
ABSTRACT

Nonlinear inverse problems are often hampered by non-uniqueness and local minima because

of missing low frequencies and far offsets in the data, lack of access to good starting models,

noise, and modeling errors. A well-known approach to counter these deficiencies is to

include prior information on the unknown model, which regularizes the inverse problem.

While conventional regularization methods have resulted in enormous progress in ill-posed

(geophysical) inverse problems, challenges remain when the prior information consists of

multiple pieces. To handle this situation, we propose an optimization framework that allows

us to add multiple pieces of prior information in the form of constraints. Compared to

additive regularization penalties, constraints have a number of advantages making them more

suitable for inverse problems such as full-waveform inversion. The proposed framework is

rigorous because it offers assurances that multiple constraints are imposed uniquely at each

iteration, irrespective of the order in which they are invoked. To project onto the intersection

of multiple sets uniquely, we employ Dykstra’s algorithm that scales to large problems and

does not rely on trade-off parameters. In that sense, our approach differs substantially from

approaches such as Tikhonov regularization, penalty methods, and gradient filtering. None

of these offer assurances, which makes them less suitable to full-waveform inversion where

unrealistic intermediate results effectively derail the iterative inversion process. By working

with intersections of sets, we keep expensive objective and gradient calculations unaltered,

separate from projections, and we also avoid trade-off parameters. These features allow for

easy integration into existing code bases. In addition to more predictable behavior, working

with constraints also allows for heuristics where we built up the complexity of the model

gradually by relaxing the constraints. This strategy helps to avoid convergence to local

minima that represent unrealistic models. We illustrate this unique feature with examples of



varying complexity.

INTRODUCTION

We propose an optimization framework to include prior knowledge in the form of constraints

into nonlinear inverse problems that are typically hampered by the presence of parasitic local

minima. We favor this approach over more commonly known regularization via (quadratic)

penalties because including constraints does not alter the objective, and therefore first- and

second-order derivative information. Moreover, constraints do not need to be differentiable,

and most importantly, they offer guarantees that the updated models meet the constraints

at each iteration of the inversion. While we focus on seismic full-waveform inversion (FWI),

our approach is more general and applies in principle to any linear or nonlinear geophysical

inverse problem as long as its objective is differentiable so it can be minimized with local

derivative information to calculate descent directions that reduce the objective.

In addition to the above important features, working with constraints offers several

additional advantages. For instance, because models always remain within the constraint set,

inversion with constraints mitigates the adverse effects of local minima which we encounter

in situations where the starting model is not accurate enough or where low-frequency and

long-offset data are missing or too noisy. In these situations, derivative-based methods are

likely to end up in a local minimum mainly because of the oscillatory nature of the data and

the non-convexity of the objective. Moreover, costs of data acquisition and limitations on

available compute also often force us to work with only small subsets of data. As a result,

the inversions may suffer from artifacts. Finally, noise in the data and modeling errors can

also give rise to artifacts. We will demonstrate that by adding constraints, which prevent

these artifacts from occurring in the estimated models, our inversion results can be greatly
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improved and make more geophysical and geological sense.

To deal with each of the challenging situations described above, geophysicists traditionally

often rely on Tikhonov regularization, which corresponds to adding differentiable quadratic

penalties that are connected to Gaussian Bayesian statistics on the prior. While these penalty

methods are responsible for substantial progress in working with geophysical ill-posed and

ill-conditioned problems, quadratic penalties face some significant shortcomings. Chiefly

amongst these is the need to select a penalty parameter, which weights the trade-off between

data misfit and prior information on the model. While there exists an extensive literature on

how to choose this parameter in the case of a single penalty term (e.g., Vogel, 2002; Zhdanov,

2002; Sen and Roy, 2003; Farquharson and Oldenburg, 2004; Mueller and Siltanen, 2012),

these approaches do not easily translate to situations where we want to add more than one

type of prior information. There is also no simple prior distribution to bound pointwise

values on the model without making assumptions on the underlying and often unknown

statistical distribution (see Backus, 1988; Scales and Snieder, 1997; Stark, 2015). By working

with constraints, we avoid making these type of assumptions.

Outline

Our primary goal is to develop a comprehensive optimization framework that allows us to

directly incorporate multiple pieces of prior information in the form of multiple constraints.

The main task of the optimization is to ensure that the inverted models meet all constraints

during each iteration. To avoid certain ambiguities, we will do this with projections so that

the updated models are unique, lie in the intersection of all constraints and remain as close

as possible to the model updates provided by FWI without constraints.
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There is an emerging literature on working with constrained optimization, see Lelièvre

and Oldenburg (2009); Zeev et al. (2006); Bello and Raydan (2007); Baumstein (2013);

Smithyman et al. (2015); Esser et al. (2015); Esser et al. (2016); Esser et al. (2018) and

Peters and Herrmann (2017). Because this is relatively new to the geophysical community,

we first start with a discussion on related work and what the limitations are of unconstrained

regularization methods. Next, we discuss how to include (multiple pieces of) prior information

with constraints. This discussion includes projections onto convex sets and how to project

onto intersections of convex sets. After describing these important concepts, we combine

them with nonlinear optimization and describe concrete algorithmic instances based on

spectral-projected gradients and Dykstra’s algorithm. We conclude by demonstrating our

approach on an FWI problem

Notation

Before we discuss the advantages of constrained optimization for FWI, let us first establish

some mathematical notation. Our discretized unknown models live on regular grids with N

grid points represented by the model vector m ∈ RN , which is the result of lexicographically

ordering the 2 or 3D models. In Table 1 we list a few other definitions we will use.

[Table 1 about here.]

Related work

A number of authors use constraints to include prior knowledge in nonlinear geophysical

inverse problems. Most of these works focus on only one or maximally two constraints. For

instance; Zeev et al. (2006); Bello and Raydan (2007) and Métivier and Brossier (2016)
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consider nonlinear geophysical problems with only bound constraints, which they solve with

projection methods. Because projections implement these bounds exactly, these methods

avoid complications that may arise if we attempt to approximate bound constraints by

differentiable penalty functions. While standard differentiable optimization can minimize the

resulting objective with quadratic penalties, there is no guarantee the inverted parameters

remain within the specified range at every grid point during each iteration of the inversion.

Moreover, there is also no consistent and easy way to add multiple constraints reflecting

complementary aspects (e.g., bounds and smoothness) of the underlying geology. Bound

constraints in a transformed-domain are discussed by Lelièvre and Oldenburg (2009).

Close in spirit to the approach we propose is recent work by Becker et al. (2015), who

introduces a quasi-Newton method with projections and proximal operators (see e.g., Parikh

and Boyd, 2014) to add a single `1 norm constraint or penalty on the model in FWI. These

authors include this non-differentiable norm to induce sparsity on the model by constraining

the `1 norm in some transformed domain or on the gradient as in total-variation minimization.

While their method uses the fact that it is relatively easy to project on the `1-ball, they have

to work on the coefficients rather than on the physical model parameters themselves, and

this makes it difficult to combine this transform-domain sparsity with say bound constraints

that live in another transform-domain. As we will demonstrate, we overcome this problem

by allowing for multiple constraints in multiple transform-domains simultaneously.

Several authors present algorithms that can incorporate multiple constraints simultane-

ously, but there are some subtle, but important algorithmic details that we discuss in this

paper. For instance, the work by Baumstein (2013) employs the well-known projection-onto-

convex-sets (POCS) algorithm, which can only be shown to converge to the projection of a

point in special cases, see, e.g., work by Escalante and Raydan (2011) and Bauschke and
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Combettes (2011). Projecting the updated model parameters onto the intersection of multiple

constraints solves this problem and offers guarantees that each model iterate (model after

each iteration) remains after projection the closest in Euclidean distance to the unconstrained

model and at the same time satisfies all the constraints. Different methods exist to ensure

that the model iterates remain within the non-empty intersection of multiple constraint sets.

