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ABSTRACT

Source estimation is essential to all the wave-equation-based seismic inversions, including full-

waveform inversion and the recently proposed wavefield-reconstruction inversion. When the

source estimation is inaccurate, errors will propagate into the predicted data and introduce

additional data misfit. As a consequence, inversion results that minimize this data misfit

may become erroneous. To mitigate the errors introduced by the incorrect and pre-estimated

sources, an embedded procedure that updates sources along with medium parameters is

necessary for the inversion. So far, such a procedure is still missing in the context of

wavefield-reconstruction inversion, a method that is, in many situations, less prone to local

minima related to the so-called cycle skipping, compared to full-waveform inversion through

exact data-fitting. While wavefield-reconstruction inversion indeed helps to mitigate issues



related to cycle skipping by extending the search space with wavefields as auxiliary variables,

it relies on having access to the correct source functions. To remove the requirement of

having the accurate source functions, we propose a source estimation technique specifically

designed for wavefield-reconstruction inversion. To achieve this task, we consider the source

functions as unknown variables and arrive at an objective function that depends on the

medium parameters, wavefields, and source functions. During each iteration, we apply the

so-called variable projection method to simultaneously project out the source functions and

wavefields. After the projection, we obtain a reduced objective function that only depends

on the medium parameters and invert for the unknown medium parameters by minimizing

this reduced objective. Numerical experiments illustrate that this approach can produce

accurate estimates of the unknown medium parameters without any prior information of the

source functions.
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INTRODUCTION

The objective of full-waveform inversion (FWI) is to compute the best earth model that is

consistent with observed data (Tarantola and Valette, 1982; Virieux and Operto, 2009). Most

methods that fall into this category reconstruct the medium parameters by minimizing the

misfit between synthetic and observed wavefields for different sources and at possibly different

sets of receiver locations. As a consequence, the accuracy of the inversion result relies heavily

on the correctness of the modeling kernel that generates synthetic wavefields. Being part of

the wave-equation, the source signature is one key factor that affects the synthetic data and

requires to be estimated during the inversion in practice.

Many source estimation approaches have been developed for the conventional FWI,

also known as the adjoint-state method (Plessix, 2006; Virieux and Operto, 2009). Liu

et al. (2008) proposed to treat source functions as unknown variables and update them

with medium parameters simultaneously. However, the amplitudes of source functions and

medium parameters are different in scale, and so are the amplitudes of their corresponding

gradients. As a result, the gradient-based optimization algorithms would tend to primarily

update the one at the larger scale. Pratt (1999) proposed another approach to estimate

source functions during each iteration of the adjoint-state method. In this approach, the

author estimates the source functions after each update of the medium parameters by solving

a least-squares problem for each frequency. The solution of the least-squares problem is

a single complex scalar that minimizes the difference between the observed and predicted

data computed with the updated medium parameters. Because the updates of the source

functions and medium parameters are in two separate steps, this method is not impacted

by the different amplitude scales of the gradients. