLS-RTM with
on-the-fly DFTs (a) and timings for computing the gradient of the BP model for one shot
record as a function of the number of frequencies (b). The bar on the left-hand side denotes
the corresponding time-to-solution using optimal checkpointing.
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Figure 17: After the first iteration of the linearized Bregman method, the dual variable z
(a) is a noisy version of the seismic image. The sparse primal variable x (b) is obtained
by soft-thresholding of the curvelet coefficients of (a). In the early iterations, x contains
only reflectors with the largest (curvelet) coefficients, but the smaller coefficients re-enter
the solution in the subsequent iterations. After the final iteration, all reflectors have been
restored in the primal variable (d), while the dual variable (c) is still noisy (but less than
after the initial iteration).

72



LIST OF TABLES

1 Asymptotic behaviour of memory requirements and additional computational

cost for different strategies to compute adjoint-state gradients in the time

domain (TD) and frequency domain (FD). The total number of model grid

points in this analysis is assumed to be constant and is therefore excluded

from the analysis. However, while reconstructing wavefields from the bound-

ary scales linearly with the number of time steps, it requires substantially

less memory than saving the full wavefield (i.e. the asymptotic behavior has

a smaller constant). The analysis in this table holds for both 2D and 3D

domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

73



Strategy Memory Additional cost

TD: save all wavefields O(nt) -
TD: optimal checkpointing O(log nt) O(log nt)
TD: boundary reconstruction O(nt) O(nt)
FD: on-the-fly DFT O(nf ) O(nf )

Table 1: Asymptotic behaviour of memory requirements and additional computational cost
for different strategies to compute adjoint-state gradients in the time domain (TD) and
frequency domain (FD). The total number of model grid points in this analysis is assumed
to be constant and is therefore excluded from the analysis. However, while reconstructing
wavefields from the boundary scales linearly with the number of time steps, it requires
substantially less memory than saving the full wavefield (i.e. the asymptotic behavior has
a smaller constant). The analysis in this table holds for both 2D and 3D domains.
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