
A large-scale framework for symbolic implementations of

seismic inversion algorithms in Julia

Philipp A. Witte∗, Mathias Louboutin∗, Navjot Kukreja†, Fabio Luporini†,

Michael Lange‡, Gerard J. Gorman† and Felix J. Herrmann∗

∗Georgia Institute of Technology

School of Computational Science and Engineering

Cherry Emerson Bldg, Ferst Drive

Atlanta, GA, 30313, U.S.A.

†Imperial College London,

Department of Earth Science & Engineering

Royal School of Mines, Prince Consort Rd, Kensington

London, SW7 2BP, U.K.

‡European Centre for Medium-Range Weather Forecasts

Shinfield Rd, Reading, RG2 9AX, U.K.

(September 24, 2019)

GEO-2018-0174.R1

Running head: A symbolic seismic inversion framework

ABSTRACT

Writing software packages for seismic inversion is a very challenging task, since problems

such as full-waveform inversion or least-squares imaging are both algorithmically and com-

putationally demanding due to the large number of unknown parameters and the fact that

waves are propagated over many wavelengths. Software frameworks therefore need to com-

1



bine both versatility and performance to provide geophysicists with the means and flexibility

to implement complex algorithms that scale to exceedingly large 3D problems. Following

these principles, we introduce the Julia Devito Inversion framework, an open-source soft-

ware package in Julia for large-scale seismic modeling and inversion based on Devito, a

domain-specific language compiler for automatic code generation. The framework consists

of matrix-free linear operators for implementing seismic inversion algorithms that closely

resemble the mathematical notation, a flexible resilient parallelization and an interface to

Devito for generating optimized stencil code to solve the underlying wave equations. In

comparison to many manually optimized industry codes written in low-level languages, our

software is built on the idea of independent layers of abstractions and user interfaces with

symbolic operators. Through a series of numerical examples, we demonstrate that this al-

lows users to implement a series of increasingly complex algorithms for waveform inversion

and imaging as simple Julia scripts that scale to large-scale 3D problems. This illustrates,

that software based on the paradigms of abstract user interfaces and automatic code gen-

eration, makes it possible to manage both the complexity of algorithms and performance

optimizations, thus providing a high-performance research and production framework.

2



INTRODUCTION

Seismic imaging and parameter estimation are a challenging class of inverse problems, due

to their large computational cost, algorithmic complexity and elaborate implementation

requirements. Full-waveform inversion (FWI) (Tarantola, 1984; Virieux and Operto, 2009)

or least-squares reverse-time migration (LS-RTM) (Nemeth et al., 1999; Tang and Biondi,

2009) involve numerical modeling of the wave equation in large two- and three-dimensional

domains over many wavelengths and source locations as part of iterative algorithms and

require codes that scale on large high-performance computing (HPC) clusters or on the

cloud. Furthermore, seismic inverse problems are difficult to solve from a mathematical

point of view as well, because they are often ill-conditioned and plagued by parasitic local

minima (Symes, 2017).

Software packages for seismic modeling and inversion, therefore, need to meet the diffi-

cult requirement of providing both performance and abstractions for implementing complex

inversion algorithms. Traditionally, production-level software frameworks in the oil and gas

industry are written entirely in low-level languages such as C or Fortran, with a large

amount of manual performance optimizations, while academic research frameworks such as

Madagascar (Fomel et al., 2013) often emphasize abstractions and reproducibility, rather

than performance. As a result, the uptake of newly developed imaging and inversion al-

gorithms by the oil and gas industry is generally slow, as it oftentimes takes programmers

several months or years to incorporate new techniques into existing inversion codes. This

problem is often caused by a disadvantageous structuring of the code, in which input/output

(I/O) routines, wave equation solvers, parallelization and optimization algorithms are all

intermixed and difficult to modify independently. Therefore, inherently simple tasks such

3



as swapping a line search or modifying the objective function, become complex and time-

consuming operations. Furthermore, manual performance optimizations of wave equation

solvers highly complicate the task of implementing correct adjoint codes at a later point

in time, as would, for example, be required for least-squares migration. Finally, codes are

often optimized for a specific hardware and are not portable to new platforms, making it

difficult to deploy existing software to new computer architectures or the cloud.

Some of these issues are addressed in existing software packages for seismic modeling

and inversion. One of the earliest seismic frameworks that introduces abstractions for pro-

totyping wave equations for seismic modeling and inversion; thus enabling the reuse of code,

is iWave++ (Symes and Dong, 2010; Symes et al., 2011). It combines a stand-alone pack-

age for solving time-domain wave equations called iWave (Terentyev, 2009), with the Rice

Vector Library (RVL) (Padula et al., 2009), an object-oriented C++ library that provides

abstractions for casting (seismic) inverse problems into an abstract linear algebra and op-

timization framework. More recent frameworks such as jInv (Ruthotto et al., 2016) and

Waveform (Da Silva and Herrmann, 2017), follow similar abstractions and try to overcome

the trade-off between expressiveness and performance by providing an application program-

ming interface (API) in higher-level dynamic programming languages such as MATLAB or

Julia, while relying on manually optimized low-level code or libraries for solving the under-

lying partial differential equations (PDEs). Another trend that can be observed in both

academic and industry codes, is an increase in adopting more specialized low-level lan-

guages for accelerators (graphical processing units), such as CUDA (Nickolls et al., 2008)

and OpenCL (Tompson and Schlachter, 2012). Some of the existing seismic frameworks

that fall in the broader category of (hand-tuned) modeling codes in low-level languages

include the JavaSeis processing library (Hassanzadeh and Mosher, 1997), the RTM/FWI

4



framework SAVA (Koehn, 2017), a modeling and migration package by Thorbecke (2017)

and a finite-element inversion framework for global seismology by Krischer et al. (2015).

The seismic community is not alone with the task of writing software that is both fast

and highly optimized, but at the same time provides the means for fast development of

mathematically complex algorithms. The scientific community has recently seen the rise

of deep learning, a field that faces many of the same computational challenges as seismic

inverse problems. Similar to FWI or LS-RTM, machine learning problems involve large

data sets, complex algorithms and computationally expensive operations. In fact, we can

think of a time stepping code as a feed-forward convolutional neural network and both fields

use backpropagation for numerical optimization. However, in contrast to seismic inversion,

uptake of new algorithms into commercial applications is extremely fast, with many of

the algorithms used by major companies developed within the last months. In parts, this

development is due to the wide availability of domain-specific languages (DSLs) for deep

learning, such as Tensorflow (Abadi et al., 2016) or PyTorch (Paszke et al., 2017), used in

both academia and industry. Compared to classic programming languages, DSLs offer a

limited amount of functionality in exchange for domain-specific abstractions that increase

productivity, while the low-level implementation details and performance optimizations are

handled by computer engineers and HPC specialists. Apart from machine learning, DSLs

have become popular in the field of PDEs as well, as they decouple the theoretical aspects of

PDEs from the underlying, often tedious implementation of finite-difference (FD) or finite-

element stencils. Two recent very popular packages for finite element modeling (FEM) that

utilize DSLs are Firedrake (Rathgeber et al., 2015) and FEniCS (Logg et al., 2012).

Based on these paradigms of domain-specific abstractions and automatic performance

optimizations, we introduce a framework for seismic modeling and inversion in Julia. Bor-

5



rowing ideas from machine learning frameworks and recent trends in software engineering,

we develop a framework for expressing seismic PDE-constrained optimization problems

like FWI and LS-RTM in terms of abstract linear algebra expressions within a high-level

language, while utilizing a DSL called Devito (Lange et al., 2016; Kukreja et al., 2016;

Louboutin et al., 2018a; Luporini et al., 2018) to symbolically express the underlying PDEs

and to generate fast and parallel code for solving them. Devito is a DSL embedded in

Python and specifically designed for finite differences in the context of seismic modeling

and inversion and offers a portable framework for automated finite-difference code genera-

tion from PDEs. It allows the description of arbitrary time-dependent PDEs as symbolic

Python expressions (Joyner et al., 2012), from which optimized C code implementing a

full time-stepping modeling loop is automatically generated, compiled and executed from

the application environment. Here, we build upon Devito and introduce a higher-level Ju-

lia package, JUDI (JUlia Devito Inversion), to provide the means for easy development

and prototyping of algorithms for seismic inverse problems on an industry scale, leading

to higher productivity amongst geoscientists. As such, JUDI is the first academic seismic

software framework resulting from a joint effort between geophysicists, mathematicians and

HPC/compiler specialists (Luporini et al., 2016), which combines advances in DSLs and

compiler technologies with domain-specific requirements of geophysicists.

In the following section, we present the overall structure of JUDI and discuss its design

principles and how they facilitate managing the complexity of seismic inversion frameworks.

Using a series of numerical examples, we demonstrate that our approach leads to software

that is highly flexible and allows implementing algorithms for FWI and LS-RTM in relatively

few lines of Julia code, while providing better performance than many manually tuned codes

in low-level languages.