Most notably, we would like to mention the work by the late Ernie Esser (Esser et al., 2018),

who developed a scaled gradient projection method for this purpose involving box constraints,

total-variation, and hinge-loss constraints. Esser et al. (2018) arrived at this result by using

a primal-dual hybrid gradient (PDHG) method, which derives from Lagrangians associated

with total-variation and hinge-loss minimization. To allow for more flexibility in the number

and type of constraints, we propose the use of Dykstra’s algorithm (Dykstra, 1983; Boyle

and Dykstra, 1986) instead. As we will show, this approach offers maximal flexibility in the

number and complexity—i.e., we do not need closed-form expressions for the projections, of

the constraints we would like to impose. We refer to Smithyman et al. (2015) and Peters and

Herrmann (2017) for examples of successful geophysical applications of multiple constraints

to FWI and its distinct advantages over adding constraints as weighted penalties.

LIMITATIONS OF UNCONSTRAINED REGULARIZATION

METHODS

In the introduction, we stated our requirements on a regularization framework for nonlinear

inverse problems. While there are a number of successful regularization approaches such as

Tikhonov regularization, a change of variables, gradient filtering and modified Gauss-Newton,

these methods miss one or more of our desired properties listed in the introduction. Below

we will show why the above methods do not generalize to multiple constraints or do so at
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the cost of introducing additional manual tuning parameters.

Tikhonov and quadratic regularization

Perhaps the most well known and widely used regularization technique in geophysics is the

addition of quadratic penalties to a data-misfit function. Let us denote the model vector

with medium parameters by m ∈ RN (for example velocity) where the number of grid points

is N . The total objective with quadratic regularization φ(m) : RN → R is given by

φ(m) = f(m) +
α1

2
‖R1m‖22 + · · ·+ αp

2
‖Rpm‖22. (1)

In this expression, the data misfit function f(m) : RN → R measures the difference between

predicted and observed data. A common choice for the data-misfit is

f(m) =
1

2
‖dpred(m)− dobs‖22, (2)

where dobs and dpred(m) are observed and predicted (from the current model m) data,

respectively. The predicted data may depend on the model parameters in a nonlinear way.

There are p regularization terms in equation 1, all of which describe different pieces of

prior information in the form of differentiable quadratic penalties weighted by scalar penalty

parameters α1, α2, . . . , αp. The operators Ri ∈ CMi×N are selected to penalize unwanted

properties in m—i.e., we select each R such that the penalty terms become large if the model

estimate does not lie in the desired class of models. For example, we will promote smoothness

of the model estimate m if we add horizontal or vertical discrete derivatives as R1 and R2.

Aside from promoting certain properties on the model, adding penalty terms also changes

the gradient and Hessian—i.e., we have

∇mφ(m) = ∇mf(m) + α1R
∗
1R1m + α2R

∗
2R2m (3)
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and

∇2
mφ(m) = ∇2

mf(m) + α1R
∗
1R1 + α2R

∗
2R2. (4)

Both expressions, where∗ refers to the complex conjugate transpose, contain contributions

from the penalty terms designed to add certain features to the gradient and to improve the

spectral properties of the Hessian by applying a shift to the eigenvalues of ∇2
mφ(m).

While regularization of the above type has been applied successfully, it has two important

disadvantages. First, it is not straightforward to encode one’s confidence in a starting

model other than including a reference model (mref) in the quadratic penalty term—i.e.,

α/2‖mref −m‖22 (see, e.g., Farquharson and Oldenburg (2004) and Asnaashari et al. (2013)).

Unfortunately, this type of penalty tends to spread deviations with respect to this reference

model evenly so we do not have easy control over its local values (cf. box constraints) unless

we provide detailed prior information on the covariance. Secondly, quadratic penalties

are antagonistic to models that exhibit sparse structure—i.e., models that can be well

approximated by models with a small total-variation or by transform-domain coefficient

(e.g. Fourier, wavelet, or curvelet) vectors with a small `1-norm or cardinality (‖ · ‖0 “norm”).

Regrettably, these sparsifying norms are non-differentiable, which often leads to problems

when they are added to the objective by smoothing or reweighting the norms. In either

case, this can lead to slower convergence, to unpredictable behavior in nonlinear inverse

problems (Anagaw, 2014,page 110; Lin and Huang, 2015,and Peters and Herrmann (2017))

or to a worsening of the conditioning of the Hessian (Akcelik et al., 2002). Even without

smoothing non-differential penalties, there are still penalty parameters to select (Farquharson

and Oldenburg, 1998; Becker et al., 2015; Lin and Huang, 2015; Xue and Zhu, 2015; Qiu et al.,

2016). Finally, these issues with quadratic penalties are not purely theoretical. For instance,

when working with a land dataset, (Smithyman et al., 2015) found that the above limitations
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of penalty terms hold in practice and found that constraint optimization overcomes these

limitations, an observation motivating this work.

Gradient filtering

Aside from adding penalties to the data-misfit, we can also remove undesired model artifacts

by filtering the gradients of f(m). When we minimize the data objective (cf. Equation 1)

with standard gradient descent, this amounts to applying a filter to the gradient when we

update the model—i.e., we have

mk+1 = mk − γs(∇mf(m)), (5)

where γ is the step-length and s(·) a nonlinear or linear filter. For instance; Brenders and

Pratt (2007) apply a 2D spatial low-pass filter to prevent unwanted high-wavenumber updates

to the model when inverting low-frequency seismic data. The idea behind this approach is

that noise-free low-frequency data should give rise to smooth model updates. While these

filters can remove unwanted high-frequency components of the gradient, this method has

some serious drawbacks.

First, the gradient is no longer necessarily a gradient of the objective function (Equation 1)

after applying the filter. Although the filtered gradient may under certain technical conditions

remain a decent direction, optimization algorithms, such as spectral projected gradient (SPG)

(Birgin et al., 1999) or quasi-Newton methods (Nocedal and Wright, 2000), expect true

gradients when minimizing (constrained) objectives. Therefore gradient filtering can generally

not be used in combination with these optimization algorithms, without giving up their

expected behavior. Second, it is not straightforward to enforce more than one property on

the model in this way. Consider, for instance, a two-filter case where s1(·) is a smoother and
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s2(·) enforces upper and lower bounds on the model. In this case, we face the unfortunate

ambiguity s2(s1(∇mf(m))) 6= s1(s2(∇mf(m))). Moreover, this gradient will have non-

smooth clipping artifacts if we smooth first and then apply the bounds. Anagaw and Sacchi

(2017) present a method that filters the updated model instead of a gradient, but it is also

not clear how to extend this filtering technique to more than one model property.

Change of variables / subspaces

Another commonly employed method to regularize nonlinear inverse problems involves

certain (possibly orthogonal) transformations of the original model vector. While somewhat

reminiscent of gradient filtering, this approach entails a change of variables, see, e.g., Jervis

et al. (1996); Shen et al. (2005); Shen and Symes (2008) for examples in migration velocity

analysis and Li et al. (2013); Kleinman and den Berg (1992); Guitton et al. (2012); Guitton

and Díaz (2012) for examples the context of waveform inversion. This approach is also known

as a subspace method (Kennett and Williamson, 1988; Oldenburg et al., 1993). We can

invoke this change of variables by transforming the model into p = Tm, where T is a (not

necessarily invertible) linear operator. This changes the unconstrained optimization problem

minm f(m) into another unconstrained problem minp f(p). To see why this might be helpful,

we observe that the gradient becomes ∇pf(p) = T∗∇mf(m), which shows how T can be

designed to ‘filter’ the gradient. The matrix T can also represent a subspace (limited number

of basis vectors such as splines, wavelets). Just as with gradient filtering, a change of variables

does not easily lend itself to multiple transforms aimed at incorporating complementary

pieces of prior information. However, subspace information fits directly into the constrained

optimization approach if we constrain our models to be elements of the subspace. The

constrained approach has the advantage that we can straightforwardly combine it with other
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constraints in multiple transform-domains; all constraints in the proposed framework act on

the variables m in the physical space since we do not minimize subspace/transform-domain

coefficients p.

