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ABSTRACT

In a statistical inverse problem, the objective is a complete statistical description of unknown

parameters from noisy observations in order to quantify uncertainties of the parameters of

interest. We consider inverse problems with partial-differential-equation-constraints, which

are applicable to a variety of seismic problems. Bayesian inference is one of the most

widely-used approaches to precisely quantify statistics through a posterior distribution,

incorporating uncertainties in observed data, modeling kernel, and prior knowledge of the

parameters. Typically when formulating the posterior distribution, the partial-differential-

equation-constraints are required to be exactly satisfied, resulting in a highly nonlinear forward

map and a posterior distribution with many local maxima. These drawbacks make it difficult

to find an appropriate approximation for the posterior distribution. Another complicating



factor is that traditional Markov chain Monte Carlo methods are known to converge slowly for

realistically sized problems. In this work, we relax the partial-differential-equation-constraints

by introducing an auxiliary variable, which allows for Gaussian deviations in the partial-

differential-equations. Thus, we obtain a new bilinear posterior distribution consisting of both

data and partial-differential-equation misfit terms. We illustrate that for a particular range of

variance choices for the partial-differential-equation misfit term, the new posterior distribution

has fewer modes and can be well-approximated by a Gaussian distribution, which can then

be sampled in a straightforward manner. Since it is prohibitively expensive to explicitly

construct the dense covariance matrix of the Gaussian approximation for intermediate to

large-scale problems, we present a method to implicitly construct it, which enables efficient

sampling. We apply this framework to two-dimensional seismic inverse problems with 1, 800

and 92, 455 unknown parameters. The results illustrate that our framework can produce

comparable statistical quantities to those produced by conventional Markov chain Monte

Carlo type methods while requiring far fewer partial-differential-equation solves, which are

the main computational bottlenecks in these problems.
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INTRODUCTION

Inverse problems with partial-differential-equation (PDE) constraints arise in many ap-

plications of geophysics (Tarantola and Valette, 1982a; Pratt, 1999; Haber et al., 2000;

Epanomeritakis et al., 2008; Virieux and Operto, 2009). The goal of these problems is to infer

the values of unknown spatial distributions of physical parameters (e.g., sound speed, density,

or electrical conductivity) from indirectly measured data, where the underlying physical

model is described by a PDE (e.g., the Helmholtz equation or Maxwell’s equations). The most

challenging aspects of these problems arise from the fact that they are typically multimodal,

with many spurious local minima (Biegler et al., 2012), which can inhibit gradient-based

optimization algorithms from estimating the true parameters successfully.

This multimodality stems in part from the fact that the observed data are measured

on a small subset of the entire boundary of the domain (Bui-Thanh et al., 2013) and the

nonlinear parameter-to-data forward map (van Leeuwen and Herrmann, 2013; van Leeuwen

and Herrmann, 2015). One approach to dealing with the multimodality is to formulate

the inverse problem as a deterministic optimization problem that aims at minimizing the

misfit between the predicted and observed data in an appropriate norm, while also adding a

regularization term that may eliminate the nonconvexity in certain situations (Virieux and

Operto, 2009; Martin et al., 2012). The result of this deterministic approach is an estimate of

the model parameters that is consistent with the observed data and contains few unwanted

features. Since observed data typically contain measurement noise and modeling errors,

we are not only interested in an estimate that best fits the data, but also in a complete

statistical description of the unknown model parameters (Tarantola and Valette, 1982b;

Osypov et al., 2013). To that end, statistical approaches, and in particular the Bayesian
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inference method, are desirable and necessary. Unlike in the deterministic case, the solution

produced by Bayesian inference is a posterior probability density function (PDF), which

incorporates uncertainties in the observed data, the forward modeling map, and one’s prior

knowledge of the parameters. Once we can tractably compute the posterior distribution, we

can extract various statistical properties of the unknown parameters.

Bayesian inference methods have been applied to a number of PDE-constrained geophysical

statistical inverse problems (Martin et al., 2012; Bui-Thanh et al., 2013; Zhu et al., 2016;

Ely et al., 2017). In these reported works, the PDE is typically treated as a strict constraint

when formulating the posterior PDF, i.e., the field variables should always exactly satisfy the

PDE. This leads to the so-called reduced or adjoint-state method (Plessix, 2006; Hinze et al.,

2008) that eliminates the field variables by solving the PDE, resulting in a posterior PDF

with multiple modes. To study the posterior PDF, Markov chain Monte Carlo (McMC) type

methods, including the Metropolis-Hasting based methods (Haario et al., 2006; Stuart et al.,

2016; Ely et al., 2017), the stochastic Newton-type method (Martin et al., 2012), and the

randomize-then-optimize (RTO) method (Bardsley et al., 2015) sample the posterior PDF

by drawing samples from a proposal distribution followed by an accept or reject step. To

compute the accept/reject ratio, these methods have to evaluate the posterior PDF for each

sample, which leads to solving a large number of computationally expensive PDEs. Moreover,

according to the scaling analysis by Roberts et al. (2001), McMC type methods require

a significantly larger number of samples to reach a status of convergence for large-scale

problems in comparison with small-scale problems, which is well known as the curse of

dimensionality. These difficulties preclude the straightforward applications of these methods

to large-scale problems with more than 106 unknown parameters.
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Contributions

In this work, we present a new formulation of the posterior distribution that subsumes the

conventional reduced formulation as a special case. Instead of treating the PDE as a strict

constraint and eliminating the field variables by solving the PDE, we relax the PDE-constraint

by introducing the field variables as auxiliary variables. This idea is similar to the method of

van Leeuwen and Herrmann (2015) applied to deterministic PDE-constrained optimization

problems, in which the PDE misfit is treated as a penalty term in the misfit function and

weighted by a penalty parameter. Moreover, the idea of relaxing the PDE-constraint is also

widely-used in weather forecasting applications (Fisher et al., 2005) for the sake of improving

the stability of results. In the field of seismic exploration, Fang et al. (2015) and Fang

et al. (2016) first introduced a method to construct a posterior PDF with weak acoustic

wave-equation constraints. In the following study by Lim (2017), the authors showed that

for small-scale problems, this posterior PDF can be sampled by the randomize maximum

likelihood-McMC (RML-McMC) method. We demonstrate that the conventional reduced

posterior PDF is a special case of our new formulation. By exploiting the structure of the

new posterior PDF, we show that, with an appropriate penalty parameter, the new posterior

PDF can be approximated by a Gaussian distribution, which is centered at the maximum a

posteriori (MAP) estimate that maximizes the posterior PDF. To construct this Gaussian

approximation, we exploit the local derivative information of the posterior PDF and formulate

the covariance matrix as a PDE-free operator, which allows us to compute the matrix-vector

product without the requirement of computing a large number of additional PDEs. By

avoiding an explicit formulation of the covariance matrix, which would be impractical to

compute and store, we can apply a recently proposed bootstrap type method (Efron, 1981,

1992) — the so-called randomize-then-optimize method (Bardsley et al., 2014) — to affordably

5



draw samples from this surrogate distribution.

We apply our new computational framework to several seismic wave-equation based

inverse problems ranging in size and complexity of the underlying parameters. Our first

example compares our sampling method with a benchmark method — the randomize

maximum likelihood (RML) method (Chen and Oliver, 2012) — to validate our Gaussian

approximation on a simple model with 1800 unknown parameters. Next, we apply our

computational framework to a more complex model with 92,455 unknown parameters to test

the feasibility of the approach to more realistically sized problems.

This paper is organized into three major sections. The first introduces the derivation

of the posterior PDF and the corresponding sampling method in a general setting. The

second section introduces each component in the general framework when applied to the

full-waveform inversion type problems. The final section presents the results of the application

of our framework to several numerical inverse problems for velocity models with different

size and complexity.

BAYESIAN FRAMEWORK FOR INVERSE PROBLEMS WITH A

WEAK PDE-CONSTRAINT

In a PDE-constrained inverse problem, the goal is to infer the unknown discretized ngrid-

dimensional physical model parameters m ∈ Rngrid from ndata-dimensional noisy observed

data d ∈ Cndata . As the noisy data are stochastic in nature, so are the inversion results

obtained from them. Bayesian inference is a widely-used approach that seeks to estimate the

posterior PDF of the unknown parameters m by incorporating the statistics of the measure-

ment and modeling error and one’s prior knowledge of the underlying model. Mathematically,
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Bayesian inference applies Bayes’ law to formulate the posterior PDF ρpost(m|d) of the

model parameters m given the observed data d by combining a likelihood PDF and a prior

PDF as

ρpost(m|d) ∝ ρlike(d|m)ρprior(m), (1)

where the likelihood PDF ρlike(d|m) describes the probability of observing the data d given

the model parameters m, and the prior PDF ρprior(m) describes one’s prior beliefs in the

unknown model parameters. The proportionality constant depends on the observed data d,

which are fixed. Once we have a computationally tractable estimate of the posterior PDF,

we can apply certain sampling methods to draw samples from the posterior PDF, which can

then be used to compute statistical properties of interest such as the MAP estimate, the

mean value, the model covariance matrix, the model standard deviation (STD), and the

marginal distributions of m (Kaipio and Somersalo, 2006; Matheron, 2012). The primary

issue for statisticians is to construct the posterior PDF and design methods that can draw

samples from it with affordable cost.