6



SOFTWARE STRUCTURE AND IMPLEMENTATION

The Julia Devito Inversion framework is primarily designed as a research and development

framework for seismic inversion, that allows us to quickly translate mathematical concepts

to Julia scripts that scale to large-scale 2D and 3D problems, making it suitable for tech-

nology validation and deployment at a production level. The software is open source and

available as a Julia package on Github (Witte et al., 2017). The framework is implemented

in Julia (Bezanson et al., 2012, 2017), a high-level programming language designed for nu-

merical computing, which offers optional typing and function overloading based on input

argument types (multiple dispatch); thus providing a natural framework for abstractions.

Julia also offers direct calls of Python functions without any glue code, making it convenient

to interface Devito. JUDI is built around two main applications: nonlinear inverse prob-

lems, namely full-waveform inversion, and linear least-squares problems, such as LS-RTM.

The complexity of geophysical inversion frameworks arises from both the computational

performance optimizations of the underlying PDE solver, required for running industry-

scale problems, as well as from the need of managing extremely large amounts of data and

sophisticated inversion algorithms. To break this complexity up into manageable parts,

JUDI is built on the idea of multiple layers of abstractions and on keeping a clear separa-

tion between problem-dependent abstractions, parallelization and the wave equation solver

(Figure 1). Each abstraction layer is designed to deal with one aspect of complexity:

1. Matrix-free linear operators and out-of-core data containers to address algorithmic

complexity of inversion algorithms that allow users to write code that closely resembles

the underlying mathematics and without having to worry about meta data, such as

seismic header information.

7



2. A flexible high-level parallelization with built-in resilience to hardware failures that

allows users to modify and adapt the parallelization to both algorithms (static or

dynamic resource allocation) and the computational environment (cluster or cloud).

3. Symbolic definitions of forward and adjoint wave equations with Devito and automatic

code generation to address the complexity of implementing correct forward-adjoint

pairs of PDE solvers and to avoid manual performance optimizations.

Thus, the novelty of this framework is a full vertical integration of modern compiler

technologies and automatic code generation into a geophysical inversion framework with

problem-specific abstractions for FWI and LS-RTM in a high-level programming language,

that allows researchers to use these tools both interactively during development and in

batch mode for large-scale 3D problems.

[Figure 1 about here.]

Abstractions for seismic modeling and inversion

Matrix-free linear operators and vector-like seismic data containers form the first layer of

JUDI, as they enable the user to express seismic modeling operations or gradients and

objective functions as matrix-vector products. This provides a natural connection to linear

algebra and optimization, thus making it easier for geoscientists to bridge the gap between

theory and implementation. Many seismic operations like modeling/time-reverse modeling,

demigration/migration or convolution/correlation can be interpreted as forward/adjoint

pairs of linear operators (Claerbout, 1992). However, rather than explicitly forming these

matrices, which quickly becomes infeasible for any realistically sized problems, the actions

8



of these matrices can be implemented as functions. Matrix-free linear operators look and

behave like regular matrices, i.e., they can be multiplied with vectors or transposed, but

the dense or sparse matrices are never explicitly formed and, instead, the operators contain

functions that represent their actions on vectors. The concept is popular in computer science

and can be found, amongst others, in PETSc (Balay et al., 2016), Trilinos (Heroux et al.,

2005), or Matlab libraries such as Sparco (van den Berg et al., 2009) and SPOT (van den

Berg and Friedlander, 2013). Seismic modeling and inversion frameworks that use matrix-

free linear operators and data containers are RVL/iWave++ (Padula et al., 2009; Symes

and Dong, 2010) or the frequency-domain framework Waveform (Da Silva and Herrmann,

2017).

In the mathematical notation in which we express seismic inverse problems like FWI

or LS-RTM, seismic data is typically denoted as a vector, while in practice, seismic data

is a multi-dimensional data volume with associated meta data that contains coordinates

of sources and receivers, as well as sampling rates and recording times. As pointed out in

Padula et al. (2009), mixing optimization and linear algebra algorithms with management of

the dimensions and meta data of the physical observations makes codes overly complex and

hard to maintain and develop. In RVL, physical data is therefore encapsulated in an abstract

vector class that represents a Hilbert space on which norms and dot products are defined for

a certain data type, such as seismic data. Optimization algorithms can then be implemented

for these coordinate-free data types. In JUDI, we build upon this approach of RVL and

iWave++ with an implementation of an abstract seismic data type called judiVector that

looks and behaves like a regular Julia vector, but contains the seismic data in its original

dimensions, together with its header information. To be able to use the data container

like regular (coordinate-free) vectors, we overload common base functions and arithmetic

9



operations for the judiVector type, such as size functions, norms, dot products, addition,

subtraction, multiplication with scalars, transposition or concatenation. As an extension

to this concept from RVL, we combine our data class with a powerful SEG-Y reader for

operating on industry size out-of-core data sets. For reading and writing SEG-Y data, JUDI

uses the SeisIO.jl package (Lensink, 2017), which includes the possibility to scan large data

sets of multiple terabytes and create lookup tables with a summary of SEG-Y headers and

byte locations of data blocks (a data block being for example a single shot record). Blocks or

shot records can then be accessed directly through their byte location within the underlying

SEG-Y file, making it possible to quickly access data independently of the file size. The

judiVector class is built around these functionalities and can be used as an out-of-core

data container, in which only the lookup tables are stored in memory, rather than the full

data volume, thus making it possible to work with industry-scale data sets.

Apart from the judiVector class for seismic data, JUDI includes matrix-free linear op-

erators for solving (acoustic) wave equations, linearized wave equations and source/receiver

projection operators. Solving a wave equation, where a seismic source q is injected into the

subsurface and the wavefields are restricted to the receiver locations, can be expressed as the

multiplication of matrices and vectors: d=Pr*A inv*adjoint(Ps)*q. The operator A inv

denotes the inverse of the discretized wave equation for a given model (i.e.; its solution

for a given right-hand side), Ps and Pr represent source/receiver projection operators and

d is a judiVector containing the modeled shot record. The function adjoint() denotes

the matrix transpose. The source/receiver projection operators are purely symbolic and do

not require access to full wavefields. This means, rather than computing a full wavefield

and sampling it at the receiver locations, our modeling expression generates code with a

time-stepping loop, in which the shot record d is generated on-the-fly, without the need to

10



store the wavefield of the whole domain prior to restricting it to the receivers. Accessing

full wavefields is generally possible by omitting the receiver projection operator, but this

functionality is only viable if the necessary amount of memory to store full wavefields is

available. Solutions of adjoint (time-reversed) wave equations can be obtained by trans-

posing the modeling operator A inv and by optionally restricting the solution to the source

or receiver locations (Listing 1). Furthermore, JUDI enables users to create a linearized

Born modeling operator J (Jacobian) from a wave equation operator, which can be used

for demigration and reverse-time migration. It is important to note, that data containers

and matrix-free linear operators provide only the user API for accessing data and solutions

of PDEs, but are completely separated from the actual definitions of forward and adjoint

wave equations themselves.

Parallelization

The matrix-free linear operators of JUDI act as wrappers around functions that contain

implementations of the corresponding forward and adjoint matrix-vector products. In case

of our previously introduced operators for solving wave equations (multiplications with

A inv) and for linearized Born modeling (multiplications with J), this is a function called

time modeling, which forms the second abstract layer of our software framework (Fig-

ure 1). When the modeling operators and right-hand-sides represent multiple experiments,

an individual wave equation has to be solved for each source location. The time modeling

function therefore has a serial and a parallel function instance, meaning that there exist

two functions named time modeling, which only differ in how they are called (multiple

dispatch, Bezanson et al. (2017)). When called for more than one source/shot record, the

parallel function instance of time modeling is executed, which distributes the source lo-

11



1 # Forward and adjoint (time -reversal) modeling

2 d_pred = Pr*A_inv*adjoint(Ps)*q

3 q_ad = Ps*adjoint(A_inv)*adjoint(Pr)*( d_pred - d_obs)

4

5 # Migration/demigration

6 J = judiJacobian(Pr*A_inv*adjoint(Ps),q) # linearize modeling ←↩

operator

7 d_lin = J*dm

8 rtm = adjoint(J)*d_lin

Listing 1: Matrix-free linear operators for nonlinear forward modeling, linearized modeling

and source/receiver projections. The vector d pred is a modeled seismic shot record,

while q ad is the solution of the corresponding adjoint wave equation, restricted to the

source location. The data residual between the predicted and observed data d obs acts as

the adjoint source and is injected at the receiver locations, as denoted by adjoint(Pr).

Multiplication of the Born modeling operator J with a model perturbation dm generates a

linearized shot record d lin, while its adjoint migrates the data and returns an RTM image.

12



cations and data amongst the available computational resources and then calls the serial

function instance with the interface to the wave equation solver (Figure 1). The complete

separation of the code into parallel and serial parts makes the complexity manageable and

allows for easy adjustment of the parallelization to the available hardware and without

having to rewrite major parts of the framework.

Julia has it own built-in parallel framework for shared and distributed memory, which is

implemented in Julia itself. Parallelization is based on message-passing and features many

high-level expressions that make incorporation of parallel techniques fairly simple. Gener-

ally, Julia only requires management of the master process, allowing for a clearer separation

of serial and parallel code parts, since no communication statements are necessary in the

serial modeling functions. For seismic modeling and inversion frameworks, the outermost

parallelization is typically the distribution of sources or shots, since the objective functions

often exhibit a sum structure over source locations. Solving PDEs for different source loca-

tions on multiple workers is embarrassingly parallel, since no communication is required to

model wave propagation for an individual seismic experiment, as long as the model fits on

a single node, which is a reasonable assumption given current hardware configurations.