Modified Gauss-Newton

A more recent successful attempt to improve model estimation for certain nonlinear inverse

problems concerns imposing curvelet domain `1-norm based sparsity constraints on the

model updates (Herrmann et al., 2011; Li et al., 2012, 2016). This approach converges to

local minimizers of f(m) (and hopefully a global one) because sparsity constrained updates

provably remain descent directions (Burke (1990), chapter 2; Herrmann et al. (2011)).

However, there are no guarantees that the curvelet coefficients of the model itself will remain

sparse unless the support (= locations of the non-zero coefficients) is more or less the same

for each Gauss-Newton update (Li et al., 2016). Zhu et al. (2017) use a similar approach,

but they update the transform (dictionary) at every FWI iteration.

In summary, while regularizing the gradients or model updates leads to encouraging

results for some applications, the constrained optimization approach proposed in this work

enforces constraints on the model estimate itself, without modifying the gradient. More

importantly, while imposing constraints via projections may superficially look similar to the

above methods, our proposed approach differs fundamentally in two main respects. Firstly,

it projects uniquely on the intersection of arbitrarily many constraint sets — effectively

removing the ambiguity of order in which constraints are applied. Secondly, it does not alter

the gradients because it imposes the projections on the proposed model updates, i.e., we will

project mk+1 = mk −∇mf(m) onto the constraint set.
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INCLUDING PRIOR INFORMATION VIA CONSTRAINTS

Before we introduce constrained formulations of nonlinear inverse problems with multiple

convex and non-convex constraint sets, we first discuss some important core properties of

convex sets, of projections onto convex sets, and of projections onto intersections of convex

sets. These properties provide guarantees that our approach generalizes to arbitrarily many

constraint sets, i.e., one constraint set is mathematically the same as many constraint sets.

The presented convex set properties also show that there is no need to somehow order of the

sets to avoid ambiguity, as was the case for gradient filtering and of naive implementations

of constrained optimization. The constrained formulation also stays away from penalty

parameters, yet still offers guarantees all constraints are satisfied at every iteration of the

inversion.

Constrained formulation

To circumvent problems related to incorporating multiple sources of possibly non-differentiable

prior information, we propose techniques from constrained optimization (Boyd and Vanden-

berghe, 2004; Boyd et al., 2011; Parikh and Boyd, 2014; Beck, 2015; Bertsekas, 2015). The

key idea of this approach is to minimize the data-misfit objective while at the same time

making sure that the estimated model parameters satisfy constraints. These constraints are

mathematical descriptors of prior information on certain physical (e.g., maximal and minimal

values for the wavespeed) and geological properties (e.g., velocity models with unconformities

that lead to discontinuities in the wavespeed) on the model. We build our formulation on

earlier work on constrained optimization with up to three constraint sets as presented by

Lelièvre and Oldenburg (2009); Smithyman et al. (2015); Esser et al. (2015); Esser et al.
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(2016); Esser et al. (2018); Peters and Herrmann (2017).

Given an arbitrary but finite number of constraint sets (p), we formulate our constrained

optimization problem as follows:

min
m

f(m) subject to m ∈
p⋂
i=1

Ci. (6)

As before, f(m) : RN → R is the data-misfit objective, which we minimize over the discretized

medium parameters represented by the vector m ∈ RN . Prior knowledge on this model

vector resides in the indexed constraint sets Ci, i = 1 · · · p, each of which captures a known

aspect of the Earth’s subsurface. These constraints may include bounds on permissible

parameter values, desired smoothness or complexity, or limits on the number of layers in

sedimentary environments and many others.

In cases where more than one piece of prior information is available, we want the model

vector to satisfy these constraints simultaneously, such that we keep control over the model

properties as is required for strategies that relax constraints gradually (Esser et al., 2016;

Peters and Herrmann, 2017). Because it is difficult to think of a nontrivial example where

the intersection of these sets is empty, it is safe to assume that there is at least one model

that satisfies all constraints simultaneously. For instance, a homogeneous medium will satisfy

many constraints, because its total-variation is zero, it has a rank of 1 and has parameter

values between minimum and maximum values. We denote the mathematical requirement

that the estimated model vector satisfies p constraints simultaneously by m ∈
⋂p
i=1 Ci. The

symbol
⋂p
i=1 indicates the intersection of p items. Before we discuss how to solve constrained

nonlinear geophysical inverse problems, let us first discuss projections and examples of

projections onto convex and non-convex sets.
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Convex sets

A projection of m onto a set C corresponds to solving

PC(m) = arg min
x

1

2
‖x−m‖22 subject to x ∈ C. (7)

Amongst all possible model vectors x, the above optimization problem finds the vector x that

is closest in Euclidean distance to the input vector m while it lies in the constraint set. For

a given model vector x, the solution of this optimization problem depends on the constraint

set C and its properties. For instance, the above projection is unique for a convex C.

To better understand how to incorporate prior information in the form of one or more

constraint sets, let us first list some important properties of constraint sets and their

intersection. These properties allow us to use relatively simple algorithms to solve Problem 6

by using projections of the above type. First of all, most optimization algorithms require

the constraint sets to be convex. Intuitively, a set is convex if any point on the line segment

connecting any two points in a set is also in the set—i.e., for all x ∈ C and y ∈ C. In that

case, the following relation holds:

cx + (1− c)y ∈ C for 0 ≤ c ≤ 1. (8)

There are a number of advantages when working with convex sets, namely

i. The intersection of convex sets is also a convex set. This property implies that the

properties of a convex set also hold for the intersection of arbitrarily many convex

sets. Practically, if an optimization algorithm is defined for a single convex set, the

algorithm also works in case of arbitrarily many convex sets, as the intersection is still

a single convex set.
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ii. The projection onto a convex set is unique (Boyd and Vandenberghe, 2004,section 8.1).

When combined with property (i), this implies that the projection onto the intersection

of multiple convex sets is also unique. In this context, a unique projection means that

given any point outside a convex set, there exists one point in the set which is closest

(in a Euclidean sense) to the given point than any other point in the set.

iii. Projections onto convex sets are non-expansive, see e.g., (Bauschke and Combettes,

2011,section 4.1-4.2, or Dattorro (2010), E.9.3). If we define the projection operator

as PC(x) and take any two points x and y, the non-expansive property is stated as:

‖PC(x)− PC(y)‖ ≤ ‖x− y‖. This property guarantees that projections of estimated

models on a convex set are ‘stable’. In this context, stability implies that any pair

of models moves closer or remain equally distant to each other after projection. This

prevents increased separation after projection of pairs of models.

While these properties make convex sets favorites amongst practitioners of (convex)

optimization, restricting ourselves to convexity is sometimes too limiting for our application.

In the following sections, we may use non-convex sets in the same way as a convex set, but

in that case, the above properties generally do not hold. Performance of the algorithms then

needs empirical verification.

Actual projections onto a single set themselves are either available in closed-form (e.g.,

for bounds and certain norms) or are computed iteratively (with the alternating direction

method of multipliers, ADMM, see e.g., Boyd et al. (2011) and Appendix A) when closed

form-expressions for the projections are not available.
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COMPUTING PROJECTIONS ONTO INTERSECTIONS OF

CONVEX SETS

Our problem formulation, equation 6, concerns multiple constraints, so we need to be able to

work with multiple constraint sets simultaneously to make sure the model iterates satisfy all

prior knowledge. To avoid intermediate model iterates to become physically and geologically

unfeasible, we want our model iterates to satisfy a predetermined set of constraints at every

iteration of the inversion process. Because of property (i) (listed above), we can treat the

projection onto the intersection of multiple constraints as the projection onto a single set.