The posterior PDF

To motivate the derivation of the new posterior PDF, it is helpful to start with the conventional

formulation of the posterior PDF for PDE-constrained inverse problems. The so-called reduced

approach eliminates the PDE-constraint by solving the PDE, which leads to the following

nonlinear forward modeling map F (m):

F (m) = PA(m)−1q. (2)

Here the vector q ∈ Cngrid represents the discretized (known) source term. The matrix

A(m) ∈ Cngrid×ngrid denotes the discretized PDE operator and the operator P ∈ Rndata×ngrid
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samples the data d from the vector of field variables u, which is the solution of the PDE

u = A(m)−1q. In real-world seismic applications, the observed data always contain both

correlated measurement noise arising from environmental disturbances and modeling errors,

which are difficult to precisely quantify and model. One popular approach to simplify the

problem is to assume that the combined measurement and modeling noise ε ∈ Cndata is drawn

from a Gaussian distribution with zero mean and covariance matrix Γnoise (Bui-Thanh et al.,

2013; Osypov et al., 2013; Bardsley et al., 2015), i.e., ε ∼ N (0,Γnoise), independent of m.

The assumption of Gaussianity results in distributions that are relatively easy to model and

sample, thereby providing a rich source of tractable examples (Kaipio and Somersalo, 2006).

With this assumption in mind and the additional assumption that the prior distribution of

the model m is also Gaussian with the mean model parameters m̃ and the covariance matrix

Γprior, we arrive at the following posterior distribution:

ρpost(m|d) ∝ exp

(
−1

2
‖F (m)− d‖2

Γ−1
noise
− 1

2
‖m− m̃‖2

Γ−1
prior

)
, (3)

where the symbol ‖ � ‖Γ−1
noise

denotes the weighted `2-norm with the weighting matrix Γ−1
noise.

There are several challenges in computing various quantities associated with the posterior

distribution in equation 3. In order to obtain the MAP estimate m∗, we need to solve the

following deterministic optimization problem:

m∗ = arg max
m

ρpost(m|d) = arg min
m

− log ρpost(m|d)

= arg min
m

1

2
‖F (m)− d‖2

Γ−1
noise

+
1

2
‖m− m̃‖2

Γ−1
prior

,

(4)

which can be solved by the so-called adjoint-state method. As noted in van Leeuwen and

Herrmann (2013), the nonlinear forward modeling map F (m) results in the objective function

− log ρpost(m|d) being highly oscillatory with respect to the model parameters m, which

yields many local minima. To find the globally optimal solution, a sufficiently close initial

8



model is necessary, which may be difficult to obtain in real-world scenarios. As mentioned

previously, the nonlinear parameter-to-data map also results in computational difficulties

when sampling the posterior distribution in equation 3. Specifically, the tradeoff between

designing a proposal distribution that is well tuned to the true posterior distribution and

one that is computationally cheap to sample is not a straightforward choice to make. As one

models a proposal that is easier to sample, typically the price to pay is having to draw more

samples until convergence is reached.

These challenges result from the nonlinear forward modeling map F (m) induced by

the strict PDE-constraint in the optimization problem in equation 4. To overcome these

difficulties, van Leeuwen and Herrmann (2013) and van Leeuwen and Herrmann (2015)

proposed a penalty formulation to solve deterministic PDE-constrained optimization problems,

wherein they relax the strict PDE-constraint by penalizing the data misfit function by a

weighted PDE misfit with a penalty parameter λ. This results in the following joint

optimization problem with respect to both the model parameters m and the field variables

collected in the vector u:

arg min
m,u

fpen(m,u) =
1

2
‖Pu− d‖2

Γ−1
noise

+
λ2

2
‖A(m)u− q‖2 +

1

2
‖m− m̃‖2

Γ−1
prior

. (5)

The authors note that the problem in equation 5 is a separable nonlinear least-squares

problem, in which the optimization with respect to u is a linear data-fitting problem when m

is fixed. In van Leeuwen and Herrmann (2015), the authors eliminate the field variables u by

the variable projection method (Golub and Pereyra, 2003) in order to avoid the high memory

costs involved in storing a unique field variable for each individual source. The variable

projection method also eliminates the dependence of the objective function in equation 5 on u.

As for each input parameter m, there is a unique u(m) satisfying ∇ufpen(m,u)|u=u(m) = 0,
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which has the closed form solution

u(m) =
(
λ2A(m)>A(m) + P>Γ−1

noiseP
)−1(

λ2A(m)>q + P>Γ−1
noised

)
, (6)

where the symbol > denotes the (complex-conjugate) transpose. As noted by van Leeuwen

and Herrmann (2013) and van Leeuwen and Herrmann (2015), minimizing the objective

function (equation 5) with a carefully selected λ is less prone to being trapped in suboptimal

local minima, because the inversion is carried out over a larger search space (implicitly

through u(m)) and it is therefore easier to fit the observed data for poor starting models

compared to the conventional reduced formulation in equation 4.

Motivated by the penalty approach to solving the deterministic inverse problems, we

propose a more generic posterior PDF for statistical PDE-constrained inverse problems. As

before, we relax the PDE-constraint by introducing the field variables u as auxiliary variables,

i.e., we have

ρpost(u,m|d) ∝ ρ(d|u,m)ρ(u,m), (7)

where the conditional PDF ρ(d|u,m) now describes the probability of observing the data d

given the field variables u and model parameters m. To formulate the joint PDF ρ(u,m),

we apply the standard conditional decomposition (Sambridge et al., 2006)

ρ(u,m) = ρ(u|m)ρprior(m). (8)

Hence,

ρpost(u,m|d) ∝ ρ(d|u,m)ρ(u|m)ρprior(m). (9)

The implication of the reduced formulation is that the field variables u satisfy the PDE

strictly—i.e., u = A(m)−1q. This adherence to the PDE corresponds to solutions u that

satisfy the PDE A(m)u = q with the probability density ρ(u|m) = δ
(
A(m)u− q

)
, where
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δ() denotes the Kronecker delta function (Dummit and Foote, 2004). Conversely, replacing

the constraint by a quadratic penalty term allows for a Gaussian error with zero mean and

covariance matrix λ−2I in the PDE misfit A(m)u− q. This yields

ρ(u|m) = (2π)−
ngrid

2 det
(
λ2A(m)>A(m)

) 1
2 exp

(
−λ

2

2
‖A(m)u− q‖2

)
. (10)

Indeed, for a given m, this distribution ρ(u|m) with respect to u is a Gaussian distribution

with a mean of A(m)−1q and a covariance matrix of λ−2A(m)−1A(m)−>. The conditional

probability ρpost(u,m|d) is the joint PDF with respect to both the model parameters m

and field variables u. Because the control or model variables m are of primary interest, we

eliminate the dependence of the joint PDF on the auxiliary variables u by marginalizing over

u:

ρpost(m|d) =

∫
ρpost(u,m|d)du

∝ det
(
H(m)

)− 1
2 det

(
λ2A(m)>A(m)

) 1
2

× exp
(
− 1

2

(
λ2‖A(m)u(m)− q‖2 + ‖Pu(m)− d‖2

Γ−1
noise

+ ‖m− m̃‖2
Γ−1

prior

))
,

(11)

where

H(m) = −∇2
u log ρpost(u,m|d)

∣∣
u=u(m)

= λ2A(m)>A(m) + P>Γ−1
noiseP,

(12)

and u(m) is given by equation 6. A complete derivation of the marginal PDF ρpost(m|d)

is given in Appendix A . As in the deterministic case, the posterior PDF corresponding to

the conventional reduced formulation (cf. equation 3) can also be derived from the marginal

PDF ρpost(m|d) in equation 11. Indeed, as λ→∞, we have

lim
λ→∞

ρpost(m|d) ∝ exp
(
−1

2
‖PA(m)−1q− d‖2

Γ−1
noise
− 1

2
‖m− m̃‖2

Γ−1
prior

)
, (13)

which, as expected, is the posterior PDF corresponding to the conventional reduced formula-

tion. The derivation of equation 13 can be found in Appendix A in more details.
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To illustrate the advantages of our penalty formulation for the posterior PDF (cf. equa-

tion 11) over the conventional reduced formulation (cf. equation 3), we conduct a simple

experiment adopted from Esser et al. (2016). We invert for the sound speed given partial

measurements of the pressure field and generate data with a known band-limited source.