To avoid unbalanced workloads, dynamic scheduling is used to distribute the sources to

the resources in the parallel pool of workers – i.e., parallel instances distributed over different

computational nodes. This means source locations are assigned to workers dynamically, as

they become available during execution time, which prevents resources from sitting idle.

Another important feature of the Julia parallel framework is that it is relatively easy to

guarantee resilience in case of hardware failures. Since large-scale seismic inverse problems

involve solving a large number of PDEs (up to 10, 000 or more shot positions) as part

of iterative algorithms, where programs run for several days or weeks, it is not unlikely

13



that certain workers fail during execution time. As an alternative to saving checkpoints

and restarting jobs after a crash, Julia provides functionalities for making user functions

resilient to (a limited number) of hardware failures. In case of a worker exception, the PDE

that was solved on that worker is resent to a different worker, while the results from the

other workers remain unaffected and the program is not interrupted.

Interface to the wave equation solver: Devito

The final abstraction layer of our software framework (Figure 1) is the serial instance of the

time modeling function, which contains the Julia interface to Devito (Lange et al., 2016).

As described in the introduction, Devito is a Python DSL for symbolic representations of

PDEs, from which optimized finite-difference stencil code is automatically generated during

run time and called directly from Julia. The main benefits of using Devito for solving

the wave equations, rather than implementing the wave equation solvers directly in Julia

itself, are significant performance improvements in speed and memory usage, as well as

faster code development. The symbolic objects in Devito allow discretizing PDEs in a way

that closely resembles the underlying mathematics and are completely independent of the

space order of the finite-difference stencils, making it possible to experiment with different

discretizations without having to reimplement long stencil code by hand – a process that

is known to be error prone. The Devito compiler transforms the symbolic specification to

optimize the number of floating point operations (FLOP) as well as the memory usage,

leading to fast multi-threaded C code, which performs in the range of peak performance of

processors (Williams et al., 2009; Louboutin et al., 2017a).

This section only serves as a short summary of Devito’s main features, as Devito’s API

14



and compiler are presented in separate journal articles (Louboutin et al., 2018a; Luporini

et al., 2018). With Devito, finite-difference formulations of wave equations only need a

few lines of symbolic Python. For example, the acoustic wave equation can be expressed as

pde = model.m * u.dt2 - u.laplace, where model and u are symbolic Devito objects for

velocities and wavefields. This expression can then be automatically rearranged to obtain

a stencil for updating a wavefield within a time-stepping loop (see Appendix A for details).

Initial and boundary conditions can be specified symbolically in a similar fashion, while

infinite modeling domains are simulated through absorbing boundary conditions (ABCs).

A detailed walk-through of setting up forward and adjoint wave equation with Devito in

the context of FWI is presented in a three-part tutorial series in the Leading Edge (TLE)

(Louboutin et al., 2017b, 2018b; Witte et al., 2018). When we want to solve a forward or

adjoint wave equation, e.g., by running d = J*dm in Julia, C code with a time-stepping loop

is automatically created from the symbolic Devito expression. The translation of the sym-

bolic PDE representation into optimized stencil code is performed by the Devito compiler as

a series of passes. Such passes include symbolic optimization to reduce the operation count

(via the so called Devito Symbolic Engine, or DSE), loop scheduling (i.e., construction of

loop nests enclosing the symbolic expressions), and loop optimization (via the Devito Loop

Engine, or DLE). Thus, while the DSE captures common sub-expressions and redundant

factors, i.e., it only sees expressions, the DLE targets the lower-level loop optimization and

applies standard techniques such as blocking, as well as OpenMP parallelization (Dagum

and Menon, 1998) and vectorization.

While in principle Devito allows discretizations of a large number of arbitrary PDEs,

the current release of JUDI comes with implementations of the acoustic wave equation

as described in the aforementioned TLE tutorial series (Louboutin et al., 2017b, 2018b).

15



The symbolic expressions for forward and adjoint wave equations as well as Jacobians, are

defined in a separate Python module in the JUDI source code and are interfaced from

Julia with the PyCall package (Johnson, 2017). The JUDI interface gathers all necessary

data and modeling information from the matrix-free linear operators and interpolates source

functions and shot records to the computational time axis. Arguments are passed to Python

as references, avoiding data copies of wavefields; thus creating little or no memory overhead.

Devito then generates optimized C code from the symbolic expressions and compiles and

runs it.

Unit tests

Unit testing is an essential part of any software framework, but is especially crucial for

physical modeling and inversion codes that rely on a correct discretization of PDEs and

accurate implementations of objective functions and gradients. Using wrongly implemented

operators for linear solvers or optimization routines provides in the general case no guarantee

for convergence and can potentially lead to false results (Zeng and Gullberg, 2000). For

large-scale inversion codes like seismic software frameworks, code maintenance and unit

testing is exceedingly challenging task, since codes initially written by geophysicists are often

optimized by separate HPC experts, without careful considerations of correctly implemented

physics, adjoints and gradients. With JUDI, we aim at improving code maintainability and

testing through a modular code design with independent layers of abstractions, making it

possible to individually test parts of JUDI, Devito and the relative interfaces. Unit tests

in JUDI include comparisons of PDE solutions to reference codes, adjoint tests for linear

operators, as well as gradient tests for non-linear objective functions (Appendix B).

16



NUMERICAL CASE STUDIES

We will now demonstrate how our framework can be used to address various formulations

of linear and nonlinear wave-equation based time-domain inverse problems. With the help

of a variety of concrete examples, we underline what sets our framework apart from other

seismic software frameworks:

• the possibility to implement FWI and LS-RTM algorithms in a few lines of Julia code

and to scale algorithms to large 3D problems with over 100 million unknown model

parameters;

• matrix-free linear operators and out-of-core data containers that allow working with

industry-sized data sets;

• full control over underlying PDEs and discretization orders through simple symbolic

definitions of wave equations;

• automatic generation of highly optimized C code for solving wave equations close to

processor peak performance.

We will start by showing how our software allows us to quickly implement different

misfit functions for waveform inversion and how those misfit functions can be integrated into

simple optimization routines or passed to sophisticated third party optimization libraries

for gradient-based optimization such as minConf (Schmidt et al., 2009). In the second part

of this section, we address least-squares migration and demonstrate how data containers

and matrix-free operators from our software framework allow us to formulate linear solvers

and optimization algorithms that closely follow the underlying mathematics. To showcase

the flexibility of JUDI, our examples include an implementation of a parallel optimization

17



algorithm (elastic average stochastic gradient descent) and an implementation of LS-RTM

with on-the-fly discrete Fourier transforms. We presume that the reader is familiar with

the basic concepts of wave-equation based inversion and refer to Virieux and Operto (2009)

for a theoretical overview of FWI. Furthermore, a detailled tutorial on implementing FWI

with Devito and JUDI is presented in Louboutin et al. (2017b) and Witte et al. (2018).

Full-waveform inversion

Our first numerical case study demonstrates how to implement a basic FWI example with

(stochastic) gradient descent (Bottou, 2010) and simple bound constraints on the velocity

model. In principle, JUDI allows implementing a wide range of FWI formulations, such

as extended search space methods like waveform reconstruction inversion (van Leeuwen

and Herrmann, 2013) or FWI via the matched source extension (Huang et al., 2017), by

modifying the underlying PDEs in Python. For the sake of simplicity, we limit our examples

to FWI with the adjoint state method, i.e., to objective functions of the following form:

minimize
m

φ
[
PrA(m)−1P>s q− dobs

]
, (1)

where φ(·) is a (smooth) misfit function and typically chosen to be the least-squares misfit

φ = 1
2‖ · ‖

2. The operators Ps and Pr denote source and receiver projections as introduced

earlier and A(m) represents the discretized, time-dependent wave equation, which is a

function of unknown medium parameters collected in the vector m, such as the velocity

or squared slowness. The vector dobs represents the (vectorized) observed shot records

and q denotes the seismic sources. The gradient of equation 1 with respect to the model

parameters m is computed using the adjoint state method (Tarantola, 1984; Plessix, 2006),

also known as a reduced space method in the optimization literature (e.g., Cervantes et al.,

18



2000) and corresponds to applying the adjoint Jacobian (migration operator) to the residual

between predicted and observed data.

With JUDI, we can implement this FWI objective function as a separate Julia function

called fwi misfit, which takes the current model, the source and the observed data as

input arguments. The function generates the predicted data for the current model and

then calculates its misfit with the observed data, as well as the gradient. All necessary

information for setting up the forward modeling operator and the Jacobian are entirely

inferred from the input arguments. While this function is serial in itself, i.e., it can be called

from the main loop of a minimization routine, the data residual and gradient are calculated

in parallel, since all modeling operators are implicitly parallel. Since fwi misfit is a stand-

alone function, it can be called both within a self-implemented optimization scheme or

from third-party optimization libraries, which typically require input functions of this type.

Listing 2 shows an example of such an objective function, in which we calculate either the

standard `2-misfit φ(x) = 1
2‖x‖

2
2 or the pseudo-Huber misfit φ(x) = ε2

(√
1 + x2/ε2 − 1

)
(Guitton and Symes, 2003; van Leeuwen et al., 2013). The vector x denotes the data misfit,

which is in our case the difference between predicted and observed shot records and ε is a

control parameter that determines the slope of the misfit function.