This implies that we can use relatively standard (convex) optimization algorithm to solve

Problem 6 as long as the intersection of the different convex sets is not empty. We define the

projection on the intersection of multiple sets as

PC(m) = arg min
x

‖x−m‖22 s.t. x ∈
p⋂
i=1

Ci. (9)

The projection of m onto the intersection of the sets,
⋂p
i=1 Ci, means that we find the unique

vector x, in the intersection of all sets, that is closest to m in the Euclidean sense. To

find this vector, we compute the projection onto this intersection via Dykstra’s alternating

projection algorithm (Dykstra, 1983; Boyle and Dykstra, 1986; Bauschke and Koch, 2015).

We made this choice because this algorithm is relatively simple to implement (we only need

projections on each set individually) and contains no manual tuning parameters. By virtue

of property (ii), projecting onto each set separately and cyclically, Dykstra’s algorithm finds

the unique projection on the intersection as long as all sets are convex (Boyle and Dykstra,

1986,Theorem 2).

To illustrate how Dykstra’s algorithm works, let us consider the following toy example

where we project the point (2.5, 3.0) onto the intersection of two constraint sets, namely a
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halfspace (‖y‖2 ≤ 2, this corresponds to bound constraints in two dimensions) and a disk

(x2 + y2 ≤ 3, this corresponds to a ‖ · ‖2-norm ball), see Figure 1. If we are just interested

in finding a feasible point in the set that is not necessarily the closest, we can use the

projection onto convex sets (POCS) algorithm (also known as von Neumann’s alternating

projection algorithm) whose steps are depicted by the solid black line in Figure 1. The POCS

algorithm iterates PC2(. . . (PC1(PC2(PC1(m))))), so depending on whether we first project on

the rectangle or disk, POCS finds two different feasible points. Like POCS, Dykstra projects

onto each set in an alternating fashion, but unlike POCS, the solution path that is denoted

by the red dashed line provably ends up at a single unique feasible point that is closest to

the starting point. The solution found by Dykstra is independent of the order with which

the constraints are imposed. POCS does not project onto the intersection of the two convex

sets; it just solves the convex feasibility problem

find x ∈
p⋂
i=1

Ci (10)

instead. POCS finds a model that satisfies all constraints but which is non-unique (solution

is either (1.92, 2.0) or (2.34, 1.87) situated at Euclidean distances 1.16 and 1.14) and not the

projection at (2.0,
√

22 + 32 ≈ 2.24) at a minimum distance of 1.03. This lack of uniqueness

and vicinity to the true solution of the projection problem leads to solutions that satisfy the

constraints, but that may be too far away from the initial point and this may adversely affect

the inversion. See also (Escalante and Raydan, 2011,Example 5.1; Dattorro, 2010,Figure 177

& Figure 182, and Bauschke and Combettes (2011), Figure 29.1) for further details on this

important point.

The geophysical implication of this difference between Dykstra and POCS is that the

latter may end up solving a problem with unnecessarily tight constraints, moving the model
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too far away from the descent direction informed by the data misfit objective. We observe

this phenomenon of being too constrained in Figure 1 where the two solutions from POCS

are not on the boundary of both sets, but instead relatively ‘deep’ inside one of them. Aside

from potential “over constraining”, the results from POCS may also differ depending which

of the individual constraints is activated first leading to undesirable side effects. The issue

of “over constraining” does not just occur in geometrical two-dimensional examples and it

is not specific to the constraints from the previous example. Figure 2 shows what happens

if we project a velocity model (with Dykstra) or find two feasible models with POCS, just

as we show in Figure 1. The constraint is the intersection of bounds ({m | li ≤ mi ≤ ui})

and total-variation ({m | ‖Am‖1 ≤ σ} with scalar σ > 0 and A = (DT
x DT

z )T ). While one

of the POCS results is similar to the projection, the other POCS result has much smaller

total-variation than the constraint enforces, i.e., the result of POCS is not the projection

but a feasible point in the interior of the intersection. To avoid these issues, Dykstra is

our method of choice to include two or more constraints into nonlinear inverse problems.

Algorithm 1 summarizes the main steps of Dykstra’s approach, which aside from stopping

conditions, is parameter free. In Figure 3 we show what happens if we replace the projection

(with Dykstra’s algorithm) in projected gradient descent with POCS. Projected gradient

descent solves an FWI problem with bounds and total-variation constraints while using a

small number of sources and receivers and an incorrectly estimated source function. The

results of Dykstra and POCS are different, while the results using POCS depend on the

ordering of the sets. Dykstra’s algorithm is independent of the ordering because it finds the

projection onto an intersection of convex sets, which is unique.

[Figure 1 about here.]
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Algorithm 1 Dykstra’s algorithm, following the notation of Birgin and Raydan (2005), to

compute the projection of m onto the intersection of p convex sets: PC(m) = arg minx ‖x−

m‖22 s.t. x ∈
⋂p
i=1 Ci. yi are auxiliary vectors.

Algorithm DYKSTRA(m,PC1 ,PC2 , . . . ,PCp)

0a. x0
p = m, k = 1 //initialize

0b. y0
i = 0 for i = 1, 2, . . . , p //initialize

WHILE stopping conditions not satisfied DO

1. xk0 = xk−1p

FOR i = 1, 2, . . . , p

2. xki = PCi(xki−1 − yk−1i )

END

FOR i = 1, 2, . . . , p

3. yki = xki − (xki−1 − yk−1i )

END

4. k = k + 1

END

output: xkp

[Figure 2 about here.]

[Figure 3 about here.]

NONLINEAR OPTIMIZATION WITH PROJECTIONS

So far, we discussed a method to project models onto the intersection of multiple constraint

sets. How these projections interact with nonlinear optimization problems with expensive
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to evaluate (data-misfit) objectives is not yet clear and also delicate given the devastating

effects parasitic local minima may have on the progression of the inversion. Moreover, aside

from our design criteria (multiple constraints instead of competing penalties; guarantees

that model iterations remain in constraint set), we need to include a clean separation of

misfit/gradient calculations and projections so that we avoid additional expensive PDE

solves at all times. This separation also allows us to use different codes bases for each task

(objective/gradient calculations versus projections).

Projected-gradient descent

The simplest first-order algorithm that minimizes a differentiable objective function subject to

constraints is the projected gradient method (e.g., Beck (2014), section 9.4). This algorithm

is a straightforward extension of the well-known gradient-descent method (e.g., Bertsekas,

2015, section 2.1) involving the following updates on the model:

mk+1 = PC
(
mk − γ∇mf(mk)

)
. (11)

A line search determines the scalar step length γ > 0. This algorithm first takes a gradient-

descent step, involving an expensive gradient calculation, followed by the often much cheaper

projection of the updated model back onto the intersection of the constraint sets. By

construction, the computationally expensive gradient computations (and data-misfit for

the line search) are separate from projections onto constraints. The projection step itself

guarantees that the model estimate mk satisfies all constraints at every kth iteration.

Figure 4 illustrates the difference between gradient descent to minimize a a two

variable non-convex objective minm f(m), and projected gradient descent to minimize

minm f(m) s.t.m ∈ C. If we compare the solution paths for gradient and projected gradient
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descent, we see that the latter explores the boundary as well as the interior of the constraint

set C = {m| ‖m‖2 ≤ σ} to find a minimizer. This toy example highlights how constraints

pose upper limits (the set boundary) on certain model properties but do not force solutions

to stay on the constraint set boundary. Because one of the local minima lies outside the

constraint set, this example also shows that adding constraints may guide the solution to

a different (correct) local minimizer. This is exactly what we want to accomplish with

constraints for FWI: prevent the model estimate mk to convergence to local minimizers that

represent unrealistic models.