The data are recorded at four receivers (see Figure 1a) and is contaminated with Gaussian

noise (see Figure 1b). As in Esser et al. (2016), we define the forward operator F (m) as

F (m) = PA−1(m)q =



F−1eiωm‖x1−xs‖2Fq

F−1eiωm‖x2−xs‖2Fq

F−1eiωm‖x3−xs‖2Fq

F−1eiωm‖x4−xs‖2Fq


, (14)

where the operator F denotes the temporal Fourier transform and ω denotes the angular

frequency. The vectors xi, i = 1, ..., 4 and xs denote the receiver and source locations,

respectively, and the scalar m represents the slowness of the medium, i.e., m =
1

v
where v

is the velocity. The source and receiver locations are in Figure 1a denoted by the symbols

(∗) and (∇). With the forward model defined in equation 14, we formulate the posterior

distribution for the reduced formulation and the penalty formulation by choosing a Gaussian

distribution with a mean of 5 · 10−4 s/m and a standard deviation of 1.2 · 10−4 s/m for the

prior distribution ρprior(m). Finally, we add a Gaussian noise with a variance of 4× 10−4 to

the observed data, resulting in a noise-to-signal ratio of ‖noise‖2/‖signal‖2 = 0.24.

[Figure 1 about here.]

Figure 2 depicts the posterior PDFs of the reduced and penalty formulations for λ =

10, 50, and 250. As expected, local maxima are present in the PDF of the reduced formulation

and in the PDFs of the penalty formulation when the λ values become too large. As λ

12



increases from λ = 10, where the posterior is unimodol, local maxima appear for larger

λ = 250, only one of which has strong statistical significance. For λ = 250, the resulting

PDF is close to the one yielded by the reduced formulation, which corresponds to λ→∞.

From this stylized example, the strongly relaxed formulation appears unimodal and with low

bias. As we will demonstrate in later sections, being less prone to local maxima reduces the

computational cost associated with sampling these distributions.

[Figure 2 about here.]

Selection of λ

Before discussing computationally efficient sampling schemes, we first propose a method to

select values for λ, which will balance the tradeoff between the unimodality of the distribution

and its deviation from the reduced-formulation PDF.

To arrive at a scheme to select λ, we focus on two terms of the negative logarithm function

of the posterior PDF in equation 11:

φ(m) =− log ρpost(m|d)

=
1

2
log det

(
I +

1

λ2
Γ
− 1

2
noisePA(m)−1A(m)−>P>Γ

−>
2

noise
)

+
1

2

(
λ2‖A(m)u(m)− q‖2 + ‖Pu(m)− d‖2

Γ−1
noise

+ ‖m− m̃‖2
Γ−1

prior

)
,

(15)

namely the determinant

φ1(m) =
1

2
log det

(
I +

1

λ2
Γ
− 1

2
noisePA(m)−1A(m)−>P>Γ

−>
2

noise
)
, (16)

and the misfit

φ2(m) =
1

2

(
λ2‖A(m)u(m)− q‖2 + ‖Pu(m)− d‖2

Γ−1
noise

+ ‖m− m̃‖2
Γ−1

prior

)
. (17)
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These equations imply that we should avoid situations in which λ→ 0 and λ→∞. When

λ→ 0, the optimal variable u(m) tends to fit the data. As a result, φ2(m)→ 1
2‖m−m̃‖

2
Γ−1

prior
,

which means that the observed data are not informative to the unknown parameters and

have few contributions to the posterior distribution. Furthermore, as λ→ 0, the nonlinear

determinant function φ1(m)→∞ and will dominate the overall function φ(m), which results

in a highly nonlinear mapping m→ φ(m). On the other hand, when λ→∞, we find that

φ1(m)→ 0 and φ2(m)→ 1
2‖PA(m)−1q−d‖2

Γ−1
noise

+ 1
2‖m− m̃‖2

Γ−1
prior

in which case the misfit

φ(m) converges to the nonlinear reduced formulation. Considering both facts, we want to

find an appropriate λ, so that φ1(m) is relatively small compared to φ2(m), thus ensuring

enough information from the observed data, while φ2(m) is still less likely to contain local

minima.

Based on spectral arguments, van Leeuwen and Herrmann (2015) proposed a scal-

ing for the penalty parameter according to the largest eigenvalue µ1 of the matrix

A(m)−>P>Γ−1
noisePA(m)−1. Relative to µ1, a penalty parameter λ2 � µ1 can be considered

large while λ2 � µ1 is considered small. As a result, λ chosen much greater than this

reference scale—i.e., when λ2 � µ1, the minimizers for field variables u(m) will converge

to the solution of the wave equation A(m)−1q with a convergence rate of O(λ−2), and

therefore our penalty misfit approaches the reduced misfit. A similar consideration applies

when λ2 � µ1. After extensive parameter testing, we found that choosing λ2 = 0.01µ1

strikes the right balance so that the posterior PDF is less affected by local maxima compared

to the reduced formulation while the determinant term φ1(m) remains negligible compared

to φ2(m). With this choice of λ, we can therefore neglect the φ1(m) term, as it is small

relative to φ2(m), and consider an approximate posterior PDF ρpost(m|d) consisting only of
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the φ2(m) term, i.e., we now have the approximate equality

ρpost(m|d) ≈ ρpost(m|d)

∝ exp

(
−λ

2

2
‖A(m)u(m)− q‖2 − 1

2
‖Pu(m)− d‖2

Γ−1
noise
− 1

2
‖m− m̃‖2

Γ−1
prior

)
.

(18)

This approximation results in a posterior PDF that is much easier to evaluate. From here on

out, we consider ρpost(m|d) as our PDF of interest in the subsequent sampling considerations.

Sampling method

Given this choice of λ, yielding the PDF in equation 18, the computational considera-

tions of drawing samples from this approximate distribution are paramount in designing a

tractable method. McMC-type methods are unfortunately computationally unfeasible for

high-dimensional problems, owing to the relatively large number of the expensive evaluations

of posterior distributions needed to converge adequately. For this reason, we follow an

alternative approach — widely used in Bayesian inverse problems with PDE-constraints

(Bui-Thanh et al., 2013; Zhu et al., 2016) — where we approximate the target posterior PDF

by a Gaussian PDF. To construct this Gaussian PDF, we first find the MAP estimate m∗ by

solving

m∗ = arg min
m

− log
(
ρpost (m|d)

)
. (19)

Next, we use the local second-order derivative information of the posterior PDF at the MAP

point — i.e., the Hessian Hpost = −∇2
m log ρpost(m|d) — to construct the covariance matrix

of the Gaussian PDF, which yields the Gaussian distribution N (m∗,H
−1
post). Afterwards, we

draw samples from the Gaussian distribution from which we compute statistical quantities.

We incorporate this sampling strategy with the proposed posterior PDF with weak PDE-

constraints and obtain the following Bayesian framework as shown in Algorithm 1:
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Algorithm 1 Bayesian framework for inverse problems with weak PDE-constraints
1. Set Γnoise, Γprior, prior mean model m̃, and a value for the penalty parameter λ;

2. Formulate the posterior PDF ρpost(m|d) with equation 18;

3. Find the MAP estimate m∗ by minimizing − log ρpost(m|d);

4. Compute the Hessian matrix Hpost = −∇2
mlog

(
ρpost(m|d)

)
at the MAP estimate m∗

and define the Gaussian PDF N (m∗,H
−1
post);

5. Draw nsmp samples from the Gaussian PDF N (m∗,H
−1
post);

6. Compute statistical properties of interest from the nsmp samples.

Compared to McMC type methods, the additional evaluations of the posterior PDF

are not needed once we calculate the MAP estimate m∗, which significantly reduces the

computational cost. However, the accuracy of samples drawn from this surrogate PDF

strongly depends on the accuracy of the Gaussian approximation in a neighborhood of m∗,

which is related to our choice of λ. To illustrate this dependence, we continue the example

shown in Figure 2 and compare the Gaussian approximation of the reduced formulation (i.e.,

λ =∞) to the penalty formulation for different values of λ, plotted in Figure 3. In this case

the largest eigenvalue is µ1 = 104 and the corresponding is λ = 10. Clearly, when selecting

λ = 10, the Gaussian approximation is relatively close to the true PDF, whereas increasing

λ decreases the accuracy of the Gaussian approximation.

[Figure 3 about here.]

Armed with an accurate Gaussian approximation to the unimodal PDF (for an appropriate

choice of λ), we are now in a position to draw samples from the Gaussian distribution

N (m∗,H
−1
post). For small-scale problems, an explicit expression of the Hessian Hpost is

available. Hence, we can draw samples ms from the distribution N (m∗,H
−1
post) by utilizing
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the Cholesky factorization of the Hessian Hpost—i.e., Hpost = R>postRpost — as follows (Rue,

2001):

ms = m∗ + R−1
postr, (20)

where the matrixRpost is an upper triangular matrix and the vector r is a random vector drawn

from the ngrid-dimensional standard Gaussian distribution N (0, Ingrid×ngrid). Nevertheless,

for large-scale problems, constructing and storing an explicit expression of the Hessian

Hpost is infeasible. Typically, to avoid the construction of the explicit Hessian matrix, the

Hessian Hpost is constructed as a matrix-free implicit operator, and we only have access

to computing the matrix-vector product with an arbitrary vector. As a result, we need a

matrix-free sampling method to draw samples. In the following section, we will develop the

implementation details for a suitable sampling method for seismic wave-equation-constrained

inverse problems.