Setting up the FWI objective function in the specified way and using JUDI’s matrix-free

linear operators, has the advantage that calculating the misfit and gradient is completely

decoupled from the rest of the software and can be set up independently of the optimiza-

tion algorithm or the PDE solver. This means, changing the underlying wave equation to

include more realistic physics or modifying the parallelization requires none (or very minor)

adjustments of the functions for misfits and gradients, thus separating the set up of PDEs

and optimization routines.

19



1 function fwi_misfit(model ::Model , q::judiVector , d:: judiVector; obj←↩

="L2")

2

3 # Set up operators

4 nt = get_computational_nt(q.geometry , d.geometry , model)

5 info = Info(prod(model.n), d.nsrc , nt)

6 M = judiModeling(info , model , q.geometry , d.geometry)

7 J = judiJacobian(M, q)

8

9 # Data residual , function value and gradient

10 if misfit =="L2"

11 r = M*q - d

12 f = .5f0*norm(r)^2

13 g = adjoint(J)*r

14 elseif misfit ==" huber"

15 r = M*q - d

16 f = eps^2* sqrt(1 + dot(r,r)/eps^2) - eps^2 # e.g. eps=1

17 g = adjoint(J)*r/sqrt(1 + dot(r,r)/eps^2)

18 end

19 return f,g

20 end

Listing 2: Julia function for calculating the FWI `2- and pseudo-Huber misfit for a current

estimate of the model, a given source q and observed data d. The matrix M is a combined

operator, implicitly containing source/receiver projections. Remark: The function shown

here is simplified for demonstration purposes. A more efficient version without recomputing

the gradient for line searches and without recomputing wavefields for the gradient is supplied

in the current JUDI release.

20



With our objective function in place, we can now implement a simple stochastic gradient

descent algorithm in Julia (Listing 3). The first step in the minimization loop is to select

a random subset of sources and shots, for which the gradient and objective function value

will be calculated. This stochastic approach is commonly used in other fields that involve

massive amounts of data and expensive evaluations of objective functions and gradients,

such as training neural networks (Bottou, 2010). We then pass the subset of sources and

data to the misfit function to calculate the gradient and objective function value for the

current subset of shots. This is followed by a line search to determine the step size for

updating the model. While the effectiveness of line searches for stochastic algorithms is

debated by optimizers (Tan et al., 2016), empirical evidence suggests that an approximate

line search can be employed successfully in applications in which only a very small number

of iterations is affordable. The final step is applying the bound constraints to the velocity

model to prevent velocities from becoming too small or large.

To verify that this very simple algorithm with our symbolic operators can in fact be used

to successfully run FWI, we test our optimization algorithm on the 2D Overthrust model

and a small data set with 97 shot records, 6 kilometers maximum offset and 3 seconds

recording time. The source wavelet has a central frequency of 8 Hertz. We generate an

initial model by smoothing the true model and then perform 20 iterations of the stochastic

gradient descent algorithm as shown in Listing 3, with 20 randomly selected shots per

iteration. We use bound constraints to restrict the velocity to an interval between 1500 and

6500 m/s, while keeping the water velocity fixed at 1500 m/s. The result after 20 iterations

is shown in Figure 2. To make this first example easily reproducible, we use a 2D model,

but our out-of-core data containers and Devito’s code generation, which includes optimal

checkpointing (Griewank and Walther, 2000; Symes, 2007; Kukreja et al., 2018), enables us

21



1 # Main loop

2 for j=1: maxiter

3

4 # FWI objective function value and gradient

5 i = randperm(dobs.nsrc)[1: batchsize]

6 f, g = fwi_misfit(model , q[i], dobs[i])

7

8 # line search

9 step = backtracking_linesearch(vec(model0.m), g; varargs ...)

10

11 # update model and bound projection

12 model.m = proj(model.m + step)

13

14 # termination criteria

15 if f <= fTerm || norm(g) <= gTerm

16 break

17 end

18 end

Listing 3: FWI with stochastic gradient descent using the previously defined fwi misfit

function to calculate the function value and gradient for the current subset of shots and

sources. The gradient calculation is followed by a line search and a projection of the updated

model onto the feasible set of velocities.

22



to run the same script on large-scale 3D models, as we will demonstrate in the subsequent

example.

[Figure 2 about here.]

As an alternative to implementing our own optimization routine, we can use the fwi misfit

function and interface a broad variety of Julia libraries for local gradient-based optimiza-

tion, giving users access to more advanced optimization algorithms such as Quasi-Newton

methods or spectral projected gradient (SPG) algorithms. For this purpose, it is typically

necessary to write a small wrapper around the fwi misfit function, which is customized to

the individual optimization library. For our numerical example, we interface our Julia im-

plementation of the minConf optimization library (Schmidt et al., 2009), which is included

in our software. The library works with objective functions that take the current model

estimate as the only input argument and requires that the function value and gradient are

returned as a tuple. Listing 4 demonstrates how to wrap the misfit function into an outer

objective function that can be passed to minConf. Even though we hand the FWI objective

function to a library over which we hold no control, the outer objective function still allows

us to work with randomized subsets of shots or to access and modify the gradient. In this

case, we simply set the gradient in the water column to zero, but applying any type of

scaling or filtering would be possible as well. We can also define additional projection op-

erators, e.g., for enforcing sparsity, low-rank structure or monotonically increasing velocity

with depth and hand them to the optimization library.

Even though the minConf library that we use in our numerical example is not primarily

designed for large-scale applications, we can use it to run large-scale 3D FWI. The most

computationally intensive part is evaluating the fwi misfit function, which is parallelized

23



1 # optimization parameters

2 fevals = 15

3 batchsize = 1080

4

5 # objective function for minConf library

6 function objective_function(x)

7

8 # set model to current estimate

9 model.m = reshape(x, model.n);

10

11 # fwi function value and gradient_test

12 i = randperm(dobs.nsrc)[1: batchsize]

13 f, g = fwi_misfit(model , q[i], dobs[i])

14

15 # reset gradient in water column to 0.

16 g = reshape(g, model.n); g[:, :, 1:21] .= 0f0

17 return f, vec(g)

18 end

19

20 # FWI with spectral projected gradient

21 proj(x) = median ([mmin x mmax], dims =2)

22 x, f_final = minConf_SPG(objective_function , vec(model.m), proj)

Listing 4: Wrapper around the fwi misfit function for interfacing the minConf

optimization library. MinConf requires objective functions with the current model vector as

the only input argument and the function value and gradient as output arguments. Inside

our wrapper function, we once again select a randomized subset of shots and reset the

gradient in the water column to zero.

24



and uses Devito to generate highly optimized C code at run time, while the optimization

library in principle does not care how the objective function is evaluated. To demonstrate

that our framework scales, we perform FWI on the 3D Overthrust model using the spectral

projected gradient algorithm from the minConf library. Our test data set (1.2 TB) consists

of over 9400 shot records with 8 km maximum offset and 3 seconds recording time and

was generated with an 8 Hertz Ricker wavelet. We use the full 3D Overthrust model

with a 25 m grid spacing, which corresponds to 801 × 801 × 207 grid points and a total

of over 130 million unknown parameters. Once again, we use a randomly selected subset

of shots and sources in each iteration (in this case 1080) and we allow for a maximum

number of 15 objective function evaluations. Since the forward wavefields are too large to

store in memory, we enable optimal checkpointing for recomputing the wavefields during

the gradient calculation (Griewank and Walther, 2000; Symes, 2007; Kukreja et al., 2018).

A depth slice of the final result is shown in Figure 3. Apart from the minConf library,

we tested interfacing the NLopt library (Johnson, 2017), which features, amongst others,

limited-memory Quasi-Newton methods.

[Figure 3 about here.]

Least-squares reverse-time migration

The second class of seismic inverse problems that JUDI is designed for are linear least-

squares problems such as LS-RTM. Like full-waveform inversion, LS-RTM is a computa-

tionally challenging problem for large-scale data sets, especially for high frequencies, and

forms a broad research topic in the seismic community (e.g., Tang and Biondi, 2009; Dong

et al., 2012). JUDI, with its matrix-free modeling operators and data containers, is de-

25



signed to easily translate algorithms into runnable Julia code that scales to realistic models

through its automatic code generation.

Once more, we will start by showing how to implement a very basic version of LS-RTM

with gradient descent and then demonstrate how the code can be modified to more advanced

algorithms like elastic average SGD or LS-RTM with on-the-fly Fourier transforms. For our

numerical case study, we consider the standard LS-RTM objective function with left- and

right-hand preconditioners M−1l and M−1r , which correspond to model- and data-space

preconditioners such as mutes or amplitude corrections (Herrmann et al., 2008):

minimize
δ̂m

1

2
‖M−1l JM−1r δ̂m−M−1l δd‖2, (2)

where δm = M−1r δ̂m is the image we want to recover. As before, the matrix J denotes the

linearized Born modeling operator and δd is the observed linearized data, i.e., shot records in

which ideally all events except the reflections have been removed (such as direct and turning

waves as well as surface-related multiples). The preconditioned linear least-squares problem

can generally be solved with any matrix-free optimization method, while direct solvers or

solvers that need access to arbitrary entries of J cannot be used due to the large number

of dimensions and the fact that J is not available as an explicit matrix. The algorithm for

preconditioned LS-RTM with stochastic gradient descent is given in Algorithm 1 and the

corresponding code that implements this method using JUDI is shown in Listing 5. Each

iteration involves selecting a random subset of shot records and extracting the corresponding

blocks of rows from the demigration operator J. The data residual and gradient are then

calculated for the current subset of source locations. With preconditioners that are set up as

matrix-free linear operators (using templates from the Julia operator library by Modzelewski

(2017)), the algorithm translates directly to runnable Julia code.