[Figure 4 about here.]

Spectral projected gradient

Standard projected gradient has two important drawbacks. First, we need to project onto

the constraint set after each line search step, which involves multiple expensive objective

calculations. To be more specific, we need to calculate the step-length parameter γ ∈ (0, 1] if

the objective of the projected model iterate is larger than the current model iterate—i.e.,

f
(
PC(mk − γ∇mf(mk))

)
> f(mk). In that case, we need to reduce γ and test again

whether the data-misfit is reduced. For every reduction of γ, we need to recompute the

projection and evaluate the objective, which is too expensive. Second, first-order methods

do not use curvature information, which involves the Hessian of f(m) or access to previous

gradient and model iterates. Projected gradient algorithms are therefore often slower than

Newton, Gauss-Newton, or quasi-Newton algorithms for FWI without constraints.

To avoid these two drawbacks and possible complications arising from the interplay of

imposing constraints and correcting for Hessians, we use the spectral projected gradient
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method (SPG; Birgin et al. (1999); Birgin et al. (2003)); an extension of the standard

projected gradient algorithm (Equation 11), which corresponds to a simple scalar scaling

(related to the eigenvalues of the Hessian, see Birgin et al. (1999) and Dai and Liao (2002)).

At model iterate k, the SPG iterations involve the step

mk+1 = mk + γpk, (12)

with update direction

pk = PC
(
mk − α∇mf(mk)

)
−mk. (13)

These two equations define the core of SPG, which differs from standard projected gradient

descent in three different ways:

i. The spectral stepsize α (Barzilai and Borwein, 1988; Raydan, 1993; Dai and Liao, 2002)

is calculated by from the secant equation (Nocedal and Wright, 2000, section 6.1) to

approximate the Hessian, leading to accelerated convergence. An interpretation of the

secant equation is to mimic the action of the Hessian by scalar α and use finite-difference

approximations for the second derivative of f(m). This approach is closely related to

the idea behind quasi-Newton methods. We compute α as the solution of

Dk = arg min
D=αI

‖Dsk − yk‖2, (14)

where yk = ∇mf(mk+1)−∇mf(mk) and sk = mk+1 −mk, and I the identity matrix.

This results in scaling by α = s∗ksk/s
∗
kyk derived from gradient and model iterates

from the current and previous SPG iterations. Clearly, this is computationally cheap

because α is not computed by a separate line search.

ii. Spectral-projected gradient employs non-monotone (Grippo and Sciandrone, 2002)

inexact line searches to calculate the γ in equation 12. As for all FWI problems, f(m)
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is not convex so we cannot use an exact line-search. Non-monotone means that the

objective function value is allowed to increase temporarily, which often results in faster

convergence and fewer line search steps, see, e.g., Birgin et al. (1999) for numerical

experiments. Our intuition behind this is as follows: gradient descent iterations often

exhibit a ‘zig-zag’ pattern when the objective function behaves like a ‘long valley’ in a

certain direction. When the line searches are non-monotone, the objective does not

always have to go down so we can take relatively larger steps along the valley in the

direction of the minimizer that are slightly ‘uphill’, increasing the objective temporarily.

iii. Each SPG iteration requires only one projection onto the intersection of constraint

sets to compute the update direction (Equation 13) and does not need additional

projections for line search steps. This is a significant computational advantage over

standard projected gradient descent, which computes one projection per line search

step, see equation 11. From equations 12 and 13, we observe that γpk lies on the

line between the previous model estimate (mk) and the proposed update, projected

back onto the feasible set—i.e., PC(mk − α∇mf(mk)). Therefore, mk+1 is on the line

segment between these two points in a convex set and the new model will satisfy all

constraints simultaneously at every iteration (see equation 8). For this reason, any line

search step that reduces γ will also be an element of the convex set. Works by Zeev

et al. (2006) and Bello and Raydan (2007) confirm that SPG with non-monotone line

searches can lead to significant acceleration on FWI and seismic reflection tomography

problems with bound constraints compared to projected gradient descent.

In summary, each SPG iteration in Algorithm 2 requires at the kth iteration a single

evaluation of the objective f(mk) and gradient ∇mf(mk). In fact, SPG combines data-misfit
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minimization (our objective) with imposing constraints, while keeping the data-misfit/gradient

and projection computations separate. When we impose the constraints, the objective and

gradient do not change. Aside from computational advantages, this separation allows us to

use different code bases for the objective f(m) and its gradient ∇mf(m) and the imposition

of the constraints. The above separation of responsibilities also leads to a modular software

design, which applies to different inverse problems that require (costly) objective and gradient

calculations.

Spectral projected gradient with multiple constraints

We now arrive at our main contribution where we combine projections onto multiple con-

straints with nonlinear optimization with costly objective and gradient calculations using

a spectral projected gradient (SPG) method. Recall from the previous section that the

projection onto the intersection of convex sets in SPG is equivalent to running Dykstra’s

algorithm (Algorithm 1) —i.e., we

PC(mk − α∇mf(mk))

= PC1 ⋂ C2 ⋂···⋂ Cp(mk − α∇mf(mk))

⇔ DYKSTRA(mk − α∇mf(mk),PC1 , . . . ,PCp).

(15)

With this equivalence established, we arrive at our version of SPG presented in Algorithm 2,

which has appeared in some form in the non-geophysical literature Birgin et al. (2003) and

Schmidt and Murphy (2010).

The proposed optimization algorithm for nonlinear inverse problems with multiple con-

straints (Eq. 6) has the following three-level nested structure:

1. At the top level, we have a possibly non-convex optimization problem with a differen-
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Algorithm 2 minm f(m) s.t.m ∈
⋂p
i=1 Ci with spectral-projected gradient, non-monotone

line searches and combined with Dykstra’s algorithm.
input:

// one projector per constraint set

PC1 , PC2 , . . .

m0 //starting model

Initialization

0. M = integer, η ∈ (0, 1), select initial α

0. k = 1, select sufficient descent parameter ε

WHILE stopping conditions not satisfied DO

1. f(mk), ∇mf(mk) //objective & gradient

// project onto intersection of sets:

2. rk = DYKSTRA
(
mk − α∇mf(mk),PC1 ,PC2 , . . .

)
3. pk = rk −mk // update direction

//save previous M objective:

4a. fref = {fk, fk−1, . . . , fk−M}

4b. γ = 1

4c. IF f(mk + γpk) < max(fref) + εγ∇mf(mk)∗pk

mk+1 = mk + γp // update model iterate

yk = ∇mf(mk+1)−∇mf(mk)

sk = mk+1 −mk

α =
s∗ksk
s∗kyk

// spectral steplength

k = k + 1

ELSE

γ = ηγ //step size reduction,

go back to 4c

END

output: mk
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tiable objective and multiple possibly non-differentiable constraints:

min
m

f(m) subject to m ∈
p⋂
i=1

Ci,

which we solve with the spectral projected gradient method;

2. At the next level, we project onto the intersection of multiple (convex) sets:

PC(m) = arg min
x

‖x−m‖2 subject to x ∈
p⋂
i=1

Ci

implemented via Algorithm 1 (Dykstra’s algorithm);

3. At the lowest level, we project onto individual sets:

PCi(m) = arg min
x

‖x−m‖2 subject to x ∈ Ci

for which we use ADMM (see Appendix B) if there is no closed form solution available.

While there are many choices for the algorithms at each level, we base our selection of

any particular algorithm on their ability to solve each level without relying on additional

manual tuning parameters. We summarized our choices in Figure 5, which illustrates the

three-level nested optimization structure.

[Figure 5 about here.]