UNCERTAINTY QUANTIFICATION FOR SEISMIC

WAVE-EQUATION-CONSTRAINED INVERSE PROBLEMS

Wave-equation based inversions, where the coefficients of the wave-equation are the unknowns,

are amongst the most computationally challenging inverse problems as they typically require

wave-equation solves for multiple source experiments on a large domain where the wave

travels many wavelengths. Additionally, these inverse problems, also known as full-waveform

inversion (FWI) in the seismic community (Pratt, 1999), involve fitting oscillatory predicted

and observed data, which can result in parasitic local minima.

Motivated by the penalty formulation with its weak PDE-constraints and the results

presented above presumably, we will derive a time-harmonic Bayesian inversion framework
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that is capable of handling relatively large-scale problems where the wave propagates about

30 wavelengths, a moderate number for realistic problems. Given acoustic seismic data,

collected at the surface from sources that fire along the same surface, our aim is to construct

the statistical properties of the spatial distribution of the acoustic wave velocity. With these

properties, we are able to conduct uncertainty quantification for the recovered velocity model.

The subsections are organized roughly in according to the main steps outlined in Algorithm 1.

Steps 1 and 2: designing the posterior and prior PDF

To arrive at a Bayesian formulation for wave-equation based inverse problems with weak

constraints, we consider monochromatic seismic data collected at nrcv receivers locations

from nsrc seismic source locations and sampled at nfreq frequencies. Hence, the observed

data d ∈ Cndata with ndata = nrcv × nsrc × nfreq. As before, the synthetic data are obtained

by applying, for each source, the projection operator P ∈ Cnrcv×ngrid . For the ith source

and jth frequency, the time-harmonic wave equation corresponds to the following discretized

Helmholtz system:

Aj(m)ui,j = qi,j with Aj(m) = ∆ + ω2
j diag

(
m−2

)
. (21)

In this expression, the qi,j ’s are the monochromatic sources, the symbol ∆ refers to the

discretized Laplacian, ω represents the angular frequency, and m ∈ Rngrid denotes the vector

with the discretized velocities. With a slight abuse of notation, this vector appears as

the elementwise reciprocal square on the diagonal. To discretize this problem, we use the

Helmholtz discretization from Chen et al. (2013).

If we consider the data from all sources and frequencies simultaneously, the posterior

18



PDF for the weak-constrained penalty formulation becomes

ρpost(m|d) ∝ exp

−1

2

nsrc∑
i=1

nfreq∑
j=1

‖Pui,j(m)− di,j‖2Γ−1
noise
− λ2

2
‖Aj(m)ui,j(m)− qi,j‖2


× exp

(
−1

2
‖m− m̃‖2

Γ−1
prior

)
.

(22)

Aside from choosing a proper value for the penalty parameter λ, another crucial component

of the posterior PDF in equation 22 is the choice of the prior PDF. From a computational

perspective, a suitable prior should have a bounded variance and one should be able to

draw samples with moderate cost (Bui-Thanh et al., 2013). More specifically, this results

in having computationally feasible access to (matrix-free) actions of the square-root of the

prior covariance operator or its inverse on random vectors. To meet this requirement, we

utilize Gaussian smoothness priors (Matheron, 2012), which provide a flexible way to describe

random fields and are commonly employed in Bayesian inference (Lieberman et al., 2010;

Martin et al., 2012; Bardsley et al., 2015). Following Lieberman et al. (2010), we construct a

Gaussian smoothness prior ρprior(m) ∝ N (m̃,Γprior) with a reference mean model m̃ and a

covariance matrix Γprior given by

Γprior(k, l) = a exp

(
−‖sk − sl‖2

2b2

)
+ cδk,l. (23)

In this expression for the covariance, the vectors sk = (zk, xk) and sl = (zl, xl) denote the

kth and lth spatial coordinates corresponding to the kth and lth elements in the vector m,

respectively. The parameters a, b, and c control the correlation strength, variance, and spatial

correlation distance. The variance of the kth element mk is var(mk) = Γprior(k, k) = a+ c.

The parameter c also ensures that the prior covariance matrix remains numerically well-

conditioned (Martin et al., 2012). Clearly, when the distance between sk and sl is large—i.e.,

‖sk−sl‖2
2b2

� 1, the cross-covariance Γprior(k, l) vanishes quickly.
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Steps 3 and 4: Gaussian approximation

After setting up the posterior PDF, we need to construct its Gaussian approximation

N (m∗,H
−1
post), corresponding to steps 3 and 4 in Algorithm 1. In order to achieve this

objective, first we compute the MAP estimate of the posterior PDF m∗, which is equivalent

to minimizing the negative logarithm − log ρpost(m|d):

m∗ = arg min
m

− log ρpost(m|d)

= arg min
m

nsrc∑
i=1

nfreq∑
j=1

1

2
‖Pui,j(m)− di,j‖2Γ−1

noise
+
λ2

2
‖Aj(m)ui,j(m)− qi,j‖2

+
1

2
‖m− m̃‖2

Γ−1
prior

.

(24)

Note that the objective function − log ρpost(m|d) is analogous to the cost function of the

deterministic optimization problem (van Leeuwen and Herrmann, 2015). Using similar

techniques as in the aforementioned work, we can express the gradient g for this objective as

g =

nsrc∑
i=1

nfreq∑
j=1

λ2G>i,j
(
Aj(m)ui,j(m)− qi,j

)
+ Γ−1

prior(m− m̃), (25)

where the sparse Jacobian matrix Gi,j =
(
∇mAj(m)

)
ui,j(m). Following van Leeuwen and

Herrmann (2013), we use the limited-memory-Broyden–Fletcher–Goldfarb–Shanno method

(l-BFGS, Nocedal and Wright, 2006) to solve the optimization problem in equation 24 to

find the MAP estimate m∗.

Once we have computed m∗, we focus on approximating the posterior PDF ρpost(m|d)

by a Gaussian distribution centered at m∗. For simplicity, we omit the dependence of

Aj(m) and ui,j(m) on m. A necessary component in this process is computing the Hessian

Hpost = −∇2
m log ρpost(m|d), which is given by

Hpost = Hlike + Γ−1
prior

=

nsrc∑
i

nfreq∑
j

λ2G>i,jGi,j − S>i,j

(
P>Γ−1

noiseP + λ2A>j Aj

)−1
Si,j + Γ−1

prior,

(26)
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where

Si,j = λ2(∇mA>j ) (Ajui,j − qi,j) + λ2A>j Gi,j , (27)

and the optimal wavefield ui,j is computed by equation 6.

The full Hessian Hpost is a dense ngrid × ngrid matrix, which is prohibitive to construct

explicitly when ngrid is large, even in the two-dimensional setting. On the other hand, it is

also prohibitive if we formulate the Hessian Hpost as a traditional implicit operator, which

requires 2×nsrc×nfreq PDE solves to compute each matrix-vector product Hpostm with any

vector m, according to the expression in equation 26. Since the posterior covariance matrix

is the inverse of the Hessian, we need to invert the square root of the Hessian operator in

order to generate random samples. With the implicit Hessian operator, we would need to

employ an iterative solver such as LSQR or CG (Golub and Van Loan, 2012), and the total

number of PDE solves required is therefore proportional to 2×nsmp×niter×nsrc×nfreq. As

a result, this type of approach requires an extremely large computational cost when drawing

sufficiently many samples. As a remedy, we exploit the structure of the Hessian matrix Hpost

to find an approximation that can be constructed and applied in a computationally efficient

manner.