26



1 # Stochastic gradient descent

2 batchsize = 10

3 niter = 20

4

5 for j=1: niter

6

7 # Compute residual and gradient

8 i = randperm(d_refl.nsrc)[1: batchsize]

9 r = Ml*J[i]*Mr*x - Ml*d_refl[i]

10 g = adjoint(Mr)*adjoint(J[i])*adjoint(Ml)*r

11

12 # Step size and update variable

13 t = norm(r)^2/ norm(g)^2

14 global x -= t*g

15 end

Listing 5: Julia implementation of the stochastic gradient descent algorithm for LS-RTM.

Our matrix-free operators for preconditioners and Jacobians allow for a direct translation

of Algorithm 1 to runnable Julia code.

27



Algorithm 1 Stochastic gradient descent algorithm for least-squares RTM. The matrix

Js(j) is the subset of the demigration/migration operator that corresponds to the current

subset of shots δds(j) and computes the residual and gradients in parallel. The matrices

M−1l,r are left- and right-hand preconditioners in the data and model space, such as mutes,

scalings or approximate inverse Hessians.

for j = 1 to n

Select random subset of shot indices s(j) ∈ [1...ns]

rj = M−1l Js(j)M
−1
r xj −M−1l δds(j)

gj = M−>r J>s(j)M
−>
l rj

tj =
‖rj‖2
‖gj‖2

xj+1 = xj − tjgj

end

The SGD algorithm in Listing 5 itself is serial, while the parallelization happens im-

plicitly inside J in the form of distributing the source positions and data to the parallel

workers. However, the flexibility of our framework allows to easily exchange the model-

ing parallelism for a parallel algorithm (or a combination of both). A parallel version of

stochastic gradient descent is the elastic average SGD algorithm (Zhang et al., 2015), as

shown in Algorithm 2. In contrast to classic SGD, the algorithm contains an additional loop

over the number of parallel workers, who calculate individual gradient updates that are tied

together by a center variable x̃, which is stored and updated by the master process. Once

again, this algorithm can be translated into Julia code with a moderate amount of effort

(Listing 6). The biggest change in comparison to the SGD implementation, is a separate

function that calculates the gradient and which is called in the inner loop and executed in

parallel on the remote workers.

28



Algorithm 2 Parallel version of stochastic gradient descent (elastic average SGD) for

LS-RTM. Compared to the serial version, the EASGD algorithm has an additional inner

loop k = 1 to p over the number of workers and each worker computes its individual data

residual, gradient and model update xkj . The master then computes the elastic average x̃j

from the individual model updates.

for j = 1 to n

for k = 1 to p

Select random subset of shot indices s(j, k) ∈ [1...ns]

rkj = M−1l Js(j,k)M
−1
r xkj −M−1l δds(j,k)

gkj = M−>r J>s(j,k)M
−>
l rkj

xkj+1 = xkj − ηgkj − α
(
xkj − x̃j

)
end

x̃j+1 = (1− β)x̃j + β
(
1
p

∑p
i=1 x

i
j

)
end

29



1 # Gradient function

2 @everywhere function update_x(Ml, J, Mr, x, d, eta , alpha , xav)

3 r = Ml*J*Mr*x - Ml*d

4 g = adjoint(Mr)*adjoint(J)*adjoint(Ml)*r

5 return x - eta*g - alpha*(x - xav)

6 end

7 update_x_par = remote(update_x) # Parallel function wrapper

8

9 for j=1: niter

10 @sync begin

11 for k=1:p

12 # Calculate x update in parallel

13 i = randperm(d_refl.nsrc)[1: batchsize]

14 xnew[:, k] = update_x_par(Ml , J[i], Mr , x[:,k],

15 d_refl[i], eta , alpha , xav)

16 end

17 end

18 # Update average variable

19 global xav = (1 - beta)*xav + beta *(1/p*sum(x, dims =2))

20 global x = copy(xnew)

21 end

Listing 6: Implementation of the elastic average SGD algorithm for LS-RTM. Just like the

algorithm, the code has an additional loop over the number of workers p, in which the new

image is calculated by calling the remote parallel function update x par for the current

subset of shots. The @sync statement forces the master to wait at the end of the inner

loop for all workers to return their updates xnew. The elastic average variable xav is then

updated by the master. The @everywhere statement makes the subsequent function known

to all workers, not just the master process.
30



The Julia codes for serial and parallel SGD (Listings 5 and 6) are agnostic to the

dimensions of the model and work for both 2D and 3D problems. Here, we show the result

of running 20 iterations of EASGD on the 2D Marmousi model using 10 workers (p=10) and

a batch size of 1. The observed data consists of 320 reflection data shot records, generated

as d refl = J*dm, with receivers spread out over the full model, 4 seconds recording time

and 30 Hertz peak frequency. For illustration purposes and keeping the examples simple, we

only demonstrate the serial and parallel implementations of stochastic gradient descent with

sequential shots, but the extensions of these examples to advanced algorithms like conjugate

gradient or inversion with simultaneous shots are straightforward. A demonstration of how

to set up simultaneous sources with JUDI can be found in the accompanying software.

[Figure 4 about here.]

Compressive imaging with on-the-fly Fourier transforms

So far, all the numerical case studies shown here work with acoustic wave equations and

linearized modeling operators. As discussed earlier, wave equations in our framework are set

up in Python using Devito and the functions for code generation are interfaced from Julia.

By modifying the Python functions that generate the underlying C code, we can implement

different wave equations with density variations or anisotropy, or change imaging conditions

of the migration operator. In this final example, we demonstrate how we can modify the

underlying Python code for LS-RTM with on-the-fly discrete Fourier transforms (DFTs).

Rather than saving the full time-domain forward wavefield for applying the zero-lag cross

correlation imaging condition, we perform a real-valued DFT within the time loop and

save a subset of frequency-domain wavefields (Algorithm 3); thus requiring substantially

31



less memory (see Sirgue et al. (2010) within the context of FWI). In the adjoint time loop

for migration (Algorithm 4), we perform the on-the-fly DFT on the adjoint wavefields and

calculate the image by correlating the frequency-domain wavefields via simple elementwise

multiplications.

Algorithm 3 Pseudo-code for calculating frequency-domain wavefields ûreal and ûimag for

a frequency f within the time loop of a forward modeling code. The parameter ∆t is the

computational time-stepping interval and nt is the total number of time steps.

for j = 1 to nt

Calculate current forward wavefield: uj = ...

ûreal = ûreal + uj cos
(
2πfj∆t

)
ûimag = ûimag − uj sin

(
2πfj∆t

)
end

Algorithm 4 The frequency-domain gradient ĝ of the FWI or LS-RTM objective function is

calculated by performing the on-the-fly DFT on the adjoint wavefields vj and by calculating

the dotwise multiplication of the real and imaginary forward and adjoint wavefields.

for j = nt to 1

Calculate current adjoint wavefield: vj = ...

ĝ = ĝ + 4π2f2vj

(
ûreal cos

(
2πfj∆t

)
− ûimag sin

(
2πfj∆t

))
end

In Python, we can use the powerful symbolic abstractions of Devito to directly trans-

late the concept of on-the-fly Fourier transforms to Python code, from which optimized C

code is generated and compiled automatically during run time. Frequency and time-domain

wavefields are represented through special types (e.g., TimeData for wavefields) from which

the time-stepping loops are constructed automatically during code generation. To imple-

ment the on-the-fly DFTs, we add the expressions shown in Listing 7 to our symbolic PDE

32



expressions for forward and adjoint modeling, that are defined in the source code of JUDI.

1 # On -the -fly real -valued DFT of forward wavefield

2 eqn_ufr = Eq(ufr , ufr + u*cos (2*np.pi*f*time*dt))

3 eqn_ufi = Eq(ufi , ufi - u*sin (2*np.pi*f*time*dt))

4

5 # On -the -fly real -valued DFT of adjoint wavefield

6 eqn_g = Eq(g, g+(2*np.pi*f)**2*v*(ufr*cos(2*np.pi*f*time*dt)-

7 ufi*sin (2*np.pi*f*time*dt)))

Listing 7: On-the-fly Fourier transform for calculating frequency-domain wavefields in

the forward time loop and gradients (images) in the adjoint time loop. Eq is a SymPy

function that generates a symbolic stencil from Devito expressions and is used by Devito

to automatically generate optimized C code during execution time.