Numerical example

As we mentioned earlier, full-waveform inversion (FWI) faces problems with parasitic local

minima when the starting model is not sufficiently accurate, and the data are cycle skipped.
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FWI also suffers when no reliable data are available at the low end of the spectrum (typically

less than 3 Hertz) or at offsets larger than about two times the depth of the model. Amongst

the myriad of recent, sometimes somewhat ad hoc proposals to reduce the adverse effects of

these local minima, we show how the proposed constrained optimization framework allows

us to include prior knowledge on the unknown model parameters with guarantees that our

inverted models indeed meet these constraints for each updated model.

Let us consider the situation where we may not have precise prior knowledge on the

actual model parameters itself, but where we may still be in a position to mathematically

describe some characteristics of a good starting model. With a good starting model, we mean

a model that leads to significant progress towards the true model during nonlinear inversion.

So our strategy is to first improve our starting model — by constraining the inversion such

that the model satisfies our expectation of what a starting model looks like — followed by a

second cycle of regular FWI. We relax constraints for the second cycle to allow for model

updates that further improve the data fit. Figure 6 shows the actual and initial starting

models for this 2D FWI experiment. For this purpose, we take a 2D slice from the BG

Compass velocity and density model. We choose this model because it contains realistic

velocity “kick back”, which is known to challenge FWI. The original model is sampled at

6 m, and we generate “observed data” by running a time-domain (Louboutin et al., 2017)

simulation code with the velocity and density models given in Figure 6. The sources and

receivers (56 each) are located near the surface, with 100 m spacing. A coarse source and

receiver spacing of a 100 m amounts to about one spatial wavelength at the highest frequency

in the water; well below the spatial Nyquist sampling rate.

To mimic realistic situations where the simulation kernels of the inversion miss important

aspects of the wave physics, we invert for velocity only while fixing the density to be equal
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to one everywhere. While there are better approximations to the density model than the one

we use, we intentionally use a rough approximation of the physics to show that constraints

are also beneficial in that situation. To add another layer of complexity, we solve the inverse

problem in the frequency domain (Da Silva and Herrmann, 2017) following the well-known

multiscale frequency continuation strategy of Bunks (1995). To deal with the situation where

ocean bottom marine data is often severely contaminated with noise at the low-end of the

spectrum, we start the inversion on the frequency interval 3−4 Hertz. We define this interval

as a frequency batch. We subsequently use the result of the inversion with this first frequency

batch as the starting model for the next frequency batch, inverting data from the 4− 5 Hertz

interval. We repeat this process up to frequencies on the interval 14− 15 Hertz. We also

estimate the unknown frequency spectrum of the source on the fly during each iteration,

using the variable projection method by (Pratt, 1999; Aravkin and van Leeuwen, 2012). To

avoid additional complications, we assume the sources and receivers to be omnidirectional

with a flat spatial frequency spectrum.

[Figure 6 about here.]

While frequency continuation and on-the-fly source estimation are both well-established

techniques by now, the combination of velocity-only inversion for a poor starting model

remains challenging because we (i) ignore density variations in the inversion, which means we

can never hope to fit the observed data fully; (ii) we miss the velocity kick back at roughly

300− 500m in the starting model; and (iii) we invert on an up to roughly 10× coarser grid

compared to the fine 6m grid on which the “observed” time-domain data was generated.

Because of these challenges, battle-tested multiscale workflows for FWI, where we start at

the low frequencies and gradually work our way up to higher frequencies, fail even if we
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impose bound constraints (minimum of 1425 (m/s) and maximum 5000 (m/s)) values for the

estimated velocities) on the model. See Figure 7. Only the top 700 m of the velocity model

is inverted reasonably well. The bottom part, on the other hand, is far from the true model

almost everywhere. The main discontinuity into the ≥ 4000 (m/s) rock is not at the correct

depth and does not have the right shape.

[Figure 7 about here.]

To illustrate the potential of adding more constraints on the velocity model, we follow

a heuristic that combines multiple warm-started multiscale FWI cycles with relaxing the

constraints. This approach was successfully employed in earlier work by Esser et al. (2016);

Esser et al. (2018) and Peters and Herrmann (2017). Since we are dealing with a relatively

undistorted sedimentary basin (see Figure 6), we impose constraints that limit lateral

variations and force the inverted velocities to increase monotonically with depth during

the first inversion cycle. In the second cycle, we relax this condition. We accomplish this

by combining box constraints with slope constraints in the vertical direction (described in

detail in Appendix B). To enforce continuity in the lateral direction, we work with tighter

slope constraints in that direction. Specifically, we limit the variation of the velocity per

meter in the depth direction (z-coordinate) of the discretized model m[i, j] = m(i∆z, j∆x).

Mathematically, we enforce 0 ≤ (m[i + 1, j] − m[i, j])/∆z ≤ +∞ for i = 1 · · ·nz and

j = 1 · · ·nx, where nz, nx are the number of grid points in the vertical and lateral direction,

and ∆z the grid size in depth. With this slope constraint, the inverted velocities are only

allowed to increase monotonically with depth, but there is no limit on how fast the velocity

can increase in that direction. We impose lateral continuity by selecting the lateral slope

constraint as −ε ≤ (m[i, j + 1] −m[i, j])/∆x ≤ +ε for all i = 1 · · ·nz, j = 1 · · ·nx. The
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scalar ε is a small number set in the physical units of velocity [meter/second] change per

meter and ∆x is the grid size in the lateral direction. We select ε = 1.0 for this example.

Compared to other methods that enforce continuity, e.g., via a sharpening operator in a

quadratic penalty term, these slope constraints have several advantages. First, they have

a natural interpretable physical parameter (ε). Second, they are met at each point in the

model—i.e., they are applied and enforced pointwise; and most importantly these slope

constraints do not impose more structure than needed. For instance, the vertical slope

constraint only enforces monotonic increases and nothing else. We do not claim that other

methods, such as Tikhonov regularization, cannot accomplish these features. We claim that

we do this without nebulous parameter tuning and with guarantees that our constraints are

satisfied at each iteration of FWI.

The FWI results with slope constraints for 3−4 Hertz data are shown in Figure 8(a). This

result from the first FWI cycle improves the starting model significantly without introducing

geologically unrealistic artifacts. This partially inverted model can now serve as input for the

second FWI cycle where we invert data over a broader frequency range between 3− 15 Herz

(cf. Figure 8(b) ) using box constraints only. Apparently, adding slope constraints during

the first cycle is enough to prevent the velocity model from moving in the wrong direction

while allowing for enough freedom to get closer to the true model underlying the success

of the second cycle without slope constraints. This example demonstrates that keeping

the recovered velocity model after the first FWI cycle in check — via not too constrained

constraints — can be a successful strategy even though final velocity model does not lie

in the constraint set imposed during the first FWI cycle where velocity kick back was not

allowed. We kept the computational overhead of this multi-cycle FWI method to a minimum

by working with low-frequency data only during the first cycle, which reduces the size of the
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computational grid by a factor of about fourteen.

This example was designed to illustrate how our framework for constrained FWI can be

of great practical use for FWI problems where good starting models are missing or where

low-frequencies and long offsets are absent. Our proposed method is not tied to a specific

constraint. For different geological settings, we can use the same approach, but with different

constraints.

[Figure 8 about here.]

DISCUSSION

Our main contribution in solving optimization problems with multiple constraints is that

we employ a hierarchical divide and conquer approach to handle problems with expensive

to evaluate objectives and gradients. We arrive at this result by splitting each problem

into simpler and therefore computationally more manageable subproblems. We start from

the top with spectral-projected gradient (SPG), which splits the constrained optimization

problem into an optimality (decreasing the objective) and feasibility (satisfying all constraints)

problem, and continue downwards by satisfying the individual constraints using Dykstra’s

algorithm. Even at the lowest level, we employ this strategy when there is no closed

form projection available for the constraints. We use the alternating direction method of

multipliers (ADMM) for the examples. As a result, we end up with an algorithm that remains

computationally feasible for large-scale problems with expensive to evaluate objectives and

gradients.