To exploit the structure of the Hessian matrix Hpost, we will focus on the Hessian matrix

Hlike of the likelihood term, as we already have discussed the matrix Γprior in the previous

section. Based on equations 26 and 27, Hlike consists of three components — the matrices

P>Γ−1
noiseP + λ2A>j Aj , (∇mA>j )(Ajui,j − qi,j), and Gi,j . We first consider the Jacobian

(∇mA>j )(Ajui,j − qi,j) and specifically the PDE misfit Ajui,j − qi,j . When the PDE misfit

is approximately zero, this overall term is also expected to be small. As the MAP estimate

m∗ simultaneously minimizes the data misfit, PDE misfit, and model penalty term, the PDE
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misfit is expected to be small when model and observational errors are not too large. Thus,

we obtain a good approximation H̃like of the full Hessian Hlike, which corresponds to the

Gauss-Newton Hessian derived by van Leeuwen and Herrmann (2015):

H̃like =

nsrc∑
i

nfreq∑
j

λ2G>i,jGi,j − λ4G>i,jAj(P
>Γ−1

noiseP + λ2A>j Aj)
−1A>j Gi,j . (28)

Consequently, we can use the Gauss-Newton Hessian H̃like to construct the Gaussian distri-

bution that approximates the posterior PDF ρpost(m|d):

ρpost(m|d) ≈ ρGauss(m) = N (m∗, H̃
−1
post) = N (m∗, (H̃like + Γ−1

prior)
−1). (29)

The Gauss-Newton Hessian H̃like has a compact expression derived from the Sherman–

Morrison–Woodbury formula (Golub and Van Loan, 2012):

H̃like =

nsrc∑
i

nfreq∑
j

G>i,jA
−>
j P>(Γnoise +

1

λ2
PA−1

j A−>j P>)−1PA−1
j Gi,j . (30)

We shall see that this expression provides a factored formulation to implicitly construct

the Gauss-Newton Hessian, which does not require any additional PDE solves to compute

matrix-vector products. In order to construct the implicit Gauss-Newton Hessian H̃like,

three matrices are necessary — A−>j P> ∈ Cngrid×nrcv , Gi,j ∈ Cngrid×ngrid , and Γnoise +

1
λ2
PA−1

j A−>j P> ∈ Cnrcv×nrcv . For each frequency, constructing the matrix A−>j P> requires

nrcv PDE solves. As described in the previous section, the matrix Gi,j is sparse and driven

by the corresponding wavefields ui,j , whose computational cost approximately equals to one

PDE solve for each source and each frequency. The computational complexity of inverting

the matrix Γnoise + 1
λ2
PA−1

j A−>j P> is O(n3
rcv). Since nrcv � ngrid, inverting this matrix

is much cheaper than solving a PDE. Thus, to construct the Gauss-Newton Hessian H̃like,

we only need to solve nfreq × (nsrc + nrcv) PDEs. With the computed matrix A−>j P>

and wavefield ui,j , the action of the Gauss-Newton Hessian H̃like on any vector m can
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be performed with several efficient matrix-vector multiplications related to the matrices

A−>j P>, Gi,j and Γnoise + 1
λ2
PA−1

j A−>j P>. Compared to the conventional approach, this

new factored formulation of the implicit operator does not require additional PDE solves

to compute a matrix-vector multiplication once it is constructed. In general, we have that

nrcv � nsmp × niter and using this implicit Gauss-Newton Hessian operator to draw nsmp

samples is significantly cheaper than the conventional approach. Another advantage of

using this operator arises from the fact that the computations of the necessary matrices

corresponding to different frequencies are independent from each other. As a result, we can

compute and store these matrices in parallel for different frequencies, allowing us to speed up

our computations in a distributed computing environment. Furthermore, the expression in

equation 30 provides a natural decomposition of the Gauss-Newton Hessian H̃like as follows:

H̃like = R>likeRlike,

Rlike =



(Γnoise + 1
λ2
PA−1

1 A−>1 P>)−
1
2PA−1

1 G1,1

· · ·

(Γnoise + 1
λ2
PA−1

j A−>j P>)−
1
2PA−1

j Gi,j

· · ·

(Γnoise + 1
λ2
PA−1

nfreq
A−>nfreq

P>)−
1
2PA−1

nfreq
Gnsrc,nfreq



.

(31)

Similarly to the factored formulation of the implicit Gauss-Newton Hessian, we can construct

the factor Rlike as an implicit operator once we have computed the matrix A−>j P> and

wavefield ui,j . We will use this implicit operator Rlike for the sampling method introduced

in the next subsection.
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Steps 5 and 6: sampling the Gaussian PDFs

The covariance matrix H̃−1
post is a dense ngrid×ngrid matrix, and the construction of its Cholesky

factorization involves O(n3
grid) operations. Both of these facts prohibit us from applying the

Cholesky factorization method to sample the Gaussian distribution ρGauss(m) for large-scale

problems. Here we propose to use the so-called optimization-driven Gaussian simulators

(Papandreou and Yuille, 2010; Orieux et al., 2012) or the randomize-then-optimize (RTO)

method (Solonen et al., 2014) to sample the Gaussian distribution ρGauss(m). This method

belongs to the classical bootstrap method (Efron, 1981, 1992; Kitanidis, 1995), and it does

not require the explicit formulation of the Hessian matrix as well as the expensive Cholesky

factorization. To outline this method, we first use equation 29 to divide H̃post into H̃like and

Γ−1
prior. The Gauss-Newton Hessian H̃like has the factorization in equation 31, and we can also

compute the Cholesky factorization of the prior covariance matrix Γprior = R>priorRprior with

an upper-triangular matrix Rprior. Substituting these two factorizations into equation 29, we

can rewrite the Gaussian distribution ρGauss(m) as follows:

ρGauss(m) ∝ exp

(
−1

2
‖Rlikem−Rlikem∗‖2 −

1

2
‖R−>priorm−R−>priorm∗‖

2

)
. (32)

Papandreou and Yuille (2010) and Solonen et al. (2014) noted that independent realizations

from the distribution in equation 32 can be computed by repeatedly solving the following

linear data-fitting optimization problem:

ms = arg min
m

‖Rlikem−Rlikem∗ − rlike‖2 +
∥∥∥R−>priorm−R−>priorm∗ − rprior

∥∥∥2
,

rlike ∼ N (0, Indata×ndata),

rprior ∼ N (0, Ingrid×ngrid).

(33)

This optimization problem can be solved by iterative solvers such as LSQR and PCG, which

does not require the explicit expression for the matrix Rlike but merely an operator that
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can compute the matrix-vector product. As a result, we can use our implicit formulation of

Rlike in equation 31 to solve the optimization problem in equation 33 and draw samples from

the Gaussian distribution ρGauss(m). The pseudo code of the RTO method to draw samples

from the Gaussian distribution ρGauss(m) is shown in Algorithm 2, which realizes step 5 in

Algorithm 1. Because the overall sampling strategy consists of the Gaussian approximation

and the RTO method, we will refer to the proposed method as GARTO in the rest of the

paper.

Algorithm 2 Sample ρGauss(m) by the RTO method
1. Start with the MAP estimate m∗, covariance matrices Γnoise and Γprior;

2. Formulate the operator Rlike(m∗) by equation 31, and compute the

Cholesky factorization of Γprior = R>priorRprior;

3. for s = 1:nsmp

4. Generate rprior ∼ N (0, Ingrid×ngrid) and rlike ∼ N (0, Indata×ndata);

5. Solve ms = arg minm ‖Rlikem−Rlikem∗ − rlike‖2 +
∥∥∥R−>priorm−R−>priorm∗ − rprior

∥∥∥2
;

6. end

A benchmark method: the randomized maximum likelihood method

We have proposed a computationally efficient algorithm — GARTO — that can approximately

sample the target distribution in equation 22 without additional PDE solves once the MAP

estimate and the Gauss-Newton Hessian operator are computed. However, due to the loss of

accuracy caused by the Gaussian approximation, it is important to investigate the accuracy

of the GARTO method by comparing it to a benchmark method that can sample the target

distribution in equation 22 regardless of the computational cost. The randomized maximum

likelihood (RML) (Chen and Oliver, 2012) method is a viable candidate as a benchmark
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because it has the capability to draw samples that are good approximations of those from

the target distribution for weakly nonlinear problems (Bardsley et al., 2014, 2015). Indeed,

as previously discussed, the target distribution with weak PDE-constraints that the GARTO

method aims to sample is less prone to the nonlinearity with a carefully selected λ.

To draw a sample, the RML method performs a bootstraping-like method (Efron, 1981,

1992) that first samples the data and prior model and then computes the resulting MAP.

More precisely, in order to draw a sample from the target distribution in equation 22, the

RML method solves the following nonlinear optimization problem:

ms = arg min
m

nsrc∑
i=1

nfreq∑
j=1

(1

2
‖Γ−

1
2

noisePui,j(m)− Γ
− 1

2
noisedi,j − r

(1)
i,j ‖

2

+
1

2
‖λAj(m)ui,j(m)− λqi,j − r

(2)
i,j ‖

2
)

+
1

2
‖Γ−

1
2

priorm− Γ
− 1

2
priorm̃− r(3)‖2,

(34)

where the vectors r
(1)
i,j , r

(2)
i,j , and r(3) are random realizations from the standard norm

distribution N (0, I). We refer interested readers to Chen and Oliver (2012) for more details

about the RML method. As a result of this approach, the computational cost of drawing

one sample by the RML method is approximately equivalent to solving one FWI problem,

which is significantly more expensive than the GARTO method. Therefore, we are only able

to conduct an comparison with the RML method on a small-scale problem in the following

section.
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NUMERICAL EXPERIMENTS

Influence of the penalty parameter λ

The feasibility of the proposed Bayesian framework relies on the accuracy of the approxima-

tions in equations 18 and 29, both of which depend on the selection of λ. To get a better

understanding of the influence of this parameter on these approximations, we will work with a

relatively simple 2D velocity model parameterized by a single varying parameter v0—i.e., the

velocity is given by v(z) = v0 + 0.75zm/s and z increases with vertical depth. We simulate

data with a single source and single frequency for v0 = 2000 m/s using a grid spacing of

25 m. The frequency of the data is 5 Hz, which is suitable for avoiding numerical dispersion

on this particular grid spacing. We place our source at (z, x) coordinates (50 m, 50 m) and

record the data at 200 receivers located at the depth of 50 m with a sampling interval of

25 m. We do not simulate the free surface in this example. After the simulation, we add 10%

Gaussian noise to the observed data. Because the prior distribution is independent of λ, we

only investigate its influence on the negative log-likelihood of the associated PDFs in this

experiment. We abbreviate the negative log-likelihood with “NLL”.