We now repeat our numerical experiment from the previous section and perform LS-

RTM on the 2D Marmousi model, using the same test data set as before. However, instead

of saving the full forward wavefields in memory and calculating the gradient in the time-

domain, we perform the on-the-fly DFT and only keep 10 (frequency-domain) wavefields in

memory from which the LS-RTM gradient is calculated. The frequencies in each iteration

are selected randomly for each shot, which creates images with random noise, similar to

LS-RTM with simultaneous sources or stochastic frequency-domain LS-RTM. By solving a

modified version of the standard LS-RTM problem (equation 2) with sparsity-promotion,

these artifacts can be mostly removed and we obtain an image that looks close to our

previous result, but at a fraction of the memory cost (Figure 5). For solving the sparsity-

promoting LS-RTM problem with frequency subsampling, we use the linearized Bregman

method as described in Herrmann et al. (2015). The Julia code follows largely the algorithm

33



in Listing 6, with an additional variable and sparsity promotion through soft thresholding.

[Figure 5 about here.]

DISCUSSION

The numerical examples presented here are intended to demonstrate the flexibility that

comes with symbolic user interfaces, making it possible to implement algorithms for wave-

equation based inversion in a few lines of code and in a high-level interactive language.

Our examples show that abstractions used in JUDI and Devito do not come at the cost of

performance; in fact, symbolic APIs and automatic code generation are not only the key

for productivity, but also the best and quickest way of obtaining efficient, functional code

– code that would have taken weeks of work to optimize by hand, with no guarantees on

portability and long-term maintainability. In terms of performance results for our numer-

ical examples, we refrain from providing absolute timings, as they strongly depend on the

hardware, amount of available computational resources and parameters, such as the sten-

cil order. A more meaningful metric for performance measurements is the roofline model

(Williams et al., 2009; Andreolli et al., 2014; Louboutin et al., 2017a), which measures us-

age of the hardware compared to the best performance that can theoretically be achieved

for a given discretization and implementation. A roofline analysis of Devito is provided in

Louboutin et al. (2018a) and Luporini et al. (2018), with Devito reaching up to 60 percent

of maximum achievable performance, depending on the stencil order, which is significantly

higher than the average performance of finite-difference stencil codes.

With JUDI, we introduce a seismic modeling and inversion framework based on domain-

specific abstractions and automatic code generation, which combines components in differ-

34



ent languages (Julia, Python, C) into a single package. This stands in contrast to a more

traditional approach to high-performance computing in low-level programming languages

and with manual performance optimizations. JUDI provides abstractions for definitions of

objective functions and optimization algorithms in Julia, an interface to Python for sym-

bolic definitions of forward and adjoint wave equations, while optimized time-stepping code

for solving PDEs is automatically generated by the Devito compiler. Exposing Devito’s

capabilites through JUDI’s abstract linear algebra operators, provides researchers with the

means to implement modern optimization algorithms on a high abstraction level and without

having to implement low-level stencil codes. This structure makes it possbile to indepen-

dently modify each aspect of seismic inverse problems, such as changing the definition of

wave equations, without having to modify the optimization algorithm or implementing a

new misfit function without having to worry about the parallelization. Exposing the sym-

bolic interfaces in high-level languages such as Julia and Python makes the software usable

by a wide range of users, not just experienced C or Fortran programmers.

This approach to scientific computing is strongly inspired by recent machine learning

frameworks such as Tensorflow or PyTorch, which make building blocks of deep learning

tools available to a wide audience and therefore promote the fast progress of this field.

With packages like Tensorflow, any interested researcher can implement and train a neural

network in a few hours, e.g. by following simple online tutorials, without having to know

how to implement convolutions on graphical processing units. With JUDI, we apply this

paradigm to seismic inverse problems and introduce a software framework that makes it pos-

sible to build workflows and algorithms for FWI and LS-RTM on a high abstraction level

and without requiring the knowledge of how to implement finite-difference time-stepping

codes in C. This approach also simplifies the implementation of adjoint wave equations and

35



verifiably correct gradients – tasks that are often impossible to accomplish in reasonable

amounts of time when working with hand-tuned codes in low-level languages. Some dis-

advantages that come with JUDI and this approach to software design, are the additional

amount of work that comes with the interaction of different packages or programming lan-

guages. Furthermore, this type of code development requires a stronger interaction between

geophysicists and software engineers/compiler specialists, since inversion codes typically re-

quire very problem-specific functionalities, such as source/receiver interpolations. However,

we believe that the advantages greatly outweigh these downsides and pay off in the long

run.

CONCLUSIONS

As seismic inversion problems become increasingly mathematically and computationally

complex, geophysicists need to rethink the paradigms for developing software packages.

Adapting manually optimized codes in low-level languages to new hardware environments

such as the cloud or implementing sophisticated algorithms for inversion is often impossible

to accomplish in reasonable amounts of time. One of the core problems amounts to the

fact that algorithms, parallelization and performance optimizations are oftentimes inter-

woven and become impossible to modify independently. With the Julia Devito Inversion

framework, we introduce an open-source software package that aims at overcoming these

issues through independent layers of abstractions that break the complexity into manage-

able parts. We neither argue that JUDI is the only possible way of implementing these

principles, nor that Julia is the only viable programming language for this, or that one

specific language is superior to another. Rather, we hope to stimulate a discussion on how

to engineer seismic and geophysical software in a way that helps progressing the field and

36



making it more accessible and user-friendly to our community. With the framework in-

troduced in this work, we aim to promote software based on symbolic user interfaces and

automatic code generation, rather than manually optimized inversion codes in low-level

languages. We demonstrate that abstractions and performance are not mutually exclusive,

but that symbolic interfaces can greatly facilitate the implementation of seismic inversion

algorithms. Based on experiences from the related machine learning community, we believe

that moving to a new paradigm for geophysical software can only happen with close interac-

tions and collaborations between academia and industry, but that a shift towards mutually

developed open-source software will eventually benefit both sides, as it is a prerequisite for

driving innovations.

ACKNOWLEDGMENTS

We would like to thank Henryk Modzelewski (The University of British Columbia) for the

technical support and the Julia Operator Library (JOLI). Furthermore, we would like to

acknowledge Charles Jones (Osokey Ltd.) for the useful discussions on early versions of

the software and the manuscript, as well as Keegan Lensink (The University of British

Columbia) for SeisIO. This research was carried out as part of the SINBAD project with

the support of the member organizations of the SINBAD Consortium. Finally, we would

like to acknowledge the University of British Columbia (UBC), where part of this research

was carried out.

37



APPENDIX A

Setting up wave equations with Devito

Devito is a Python domain-specific language for discretizing partial-differential equations

and automatically generating optimized C code for solving them. Devito is built around

symbolic functions for velocity models and (time-dependent) wavefields from which forward

and adjoint wave equations can be symbolically defined. For example, we can set up a

model structure for a two- or three-dimensional velocity model v, with a specified origin,

grid spacing and number of absorbing boundary points nbpml as follows:

model = Model(vp=v, origin=(0,0), shape=(101,101), spacing=(10,10), nbpml=40)

Wavefields are defined as TimeFunction objects and are created for a specified time-

and space order of their associated finite-difference derivatives:

u = TimeFunction(name="u", grid=model.grid, time_order=2, space_order=2,

save=False, time_dim=nt)

Spatial and temporal derivatives of the wavefield u can be accessed via the shorthand

expressions u.dt (first temporal derivative), u.dt2 (second temporal derivative), u.dx (first

spatial derivative in x direction) or u.laplace (sum of second spatial derivatives). These

expressions allow us to symbolically define the acoustic wave equation with a damping term:

pde = model.m * u.dt2 - u.laplace + model.damp * u.dt

stencil = Eq(u.forward, solve(pde, u.forward)[0])

38



The second line rearranges the pde expression so that we obtain an update rule for

the wavefield at the next time step u.forward within the forward time loop. By default,

Dirichlet boundary conditions are used for this expression, but other boundary conditions

can be implemented symbolically as well (e.g. Neumann). Furthermore, Devito provides

the possibility to add a source function to our PDE and to sample the wavefield at receiver

positions. For example, we can define a one-dimensional Ricker wavelet for a given peak

frequency f0, which is injected into the model at some specified source coordinate. We first

set up the wavelet and then inject it into the updated wavefield:

src = RickerSource(name="src", grid=model.grid, f0=f0, time=time,

coordinate=src_coords)

src_term = src.inject(field=u.forward, expr=src * dt**2 /model.m,

offset=model.nbpml)

Receivers for given coordinates are set up in a similar fashion, but instead of injecting,

we sample the wavefield and interpolate it to the receiver locations:

rec = Receiver(name="rec", npoint=101, nt=nt, grid=model.grid,

coordinates=rec_coords)

rec_term = rec.interpolate(u, offset=model.nbpml)

To generate the forward modeling operator, we add the source and receiver terms to our

stencil expression and pass it to Devito’s Operator function, which generates optimized

stencil code with a time-stepping loop for solving the wave equation. We can then run the

generated C code for a specified length and time step with:

39



op_fwd = Operator([stencil] + src_term + rec_term) # generate code

op_fwd(time=nt, dt=model.critical_dt) # run it

The instructions presented here are a short summary of a detailled tutorial series on

setting up forward and adjoint acoustic wave equations that has been published in the

Leading Edge (Louboutin et al., 2017b, 2018b). The tutorials also provide details on imple-

menting absorbing boundary conditions for simulating infinite domains. In JUDI, the wave

equations are set up following these tutorials, and the code can be found and modified in

~/.julia/v0.6/JUDI/src/Python/JAcoustic codegen.py.