So far, the minimization of our optimality problem relied on first-order derivative informa-

tion only and what is essentially a scalar approximation of Hessian via SPG. Theoretically, we
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can also incorporate Dykstra’s algorithm into projected quasi-Newton (Schmidt et al., 2009)

or (Gauss-) Newton methods (Schmidt et al., 2012; Lee et al., 2014). However, unlike SPG,

these approaches usually require more than one projection computation per FWI iteration to

solve quadratic sub-problems with constraints. We would require a more careful evaluation

to see if second-order methods in this case indeed provide advantages compared to projected

first-order methods such as SPG.

We also would like to note that there exist parallel versions of Dykstra and similar

algorithms (Censor, 2006; Combettes and Pesquet, 2011; Bauschke and Koch, 2015). These

algorithms compute all projections in parallel, so each Dykstra iteration takes as much time

as the most expensive projection computations. As a result, the time per Dykstra iteration

does not necessarily increase if there are more constraint sets.

CONCLUSIONS

Because of its computational complexity and notorious local minima, full-waveform inversion

easily ranks amongst one of the most challenging nonlinear inverse problems. To meet this

challenge, we introduced a versatile optimization framework for (non)linear inverse problems

with the following key features: (i) it invokes prior information via projections onto the

intersection of multiple (convex) constraint sets and thereby avoids reliance on cumbersome

trade-off parameters; (ii) it allows for imposing arbitrarily many constraints simultaneously

as long as their intersection is non-empty; (iii) it projects the updated models uniquely on

the intersection at every iteration and as such stays away from ambiguities related to the

order in which the constraints are invoked; (iv) it guarantees that model updates satisfy

all constraints simultaneously at each iteration and (v) it is built on top of existing code

bases that only need to compute data-misfit objective values and gradients. These features
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in combination with our ability to relax and add other constraints that have appeared in

the geophysical literature offer a powerful optimization framework to mitigate some of the

adverse effects of local minima.

Aside from promoting certain to-be-expected model properties, our examples also con-

firmed that invoking multiple constraints as part of a multi-cycle inversion heuristic can

lead to better results. These improvements occur as long as the constraint set is small

enough to prevent adverse model updates caused by local minima to enter into the model

estimate, during the first full-waveform inversion cycle(s). Provided the inversions make

some progress to the solution, later inversion cycles will benefit if the tight constraints are

subsequently relaxed either by dropping them or by increasing the size of the constraint

set. Our examples confirm this important aspect and clearly demonstrate the advantages of

working with constraints that are satisfied at each iteration of the inversion.

Compared to many other regularization methods, our approach is easily extendable to

other convex or non-convex constraints. However, for non-convex constraints, we can no

longer offer certain guarantees, except that all sub-problems in the alternating direction

method of multipliers remain solvable without the need to tune trade-off parameters manually.

We can do this because we work with projections onto the intersection of multiple sets and

we split the computations into multiple pieces that have closed-form solutions.
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APPENDIX A

Alternating Direction Method of Multipliers (ADMM) for the projection

problem.

We show how to use Alternating Direction Method of Multipliers (ADMM) to solve projection

problems. Iterative optimization algorithms are necessary in case there is no closed-form

solution available. The basic idea is to split a ‘complicated’ problem into several ‘simple’

pieces. Consider a function that is the sum of two terms and where one of the terms

contains a transform-domain operator: minx h(x) + g(Ax). We proceed by renaming one

of the variables, Ax → z and we also add the constraint Ax = z. This new problem is

minx,z h(x) + g(z) s.t. Ax = z. The solution of both problems is the same, but algorithms

to solve the new formulation are typically simpler. This formulation leads to an algorithm

that can solve all projection problems discussed in this paper. Different projections only

need different inputs but require no algorithmic changes.

As an example, consider the projection problem for `1 constraints in a transform-domain

(e.g., total-variation, sparsity in the curvelet domain). The corresponding set is C ≡

{m | ‖Am‖1 ≤ σ} and the associated projection problem is

PC(m) = arg min
x

1

2
‖x−m‖22 s.t ‖Ax‖1 ≤ σ. (16)

ADMM solves problems with the structure: minm,z h(m) + g(z) s.t. Ax + Bz = c. The

projection problem is of the same form as the ADMM problem. To see this, we use the

indicator function on a set C as

ιC(m) =


0 if m ∈ C,

+∞ if m /∈ C.

(17)
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The indicator function ι`1(Am) corresponds to the set C that we introduced above. We use

the indicator function and variable splitting to rewrite the projection problem as

PC(m) = arg min
x

1

2
‖x−m‖22 s.t ‖Ax‖1 ≤ σ

= arg min
x

1

2
‖x−m‖22 + ι`1(Am)

= arg min
x,z

1

2
‖x−m‖22 + ι`1(z) s.t Ax = z.

(18)

We have c = 0 and B = −I for all projection problems in this paper. The problem stated

in the last line is the sum of two functions acting on different variables with additional

equality constraints. This is exactly what ADMM solves. The following derivation is mainly

based on Boyd et al. (2011). Identify h(x) = 1
2‖x −m‖22 and g(z) = ιC(z). ADMM uses

the augmented-Lagrangian (Nocedal and Wright, 2000,chapter 17) to include the equality

constraints Ax− z = 0 as

Lρ(x, z,v) = h(x) + g(z) + v∗(Ax− z) +
ρ

2
‖Ax− z‖22. (19)

The scalar ρ is a positive penalty parameter and v is the vector of Lagrangian multipliers.

The derivation of the ADMM algorithm is non-trivial, see e.g., Ryu and Boyd (2016) for a

derivation. Each ADMM iteration (k ) has three main steps:

xk+1 = arg min
x
Lρ(x, z

k,vk)

zk+1 = arg min
z
Lρ(x

k+1, z,vk)

vk+1 = vk + ρ(Axk+1 − zk+1).

ADMM will converge to the solution as long as ρ is positive and reaches a stable value

eventually. The choice of ρ does influence the number of iterations that are required (Nishihara

et al., 2015; Xu et al., 2017, 2016) and the performance on non-convex problems (Xu et al.,

2016). We use an adaptive strategy to adjust ρ at every iteration, see He et al. (2000). The
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derivation proceeds in the scaled form with u = v/ρ. Reorganizing the equations leads to

xk+1 = arg min
x

(
h(x) +

ρ

2
‖Ax− zk + uk‖22

)
zk+1 = arg min

z

(
g(z) +

ρ

2
‖Axk+1 − z + uk‖22

)
uk+1 = uk + Axk+1 − zk+1.

Now insert the expressions for h(x) and g(z) to obtain the more explicitly defined iterations

xk+1 = arg min
x

(
1

2
‖x−m‖22 +

ρ

2
‖Ax− zk + uk‖22

)
zk+1 = arg min

z

(
ιC(z) +

ρ

2
‖Axk+1 − z + uk‖22

)
uk+1 = uk + Axk+1 − zk+1.

If we replace the minimization steps with their respective close-form solutions, we have the

following pseudo-algorithm:

xk+1 = (ρA∗A + I)−1
(
ρA∗(zk − uk) + m

)
zk+1 = PC(Axk+1 + uk)

uk+1 = uk + Axk+1 − zk+1.