Figure 4 shows the NLL for the reduced approach (cf. equation 3) as well as for the

penalty approach (cf. equation 11) for various values of λ as a function of v0. As discussed

previously, we select values of λ2 proportional to the largest eigenvalue µ1 of the matrix

A(m)−>P>Γ−1
noisePA(m)−1, i.e., λ2 = 10−10µ1, 10−6µ1, 10−4µ1, 10−2µ1, 100µ1, and 102µ1.

From this figure, we observe that, when λ is large, i.e., λ = 102µ1 and 100µ1, the NLL

exhibits several local minima, and, as λ increases, it converges to the reduced approach

formulation, as expected. We also note that for small λ, i.e., λ = 10−10µ1, the resulting

NLL is monotonically decreasing, which is due to the fact that the determinant term in
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equation 15 dominates the NLL. Additionally, in between these two extreme values for λ (i.e.,

when λ = 10−6µ1, 10−4µ1, and 10−2µ1), the resulting NLLs are unimodal. This observation

implies that with a carefully selected λ, the posterior distribution with weak PDE-constraints

potentially contains less local maxima.

[Figure 4 about here.]

To investigate the influence of the parameter λ on the accuracy of the approximations in

equations 18 and 29, we plot in Figure 5 the NLL corresponding to the true (cf. equation 11)

ρpost(m|d), its approximation neglecting the determinant term ρpost(m|d) (cf. equation 18),

and the Gaussian approximation ρGauss(m) (cf. equation 29) for various values of λ. For

simplicity, we refer to these three different functions as ψ1, ψ2, and ψ3, respectively. From

Figure 5a, we observe that when λ = 10−10µ1, ψ2 fails to adequately approximate ψ1—i.e.,

the approximation in equation 18 fails — because the determinant term in equation 11

dominates the negative logarithm function. As λ increases, the determinant term becomes

negligible, and ψ2 becomes a reasonable approximation of ψ1, as shown in Figures 5b

to 5f. However, among the five various selections of λ, only when λ2 = 10−2µ1 does ψ3

adequately approximate ψ2. This occurs because when λ is relatively large, ψ2 contains a

number of nonoptimal local minima, resulting in ψ2 being poorly modeled by its Gaussian

approximation. Additionally, when λ < 10−2µ1, the term Ajui,j − qi,j in equation 27

is not negligible, resulting in the Gauss-Newton Hessian being a poor approximation of

the full Hessian. These results imply that the proposed criterion — i.e., λ2 = 10−2µ1 —

provides a reasonable choice for the parameter λ, which can simultaneously satisfy both the

approximations in equations 18 and 29. As a result, the corresponding posterior distribution

is less prone to the local maxima and can be appropriately approximated by the Gaussian
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distribution in equation 29, which ensures the feasibility of the proposed framework.

[Figure 5 about here.]

A 2D layered model

In this section, we develop an example to compare the accuracy of the statistical quantities

produced by the GARTO method relative to those produced by the RML method. Considering

the large computational cost required by the RML method, we use a small three-layer model

as our baseline model, as shown in Figure 6a, whose size is 1500 m × 3000 m. We discretize

the velocity model with a grid spacing of 50 m, yielding 1800 unknown parameters. At the

surface, we place sixty sources and receivers with a horizontal sampling interval of 50 m.

To control the computational cost and ensure the feasibility of the RML method, we use a

Ricker wavelet centered at 6 Hz to simulate the observed data with frequencies of 5, 6, and

7 Hz. We use an absorbing boundary condition at the surface, so that no surface-related

multiples are included. After the simulation, we add 15% Gaussian noise to the observed

data resulting in a covariance matrix of Γnoise = 1752I. To set up the prior distribution, we

first construct the monotonically increasing model shown in Figure 6b as the prior mean

model, which corresponds to the well-known observation that the velocity of the Earth, in

general, increases with depth. Following the strategy used by Bardsley et al. (2015) that

ensures the prior covariance matrix is well-conditioned, we construct the prior covariance

matrix by selecting a = 0.1 km2/s2, b = 0.65 , and c = 0.01 km2/s2, resulting in a prior

standard deviation of 0.33 km/s that meets the maximal difference between the true and

prior mean models. We select the penalty parameter λ for each frequency according to

the proposed selection criterion, resulting in λ = 13, 12, and 11, respectively. To compute

29



reliable statistical quantities and while also ensuring that the RML method terminates in

a reasonable amount of time, we use both the GARTO and the RML methods to generate

10, 000 samples from the posterior distribution. Based on our experience, generating 10, 000

samples is sufficient for both methods to produce stable results in this case.

[Figure 6 about here.]

Given that the computational overhead introduced by these methods is negligible com-

pared to the number of PDEs that need to be solved, we use the number of PDEs as our

performance metric. To generate 10, 000 samples, the RML method needs to solve 10, 000

nonlinear optimization problems. To solve each nonlinear optimization problem, following

van Leeuwen et al. (2014), we stop the optimization when the relative misfit difference

between two iterations drops below 10−3 resulting in 100 l-BFGS iterations. During each

l-BFGS iteration, we have to solve 2 × 3 × 60 PDEs to compute the objective and gradient.

As a result, the RML method requires 360 × 100 × 10000 = 360 million PDE solves to

draw the 10, 000 samples. Contrary to the RML method, the GARTO method requires

significantly fewer PDE solves. The total number of PDE solves required by the GARTO

method is 36, 360, which includes 36, 000 PDE solves to find the MAP estimate and another

360 PDE solves to construct the Gauss-Newton operator. With the MAP estimate and the

Gauss-Newton operator in hand, the GARTO method uses the RTO approach to sample

the 10, 000 samples without involving any additional PDE solves as we explained above.

Therefore, neglecting the costs associated with solving the least-squares systems, compared

to the RML method, the GARTO method requires only 1
10000th the computational budget

to generate the same number of samples.

In addition to the significant computational speedups introduced by the GARTO method,
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the GARTO method also generates samples that yield similar statistical quantities as those

produced by the RML method. For instance, the posterior mean models obtained by the two

methods are shown in Figure 7. From Figures 7a and 7b, we observe that aside from some

slight differences in the second and third layers, the two results are roughly identical, with an

average pointwise relative difference of 1.5%. Both results provide acceptable reconstructions

of the original velocity model, despite the fact that the data are noisy. We also use the two

posterior mean models to compute the predicted data and compare them with the observed

data in Figures 9a and 9b, which faithfully match the observed data, aside from the noise.

The pointwise standard deviations computed from both methods, shown in Figure 8, result

in estimates that are visually quite similar throughout the entire model. The average relative

difference between the standard deviations produced by both methods is 6%, an acceptable

error level, and results from the Gaussian approximation in GARTO. Figure 10 depicts

the 95% confidence intervals obtained with the two methods at three vertical cross-sections

through the model. The confidence intervals obtained by the two methods are virtually

identical, as are the pointwise marginal distributions shown in Figure 11. All these results

illustrate that, compared to the RML method, the proposed GARTO method can produce

accurate estimates of statistical quantities, while requiring a fraction of the computational

costs.

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

[Figure 10 about here.]
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[Figure 11 about here.]

BG Model

To demonstrate the effectiveness of our method when applied to a more realistic problem, we

conduct an experiment on a 2D slice from the 3D BG Compass model shown in Figure 12a.

This is a synthetic velocity model created by BG Group, which contains a large degree of

variability and has been widely used to evaluate performances of different FWI methods

(Li et al., 2012; van Leeuwen and Herrmann, 2013). The model is 2000 m deep and 4500

m wide, with a grid size of 10 m resulting in 92,455 unknown parameters. Following van

Leeuwen and Herrmann (2013), we use a Ricker wavelet with a central frequency of 15 Hz to

simulate 91 sources at the depth of 50 m with a horizontal sampling interval of 50 m. As

before, we do not model the free-surface, so that the data do not contain free-surface related

multiples. We place 451 equally spaced receivers at the same depth as the sources to record

the data, which contain 30 equally spaced frequency components ranging from 2 Hz to 31 Hz.