APPENDIX B

Verification framework

Our first unit test validates that solving the acoustic wave equation with JUDI/Devito pro-

duces verifiably correct shot records. Since it is not possible to compute analytic solutions

of the acoustic wave equation for an arbitrary velocity model, we compare modeling results

of our code with an independent reference code (Terentyev, 2009; Symes and Dong, 2010).

Figure 6 shows trace comparisons of JUDI and iWave for two different velocity models and

validates that both codes create the same output. The measured error between the traces

was 4 and 1 percent respectively and can be explained by differences of the spatial/temporal

interpolation functions and different treatments of absorbing boundaries.

[Figure 6 about here.]

One of the fundamental unit tests for symbolic operators and functions that mimic

matrix-vector and adjoint matrix-vector products, is to verify that the implementations of

40



the operators do in fact represent correct adjoint pairs (Claerbout, 1992). Devito itself has

a unit testing framework for verifying that the implementations of forward and adjoint (lin-

earized) wave equations are in fact representing a true adjoint pair. With the certainty that

the underlying PDE solvers have correct matrix-vector and adjoint matrix-vector product

implementations, the unit testing can be extended to JUDI’s linear operators, namely the

forward modeling operator M=Pr*A inv*adjoint(Ps) and the linearized modeling operator

J (Listing 1).

1 # Adjoint test for M

2 err_M = dot(M*q, d) - dot(adjoint(M)*d, q)

3 err_M > eps && throw (" Adjoint test for M failed ")

4

5 # Adjoint test for J

6 eps1 = dot(J*dm, d_lin) - dot(adjoint(J)*d_lin , dm)

7 err_J > eps && throw (" Adjoint test for J failed ")

Listing 8: Adjoint test for JUDI’s linear operators, that ensure that the modeling operators

and their transposes are in fact correct forward-adjoint pairs within the computer’s machine

precision eps.

Another important test is to verify the correct implementation of our FWI gradient,

which is tested by analyzing the 0th and 1st order Taylor errors of the discretization.

Assuming that the FWI objective function Φ(m) is differentiable and smooth within the

vicinity of a velocity model m, we ensure that for a smooth reference model m0 and model

perturbation h · δm, the Taylor errors (Figure 7) behave as predicted by Taylor’s theorem

41



for h→ 0:

Φ(m0 + h · δm)− Φ(m0) = O(h)

Φ(m0 + h · δm)− Φ(m0)− h · ∇Φ(m0)
>δm = O(h2).

(3)

[Figure 7 about here.]

42



REFERENCES

Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B.

Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, 2016,

TensorFlow: A system for large-scale machine learning: 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 16), 265–283.

Andreolli, C., P. Thierry, L. Borges, C. Yount, and G. Skinner, 2014, Genetic algorithm

based auto-tuning of seismic applications on multi and manycore computers: Presented

at the EAGE Workshop on High Performance Computing for Upstream.

Balay, S., S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V.

Eijhkout, W. Gropp, D. Karpeyev, D. Kaushik, M. Knepley, L. Curfman McInnes, K.

Rupp, B. Smith, S. Zampini, S. Zhang, and H. Zhang, 2016, PETSc users manual. Ar-

gonne National Laboratory, 3.7 ed.

Bezanson, J., A. Edelman, S. Karpinski, and V. B. Shah, 2017, Julia: A fresh approach to

numerical computing: Society for Industrial and Applied Mathematics (SIAM) Review,

59, 65–98.

Bezanson, J., S. Karpinski, V. B. Shah, and A. Edelman, 2012, Julia: A fast dynamic

language for technical computing: Computing Research Repository.

Bottou, L., 2010, in Large-Scale Machine Learning with Stochastic Gradient Descent:

Physica-Verlag HD, 177–186.

Cervantes, A. M., A. Wächter, R. H. Tütüncü, and L. T. Biegler, 2000, A reduced space

interior point strategy for optimization of differential algebraic systems: Computers and

Chemical Engineering, 24, 39 – 51.

Claerbout, J., 1992, Earth soundings analysis: Processing versus inversion: Blackwell Sci-

43



entific Publications.

Da Silva, C., and F. J. Herrmann, 2017, A unified 2D/3D large scale software environment

for nonlinear inverse problems: Computing Research Repository.

Dagum, L., and R. Menon, 1998, OpenMP: An industry-standard API for shared-memory

programming: Institute of Electrical and Electronics Engineers (IEEE) Computational

Science and Engineering, 5, 46–55.

Dong, S., J. Cai, M. Guo, S. Suh, Z. Zhang, B. Wang, and Z. Li, 2012, Least-squares

reverse time migration: Towards true amplitude imaging and improving the resolution:

82nd Annual International Meeting, SEG, Expanded Abstracts, 79, 1–5.

Fomel, S., P. Sava, I. Vlad, L. Yang, and V. Bashkardin, 2013, Madagascar: Open-source

software project for multidimensional data analysis and reproducible computational ex-

periments: Journal of Open Research Software, 1.

Griewank, A., and A. Walther, 2000, Algorithm 799: Revolve: An implementation of check-

pointing for the reverse or adjoint mode of computational differentiation: Association for

Computing Machinery (ACM) Transactions on Mathematical Software, 26, 19–45.

Guitton, A., and W. W. Symes, 2003, Robust inversion of seismic data using the Huber

norm: GEOPHYSICS, 68, 1310–1319.

Hassanzadeh, S., and C. C. Mosher, 1997, Javaseis: Web delivery of seismic processing

services: 2055–2057.

Heroux, M. A., R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B.

Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist,

R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley, 2005, An overview

of the Trilinos project: Association for Computing Machinery (ACM) Transactions on

Mathematical Software, 31, 397–423.

44



Herrmann, F. J., P. Moghaddam, and C. Stolk, 2008, Sparsity- and continuity-promoting

seismic image recovery with curvelet frames: Applied and Computational Harmonic Anal-

ysis, 24, 150–173.

Herrmann, F. J., N. Tu, and E. Esser, 2015, Fast ”Online” Migration with Compressive

Sensing: 77th EAGE Conference and Exhibition.

Huang, G., R. Nammour, and W. Symes, 2017, Full-waveform inversion via source-receiver

extension: GEOPHYSICS, 82, R153–R171.

Johnson, S., 2017, Calling Python functions from the Julia language: https://github.

com/JuliaPy/PyCall.jl, (accessed July 27, 2018).

Koehn, D., 2017, Sava: https://github.com/daniel-koehn/SAVA, (accessed May 21,

2018).

Krischer, L., A. Fichtner, S. Zukauskaite, and H. Igel, 2015, Large-scale seismic inversion

framework: Seismological Research Letters, 86, 1198.

Kukreja, N., J. Hückelheim, M. Lange, M. Louboutin, A. Walther, S. W. Funke, and G.

Gorman, 2018, High-level Python abstractions for optimal checkpointing in inversion

problems: ArXiv e-prints.

Kukreja, N., M. Louboutin, F. Vieira, F. Luporini, M. Lange, and G. Gorman, 2016, Devito:

Automated fast finite difference computation: Computing Research Repository.

Lange, M., N. Kukreja, M. Louboutin, F. Luporini, F. Vieira, V. Pandolfo, P. Velesko, P.

Kazakas, and G. Gorman, 2016, Devito: Towards a generic finite difference DSL using

symbolic Python: Computing Research Repository.

Lensink, K., 2017, SeisIO.jl: https://github.com/slimgroup/SeisIO.jl, (accessed

February 11, 2018.

Logg, A., K.-A. Mardal, and G. Wells, 2012, Automated solution of differential equations

45



by the finite element method: Springer, volume 84 of Lecture Notes in Computational

Science and Engineering.

Louboutin, M., M. Lange, F. J. Herrmann, N. Kukreja, and G. Gorman, 2017a, Performance

prediction of finite-difference solvers for different computer architectures: Computers and

Geosciences, 105, 148 – 157.

Louboutin, M., M. Lange, F. Luporini, N. Kukreja, P. A. Witte, F. J. Herrmann, P. Velesko,

and G. J. Gorman, 2018a, Devito (v3.1.0): An embedded domain-specific language for

finite differences and geophysical exploration: ArXiv preprints.

Louboutin, M., P. Witte, M. Lange, N. Kukreja, F. Luporini, G. Gorman, and F. J. Her-

rmann, 2017b, Full-waveform inversion, Part 1: Forward modeling: The Leading Edge,

36, 1033–1036.

——–, 2018b, Full-waveform inversion, Part 2: Adjoint modeling: The Leading Edge, 37,

69–72.

Luporini, F., D. A. Ham, and P. H. J. Kelly, 2016, An algorithm for the optimization of

finite element integration loops: Computing Research Repository.

Luporini, F., M. Lange, M. Louboutin, N. Kukreja, J. Hückelheim, C. Yount, P. Witte,

P. H. J. Kelly, G. J. Gorman, and F. J. Herrmann, 2018, Architecture and performance

of Devito, a system for automated stencil computation: ArXiv preprints.

Modzelewski, H., 2017, JOLI - Julia Operator Library: https://github.com/slimgroup/

JOLI.jl, (accessed October 26, 2017).