This shows that the second minimization step in the ADMM algorithm to compute a projection

is a different projection. The projection part of ADMM for the transform-domain `1 constraint

(zk+1 = PC(Axk+1 + uk) = arg minz 1/2‖z− v‖22 s.t ‖z‖1 ≤ σ, with v = Axk+1 + uk) is a

much simpler problem than the original projection problem (Equation 16) because we do

not have the transform-domain operator multiplied with the optimization variable. The

x-minimization step is equivalent to the least-squares problem

xk+1 = arg min
x

∥∥∥∥

√
ρA

I

x−


√
ρ(zk − uk)

m

∥∥∥∥
2

(20)

We can solve the x-minimization problem using direct (QR-factorization) or iterative methods

(LSQR (Paige and Saunders, 1982) on the least-squares problem or conjugate-gradient on the
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normal equations). We adjust the penalty parameter ρ every ADMM cycle. We recommend

iterative algorithms for this situation, to avoid recomputing the QR factorization every

ADMM iteration. Iterative methods allow for the current estimate of x as the initial

guess. Moreover, z and u change less as the ADMM iterations progress, meaning that the

previous x is a better and better initial guess. Therefore, the number of LSQR iterations

typically decreases as the number of ADMM iterations increases. Algorithm 3 shows the

ADMM algorithm to compute projections, including automatic adaptive penalty parameter

adjustment. For numerical experiments in this paper, we use µ = 10, τ = 2 as suggested by

Boyd et al. (2011).

If we have a different constraint set, but same transform domain operator, we only

change the projector that we pass to ADMM. If the constraint set is the same, but the

transform-domain operator is different, we provide a different A to ADMM. Therefore, the

various types of transform-domain `1, cardinality or bound constraints all use ADMM to

compute the projection, but with (partially) different inputs.

APPENDIX B

Transform-domain bounds / slope constraints

Our main interest in transform-domain bound constraints originates from the special case of

slope constraints, see e.g., Petersson and Sigmund (1998) and Bauschke and Koch (2015) for

examples from computational design. Lelièvre and Oldenburg (2009) propose a transform-

domain bound constraint in a geophysical context, but use interior point algorithms for

implementation. In our context, slope means the model parameter variation per distance

unit, over a predefined path in the model. For example, the slope of the 2D model parameters
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Algorithm 3 ADMM to compute the projection, including automatic (heuristic) penalty

parameter adjustment.
input: m, transform-domain A,

norm/bound/cardinality projector PC

x0 = m, z0 = 0, u0 = 0, k = 1,

select τ > 1, µ > 1

WHILE not converged

xk+1 = (ρA∗A + I)−1
(
ρA∗(zk − uk) + m

)
zk+1 = PC(Axk+1 + uk)

uk+1 = uk + Axk+1 − zk+1

r = Axk+1 − zk+1

s = ρA∗(zk+1 − zk)

IF ‖r‖ > µ‖s‖ //increase penalty

ρ = ρτ

u = u/τ

IF ‖s‖ > µ‖r‖ //decrease penalty

ρ = ρ/τ

u = uτ

ELSE

ρ //do nothing

END

END

output: x
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in the vertical direction (z-direction) form the constraint set

C ≡ {m | blj ≤ ((Dz ⊗ Ix)m)j ≤ buj }, (21)

with Kronecker product ⊗, identity matrix with dimension equal to the x-direction Ix, and

Dz is a 1D finite-difference matrix corresponding to the z-direction. blj is element j of

the lower bound vector. An appealing property of this constraint is the physical meaning

in a pointwise sense. If the model parameters are acoustic velocity in meters per second

and the grid is also in units of meters, the constraint then defines the maximum velocity

increment/decrement per meter in a direction. This type of direct physical meaning of a

constraint is not available for `1, rank or Nuclear norm constraints; those constraints assign

a single scalar value to a property of the entire model.

There are different modes of operation of the slope constraint:

Approximate monotonicity. The acoustic velocity generally increases with depth inside

the Earth. This means the parameter values increase (approximately) monotonically with dept

(positivity of the vertical discrete gradient). The set C ≡ {m | − ε ≤ ((Dz ⊗ Ix)m)j ≤ +∞}

describes this situation, where ε > 0 is a small number. Exact monotonicity corresponds to

ε = 0, which means we allow the model parameter values to increase arbitrarily fast with

increasing depth, but enforce a slow decrease of parameter values when looking into the

depth direction.

Smoothness. We obtain a type of smoothness by setting both bounds to small numbers:

C ≡ {m | − ε1 ≤ ((Dz ⊗ Ix)m)j ≤ +ε2}, where ε1 > 0, ε2 > 0 are small numbers. This type

of smoothness results in a different projection problem than if smoothness is obtained using

constraints based on norms or subspaces. Another difference is that the slope constraint is

inherently locally defined.
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The slope constraint may be defined along any path using any discrete derivative matrix.

Higher order derivatives lead to bounds on different properties. Approximate monotonicity

of parameter values can also be obtained using other constraints. Esser et al. (2016) use

the norm based hinge-loss constraint. However, we prefer to work with linear inequalities

because norm based constraints are not defined pointwise and do not have the direct physical

interpretation as described above. Figure 9 shows what happens when we project a velocity

model onto the different slope constraint sets.

[Figure 9 about here.]
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Figure 2: The Marmousi model, the projection onto an intersection of bound constraints
and total-variation constraints found with Dykstra’s algorithm and two feasible models
found by the POCS algorithm. We observe that one of the POCS results is very similar to
the projection, but the other result is very different. The different model (POCS 2) has a
total-variation much smaller than requested. This situation is analogous to Figure 1.
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Figure 3: FWI with an incorrect source function with projections (with Dykstra) and FWI
with two feasible points (with POCS) for various TV-balls (as a percentage of the TV of the
true model) and bound constraints. Also shows differences (rightmost two columns) between
results. The results show that using POCS inside a projected gradient algorithm instead of
the projection leads to different results that also depend on the order in which we provide
the sets to POCS. This example illustrates the differences between the methods and it is not
the intention to obtain excellent FWI results.

53



Gradient decent

start

end

Projected gradient decent

start

end

Figure 4: Example of the iteration trajectory when using gradient descent to minimize
a non-convex function and projected gradient descent to minimize a non-convex function
subject to a constraint. The constraint requires the model estimate to inside the circular
area. The semi-transparent area outside the circle is not accessible by projected gradient
descent. There are two important observations: 1) The constrained minimization converges
to a different (local) minimizer. 2) The intermediate projected gradient parameter estimates
can be in the interior of the set or on the boundary. Black represents low values of the
function.
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Figure 5: The 3-level nested constrained optimization workflow.
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True velocity model

0 1000 2000 3000 4000 5000

x (m)

0

500

1000

1500

2000

z
 (

m
)

1500

2000

2500

3000

3500

4000

4500

V
e
lo

c
it
y
 (

m
/s

)

Initial velocity model
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Figure 6: True and initial velocity models for the example.
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Bounds only 3-15 Hz
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Figure 7: Model estimate obtained by FWI with bound constraints only.
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(a) Bounds & slope constraint, 3-4 Hz
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(b) Bounds & slope -> bounds only, 3-15 Hz
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Figure 8: a) Model estimate obtained by FWI with bound constraints, a vertical slope
constraint and a constraint on the velocity variation per meter in the horizontal direction.
b) Model estimate by FWI with bound constraints and using the result from a) as starting
model.
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True velocity model
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Constraint on vertical derivative
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Smoothness (constraint on vertical derivative) 
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Figure 9: Different uses of transform domain bound constraints. Figures show the projection
of a velocity model onto two different slope constraint sets. The middle panel shows the
effect of allowing arbitrary velocity increase with depth, but only slow velocity decrease with
depth. The bottom panel shows lateral smoothness, by bounding the upper and lower limit
on the velocity change per distance interval in the lateral direction.
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description symbol

data-misfit f(m)
gradient w.r.t. medium parameters ∇mf(m)
set (convex or non-convex) C
intersection of sets

⋂p
i=1 Ci

any transform-domain operator A ∈ CM×N
discrete derivative matrix in 1D Dz or Dx

cardinality (number of nonzero entries)
or `0 ‘norm’

card(·)⇔ ‖ · ‖0

`1 norm (one-norm) ‖ · ‖1

Table 1: Notation used in this paper.
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