This results in 1,231,230 observed data values. To mimic a real-world noise level, we corrupt

the synthetic observations with 15% random Gaussian noise, leading to Γnoise = 462I. To

construct the prior distribution, we first set its mean model (Figure 12b) by smoothing the

true model followed by horizontal averaging. Second, we construct the covariance matrix

of the prior distribution utilizing the fact that we have the true 3D model, which contains

1800 2D slices. We regard these 2D slices as 1800 2D samples, from which we compute

the pointwise standard deviation. After horizontal averaging, we obtain the prior standard

deviation shown in Figure 12c. With the prior standard deviation, we select a = 0.02km2/s2

and b = 19.5 to construct a well-conditioned covariance matrix with a correlation length of

60 m (Bardsley et al., 2015). The parameter c in equation 23 is calculated according to the
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standard deviation and the parameters a and b. Finally, we compute the penalty parameter

λ for each frequency (listed in Table 1) according to the criterion introduced earlier in order

to obtain a posterior distribution that is less prone to local maxima. Considering both the

computational resources and the accuracy of the inverted statistical quantities, we will use

the GARTO method to draw 2000 samples according to Bardsley et al. (2015). Compared to

the previous example, which had a much simpler model, this model contains a significantly

larger number of unknown parameters and data points and is a better proxy for real-world

problems.

[Figure 12 about here.]

[Table 1 about here.]

During the inversion, we use 200 l-BFGS iterations to compute the MAP estimate plotted

in Figure 13a with the same stopping criterion as in the previous example. Compared to

the true model, we observe that most of the observable velocity structures are reconstructed

in the MAP estimate, aside from some small measurement noise related imprints near the

boundary of the model. We also observe that the shallow parts (z ≤ 1400 m) of the BG

model, where the turning waves exist (for a maximal offset of 4500 m (Virieux and Operto,

2009)) are better recovered relative to the deep parts (z ≥ 1400 m), where the only received

energy arises from reflected waves. This implies that the portion of the data corresponding

to the turning waves is more informative to the velocity reconstruction than that of the

reflected waves, which is a well-known observation in seismic inversions.

After obtaining the MAP estimate, we construct the Gauss-Newton Hessian operator

and apply the RTO method to generate 2000 samples. This allows us to compute the
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posterior standard deviation (Figure 13b) and compare it with the prior standard deviation

(Figure 12c). To have a better understanding of the information that the data introduce,

we also compute the relative difference STDpost(mk)−STDprior(mk)
|STDprior(mk)| between the posterior and

prior standard deviations (Figure 13c). In the shallow parts of the model (z ≤ 1400 m), the

posterior standard deviation decreases between 10% − 50% compared to the prior standard

deviation, while in the deep parts (z ≥ 1400 m), the reduction in standard deviation is

smaller than 3%. This observation is consistent with the notion that, owing to the amplitude

decay of propagating waves, the data place more constraints on the velocity variations in the

shallow parts of the model compared to the deep parts. Additionally, considering the areas

where the turning waves and the reflected waves exist, this observation also implies that the

portion of the data corresponding to the turning waves can reduce more uncertainties in

the recovered velocity compared to the reflected waves. To further evaluate this inversion

result, we compare the prior model, the MAP estimate of the posterior, and the true velocity

at three different cross sections in Figure 14 (i.e., x = 1000 m, 2500 m, and 4000 m), in

which we also plot the prior standard deviation (red patch) and posterior standard deviation

(blue patch). In the shallow region of the model, the MAP estimates closely match the true

model, while they diverge in the deeper region in a more pronounced manner. This is again

consistent with the notion that the data are more informative in the shallow area of the

model compared to the deeper areas.

[Figure 13 about here.]

[Figure 14 about here.]

We also consider the pointwise posterior marginal distribution generated by the pos-

terior and prior distributions to further understand the results of the GARTO method.
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Figure 15 compares these distributions at four different locations, (x, z) = (2240m, 40m),

(2240m, 640m), (2240m, 1240m), and (2240m, 1840m). The posterior distribution is more

concentrated than the prior distribution in the shallow regions of the model, while in the

deep parts, the two distributions are almost identical. Therefore, the recovered velocity in

the shallow parts is more reliable than in the deep parts.

[Figure 15 about here.]

To verify our statistical results, we also utilize the RML method as a baseline approach.

For this example, drawing a single sample with the RML method using 200 l-BFGS iterations

requires at least 1.09 million PDE solves, which is computationally daunting. As a result, we

only generate 10 samples via the RML method and compare them to the 95% confidence

intervals (i.e., the blue patch) obtained by the GARTO method in Figure 16. From these

figures, it is clear that the majority of the 10 samples lie in the blue patch. Moreover, the

variation of the ten samples also matches the 95% confidence interval. In this case, we

conclude that the estimated confidence intervals are likely accurate approximations of the

true confidence intervals.

[Figure 16 about here.]

DISCUSSION

When the underlying model is given by PDE-constraints consisting of multiple experiments,

one is forced to make various approximations and tradeoffs in order to develop a computation-

ally tractable procedure. There are a large number of discretized parameters, corresponding to

a discretized 2D or 3D function, and one must necessarily avoid having to explicitly construct
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dense covariance matrices of the size of the model grid squared, whose construction requires a

large number of PDE solves. Moreover, each evaluation of the posterior distribution involves

the solution of multiple PDEs, a computationally expensive affair. Methods that require tens

or hundreds of thousands of such posterior evaluations, such as McMC-type methods, do not

scale to realistically sized problems. The original PDE-constrained formulation of Bayesian

inference, while theoretically convenient, results in a posterior that cannot be appropriately

approximated by a Gaussian distribution, whereas the relaxation of the exact PDE-constraints

results in a posterior that is much more amenable to Gaussian approximation. Ideally, one

would like to parameterize the distribution over the joint model/field variables (m,u) and

estimate the variances accordingly. Hidden in this notation, however, is the fact that in

real-world problems, we have hundreds or potentially thousands of source experiments, each

of which corresponds to a different u. Storing all of these fields and updating them explicitly

becomes prohibitive memory-wise, even on a large cluster. As a result, our approach aims to

keep the benefits of relaxing the PDE-constraints while still resulting in a computationally

feasible algorithm.

The initial results illustrate that with the specific selection of λ, i.e., λ2 = 0.01µ1, the

relaxed formulation of the posterior PDF is less prone to local maxima, which enables us to

analyze it via an arguably accurate Gaussian approximation. Once we can manipulate the

covariance matrix of the Gaussian approximation through the implicit PDE-free formulation,

we have access to a variety of statistical quantities, including the pointwise standard deviation,

the confidence intervals, and the pointwise marginal distributions, in a tractable manner. We

can use these quantities to assess the uncertainties of our inversion results and to identify the

areas with high/low reliability in the model. This information is important and useful for

the subsequent processing and interpretation. A straightforward example is that it allows us
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to assess the reliability of the visible image features obtained by the subsequent procedure of

imaging, as in Ely et al. (2017).

While the initial results are promising, some aspects of the proposed framework warrant

further investigation. Although numerical examples illustrate the feasibility of the proposed

method for the case with the selection of λ2 = 0.01µ1, it does not guarantee the feasibility of

the proposed approach for PDFs arising from other choices of λ. For other selections of λ,

the posterior PDFs can significantly differ from a Gaussian PDF, which makes approximately

sampling them challenging. Potentially other sampling schemes can be explored for these

distributions.

While we have shown the feasibility of the proposed sampling method for 2D problems,

the application of the proposed sampling method to 3D problems is still challenging from the

perspective of memory usage. To satisfy the O
(
ngrid×(nrcv+nsrc)×nfreq

)
storage requirement

for formulating the implicit Gauss-Newton Hessian operator, a large high-performance cluster

with enough computational workers and memory is needed to store all of the necessary

matrices in parallel.

CONCLUSIONS

We have described a new Bayesian framework for partial-differential-equation-constrained

inverse problems. In our new framework, we introduce the field variables as auxiliary variables

and relax the partial-differential-equation-constraint. By integrating out the field parameters,

we avoid having to store and update the high number of field parameters, and exploit the

fact that the new distribution is Gaussian in the field variables for every fixed model. We

propose a method for selecting an appropriate penalty parameter such that the new posterior
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distribution can be approximated by a Gaussian distribution, which is more accurate than

the conventional formulation.

We apply the new formulation to the seismic inverse problems and derive each component

of the general framework. For this specific application, we use a partial-differential-equation-

free Gauss-Newton Hessian to formulate the Gaussian approximation of the posterior distri-

bution. We also illustrate that with this Gauss-Newton Hessian, the Gaussian approximation

can be sampled without the requirement of the explicit formulation of the Gauss-Newton

Hessian and its Cholesky factorization.