Nemeth, T., C. Wu, and G. T. Schuster, 1999, Least-squares migration of incomplete re-

flection data: GEOPHYSICS, 64, 208–221.

Nickolls, J., I. Buck, M. Garland, and K. Skadron, 2008, Scalable parallel programming

with CUDA: Queue, 6, 40–53.

46



Padula, A. D., S. D. Scott, and W. W. Symes, 2009, A software framework for abstract

expression of coordinate-free linear algebra and optimization algorithms: Association for

Computing Machinery (ACM) Transactions on Mathematical Software, 36, 8:1–8:36.

Paszke, A., S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer, 2017, Automatic differentiation in PyTorch: Presented at the

Conference on Neural Information Processing Systems (NIPS).

Plessix, R.-E., 2006, A review of the adjoint-state method for computing the gradient of a

functional with geophysical applications: Geophysical Journal International, 167, 495.

Rathgeber, F., D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. McRae, G. Bercea,

G. R. Markall, and P. H. J. Kelly, 2015, Firedrake: Automating the finite element method

by composing abstractions: Computing Research Repository.

Ruthotto, L., E. Treister, and E. Haber, 2016, jinv - a flexible Julia package for PDE

parameter estimation: Computing Research Repository.

Schmidt, M., E. van den Berg, M. Friedlander, and K. Murphy, 2009, Optimizing costly

functions with simple constraints: A limited-memory projected Quasi-Newton algorithm:

Proceedings of The Twelfth International Conference on Artificial Intelligence and Statis-

tics (AISTATS) 2009, 456–463.

Sirgue, L., J. Etgen, U. Albertin, and S. Brandsberg-Dahl, 2010, System and method for

3D frequency domain waveform inversion based on 3D time-domain forward modeling.

(US Patent 7,725,266).

Symes, W. W., 2007, Reverse time migration with optimal checkpointing: GEOPHYSICS,

72, SM213–SM221.

——–, 2017, The search for a cycle-skipping cure: An overview: Presented at the Institute

for Pure and Applied Mathematics (IPAM): Computational Issues in Oil Field Applica-

47



tions.

Symes, W. W., and S. Dong, 2010, The IWAVE++ inversion framework: http://trip.

rice.edu/reports/2010/dong2.pdf, (accessed March 5, 2018).

Symes, W. W., D. Sun, and M. Enriquez, 2011, From modelling to inversion: Designing a

well-adapted simulator: Geophysical Prospecting, 59, 814–833.

Tan, C., S. Ma, Y.-H. Dai, and Y. Qian, 2016, Barzilai-Borwein Step Size for Stochastic

Gradient Descent: ArXiv e-prints.

Tang, Y., and B. Biondi, 2009, Least-squares migration/inversion of blended data: 79th

Annual International Meeting, SEG, Expanded Abstracts.

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation:

GEOPHYSICS, 49, 1259–1266.

Terentyev, I., 2009, A software framework for finite difference simulation: Technical re-

port, Tech. Rep. 09-07, Department of Computational and Applied Mathematics, Rice

University, Houston, Texas, USA.

Thorbecke, J., 2017, Opensource: https://github.com/JanThorbecke/OpenSource, (ac-

cessed June 18, 2018).

Tompson, J., and K. Schlachter, 2012, Introduction to the OpenCL programming model.

van den Berg, E., and M. P. Friedlander, 2013, Spot - a linear operator toolbox: https:

//github.com/mpf/spot, (accessed July 20, 2018).

van den Berg, E., M. P. Friedlander, G. Hennenfent, F. J. Herrmann, R. Saab, and O. .

Yilmaz, 2009, Algorithm 890: Sparco: A testing framework for sparse reconstruction:

Association for Computing Machinery (ACM) Transactions on Mathematical Software,

35, 1–16.

van Leeuwen, T., A. Y. Aravkin, H. Calandra, and F. J. Herrmann, 2013, In which domain

48



should we measure the misfit for robust full waveform inversion?: Presented at the EAGE

Annual Conference Proceedings.

van Leeuwen, T., and F. J. Herrmann, 2013, Mitigating local minima in full-waveform

inversion by expanding the search space: Geophysical Journal International, 195, 661–

667.

Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration

geophysics: GEOPHYSICS, 74, WCC127–WCC152.

Williams, S., A. Waterman, and D. Patterson, 2009, Roofline: An insightful visual perfor-

mance model for multicore architectures: Communications of the Association for Com-

puting Machinery (ACM), 52, 65–76.

Witte, P. A., M. Louboutin, and F. J. Herrmann, 2017, The Julia Devito inversion frame-

work (JUDI): https://github.com/slimgroup/JUDI.jl, (accessed August 31, 2018).

Witte, P. A., M. Louboutin, K. Lensink, M. Lange, N. Kukreja, F. Luporini, G. Gorman,

and F. J. Herrmann, 2018, Full-waveform inversion, Part 3: Optimization: The Leading

Edge, 37.

Zeng, G. L., and G. T. Gullberg, 2000, Unmatched projector/backprojector pairs in an iter-

ative reconstruction algorithm: Institute of Electrical and Electronics Engineers (IEEE)

Transactions on Medical Imaging, 19, 548–555.

Zhang, S., A. E. Choromanska, and Y. LeCun, 2015, Deep learning with elastic averaging

SGD: Advances in Neural Information Processing Systems, 685–693.

49



LIST OF FIGURES

1 Software hierarchy of JUDI and its interface to the wave equation solver De-

vito. The uppermost software layer contains matrix-free operators that allow

expressing PDE solvers and sampling operators as linear algebra operations.

For solving multiple PDEs, data is first distributed to the available computa-

tional resources, where each worker sets up its individual PDE using Devito

and generates the C code for solving it. The optimized code is compiled

dynamically and called from Python. . . . . . . . . . . . . . . . . . . . . . . 52

2 Overthrust velocity model for our 2D FWI case study (a), initial model (b)

and recovered model after 20 iterations of stochastic gradient descent with

bound constraints and a backtracking line search (c). . . . . . . . . . . . . . 53

3 Depth slice through the original 3D Overthrust model (a), the initial model

(b) and the recovered model after 15 function evaluations with minConf’s

spectral projected gradient algorithm (c). Some parts of the recovered model

are cycle skipped, but overall minConf’s SPG algorithm was able to make

decent progress towards the solution. The result could be improved through

a larger batch size of shots, or by adjusting the starting model. . . . . . . . 54

4 LS-RTM image of the Marmousi model after 20 iterations of the elastic av-

erage SGD algorithm. In each iteration, the 10 workers calculate their new

image from single randomly selected shot and the master updates the central

variable (shown here after the final iteration). . . . . . . . . . . . . . . . . . 55

50



5 Imaging result after 32 iterations of sparsity-promoting LS-RTM with on-the-

fly Fourier transforms. By only saving a few frequency-domain wavefields,

this method only requires a fraction of the memory of conventional time-

domain LS-RTM and therefore scales to large-scale models. . . . . . . . . . 56

6 Comparison of a single traces from seismic shot records that were modeled

with JUDI and iwave. Figure (a) was generated using the 2D Marmousi

model and Figure (b) was modeled with the 2D Overthrust model. . . . . . 57

7 Taylor error test for the implementation of the FWI objective function and

gradient. Using the gradient information causes the error to decay with 1st

order as h→ 0, which verifies that the gradient is implemented correctly. . 58

51



Figure 1: Software hierarchy of JUDI and its interface to the wave equation solver Devito.
The uppermost software layer contains matrix-free operators that allow expressing PDE
solvers and sampling operators as linear algebra operations. For solving multiple PDEs,
data is first distributed to the available computational resources, where each worker sets
up its individual PDE using Devito and generates the C code for solving it. The optimized
code is compiled dynamically and called from Python.

52



Figure 2: Overthrust velocity model for our 2D FWI case study (a), initial model (b) and
recovered model after 20 iterations of stochastic gradient descent with bound constraints
and a backtracking line search (c).

53



Figure 3: Depth slice through the original 3D Overthrust model (a), the initial model (b)
and the recovered model after 15 function evaluations with minConf’s spectral projected
gradient algorithm (c). Some parts of the recovered model are cycle skipped, but overall
minConf’s SPG algorithm was able to make decent progress towards the solution. The
result could be improved through a larger batch size of shots, or by adjusting the starting
model.

54



Figure 4: LS-RTM image of the Marmousi model after 20 iterations of the elastic average
SGD algorithm. In each iteration, the 10 workers calculate their new image from single
randomly selected shot and the master updates the central variable (shown here after the
final iteration).

55



Figure 5: Imaging result after 32 iterations of sparsity-promoting LS-RTM with on-the-fly
Fourier transforms. By only saving a few frequency-domain wavefields, this method only
requires a fraction of the memory of conventional time-domain LS-RTM and therefore scales
to large-scale models.

56



Figure 6: Comparison of a single traces from seismic shot records that were modeled with
JUDI and iwave. Figure (a) was generated using the 2D Marmousi model and Figure (b)
was modeled with the 2D Overthrust model.

57



Figure 7: Taylor error test for the implementation of the FWI objective function and
gradient. Using the gradient information causes the error to decay with 1st order as h→ 0,
which verifies that the gradient is implemented correctly.

58