Our proposed method compares favorably to the existing randomized maximum likelihood

method for generating different statistics on a simple layered model and the more challenging

BG Compass model. Compared to the randomized maximum likelihood method, our method

produces results that are quite visually similar, while requiring significantly less partial-

differential-equation solves, which are the computational bottleneck in these problems. We

expect that these methods will scale reasonably well to 3D models, where traditional methods

have only begun to scratch the surface of the problem.

While in this paper we utilize the Gaussian smoothness prior distribution, indeed, the

proposed sampling method can also handle other choices of prior distributions, as long as

they have sparse covariance matrices. In the future, we can investigate the incorporation of

the proposed method with other kinds of prior distributions.
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APPENDIX A

MARGINAL DISTRIBUTION

To derive the marginal PDF ρpost(m|d) in equation 11, we start with the joint PDF

ρpost(u,m|d) ∝ ρ(d|u,m)ρ(u|m)ρprior(m). (A-1)

As the noise in the data are assumed to be Gaussian, we have

ρ(d|u,m) = (2π)−
ndata

2 det(Γnoise)
− 1

2 exp

(
−1

2
‖Pu− d‖2

Γ−1
noise

)
. (A-2)

Substituting equations 10 and A-2 into equation A-1, we arrive at

ρpost(u,m|d) ∝(2π)−
ngrid

2 det
(
λ2A(m)>A(m)

) 1
2

× exp
(
− 1

2

(
λ2‖A(m)u− q‖2 + ‖Pu− d‖2

Γ−1
noise

+ ‖m− m̃‖2
Γ−1

prior

))
.

(A-3)

Clearly, for fixed m, the PDF ρpost(u,m|d) with respect to u is rendered into a Gaussian

PDF with a mean value u(m) given by equation 6 and a covariance matrix Γ(m) given by

Γ(m)−1 = H(m) = −∇2
u log ρpost(u,m|d)

∣∣
u=u(m)

= λ2A(m)>A(m) + P>Γ−1
noiseP.

(A-4)
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Given this identity, we can integrate u out and derive the following closed form expression

for the marginal PDF of m :

ρpost(m|d) =

∫
ρpost(u,m|d)du

= (2π)
ngrid

2 det
(
H(m)

)− 1
2 ρpost

(
m,u(m)|d

)
∝ det

(
H(m)

)− 1
2 det

(
λ2A(m)>A(m)

) 1
2

× exp
(
− 1

2

(
λ2‖A(m)u(m)− q‖2 + ‖Pu(m)− d‖2

Γ−1
noise

+ ‖m− m̃‖2
Γ−1

prior

))
.

(A-5)

To derive the limit of the marginal posterior PDF, equation A-5, as λ → ∞, we insert

equation A-4 into the term det
(
H(m)

)− 1
2 det

(
λ2A(m)>A(m)

) 1
2 and obtain

det
(
H(m)

)− 1
2 det

(
λ2A(m)>A(m)

) 1
2

= det

(
I +

1

λ2
A(m)−>P>Γ−1

noisePA(m)−1

)− 1
2

= det

(
I +

1

λ2
Γ
− 1

2
noisePA(m)−1A(m)−>P>Γ

−>
2

noise

)− 1
2

.

(A-6)

As a result, we arrive at the following expression for the marginalized posterior distribution

ρpost(m|d) ∝ det

(
I +

1

λ2
Γ
− 1

2
noisePA(m)−1A(m)−>P>Γ

−>
2

noise

)− 1
2

× exp

(
−1

2

(
λ2‖A(m)u(m)− q‖2 + ‖Pu(m)− d‖2

Γ−1
noise

+ ‖m− m̃‖2
Γ−1

prior

))
.

(A-7)

When λ→∞, we have

lim
λ→∞

det
(
I +

1

λ2
Γ
− 1

2
noisePA(m)−1A(m)−>P>Γ

−>
2

noise
)− 1

2 = 1, and

lim
λ→∞

u(m) = A(m)−1q,

(A-8)

which leads to

lim
λ→∞

ρpost(m|d) ∝ exp
(
−1

2
‖PA(m)−1q− d‖2

Γ−1
noise
− 1

2
‖m− m̃‖2

Γ−1
prior

)
. (A-9)

As expected, the marginal PDF of the penalty formulation (cf. equation A-5), converges to

the conventional reduced formulation (cf. equation 3) as λ→∞.
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Figure 1: (a) Snapshot of the time-domain wavefield generated by a single source (∗); (b)
recorded time-domain data at four receiver locations (∇).
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Figure 2: The four posterior PDFs corresponding to the penalty formulations with λ = 10
(a), 50 (b), and 250 (c), and the reduced formulation (d).
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Figure 3: The Gaussian approximations of the four posterior PDFs associated with the model
in equation 14.
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Figure 4: The comparison of the negative log-likelihood functions.

51



1800 2000 2200
v

0
  [m/s]

0

2

4

6

8

-lo
g

ρ

ψ
1

ψ
2

ψ
3

(a) λ2 = 10−10µ1

1800 2000 2200
v

0
  [m/s]

0

2000

4000

6000

8000

-lo
g

ρ

ψ
1

ψ
2

ψ
3

(b) λ2 = 10−6µ1

1800 2000 2200
v

0
  [m/s]

3.5

4

4.5

5

5.5

6

-lo
g

ρ

×10 4

ψ
1

ψ
2

ψ
3

(c) λ2 = 10−4µ1

1800 2000 2200
v

0
  [m/s]

1

1.5

2

2.5
-lo

g
ρ

×10 5

ψ
1

ψ
2

ψ
3

(d) λ2 = 10−2µ1

1800 2000 2200
v

0
  [m/s]

0

1

2

3

-lo
g

ρ

×10 6

ψ
1

ψ
2

ψ
3

(e) λ2 = 100µ1

1800 2000 2200
v

0
  [m/s]

0

1

2

3

4

5

-lo
g

ρ

×10 6

ψ
1

ψ
2

ψ
3

(f) λ2 = 102µ1

Figure 5: The comparison of the negative log-likelihood functions of the true distribution
(ψ1), the approximate distribution (ψ2), and the Gaussian approximation distribution (ψ3)
with the values of λ2 = 10−10µ1, 10−6µ1, 10−4µ1, 10−2µ1, 100µ1, and 102µ1.
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Figure 6: The true model (a) and the prior mean model (b).
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Figure 7: The posterior mean models obtained by the GARTO method (a) and the RML
method (b).
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Figure 8: The posterior standard deviations obtained by the GARTO method (a) and the
RML method (b).
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Figure 9: The comparison between the observed data and the predicted data with the
posterior mean models obtained by the GARTO method (a) and the RML method (b).
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Figure 10: The mean (line) and 95% confidence interval (background patch) comparisons of
the GARTO method (blue) and the RML method (red) at x = 500 m, 1500 m, and 2500 m.
The similarity between these two results implies that the confidence intervals obtained with
the GARTO method is a good approximation of the ones obtain with the RML method.
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Figure 11: The comparison of the prior marginal distribution (solid line) and the poste-
rior marginal distributions obtained by the GARTO method (dotted line) and the RML
method (dashed line) at the locations of (x, z) = (1500m, 200m), (1500m, 700m), and
(1500m, 1200m).
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(b) Prior mean model
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Figure 12: The true model (a), the prior mean model (b), and the prior standard deviation
(c).
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(a) Posterior MAP
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Figure 13: The posterior MAP estimate (a), the posterior standard deviation (b), and
the relative difference STDpost(mk)−STDprior(mk)

|STDprior(mk)| between the posterior and the prior standard
deviations (c).

60



Velocity [km/s]
0 2 4 6

D
ep

th
 [m

]

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Posterior model
Prior model
True model

(a) x = 1000m
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(b) x = 2500m
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Figure 14: The mean and standard deviation comparisons of the posterior (blue) and the
prior (red) distributions at x = 1000 m, 2500 m, and 4000 m.
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Figure 15: The comparison of the prior (solid line) and the posterior (dotted line) marginal
distributions at the locations of (x, z) = (2240m, 40m), (2240m, 640m), (2240m, 1240m),
and (2240m, 1840m).
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(b) x = 2500m
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Figure 16: The 95% confidence intervals and the 10 realizations via the RML method at
x = 1000 m, 2500 m, and 4000 m.
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Frequency 2 3 4 5 6 7 8 9 10 11
λ 37.8 29.3 24.4 20.5 17.6 15.2 13.5 12.1 10.9 10.1

Frequency 12 13 14 15 16 17 18 19 20 21
λ 9.3 8.8 8.3 7.9 7.5 7.1 6.9 6.5 6.4 6.1
Frequency 22 23 24 25 26 27 28 29 30 31
λ 5.9 5.7 5.5 5.4 5.2 5.1 4.9 4.8 4.7 4.6

Table 1: The selection of λ for each frequency
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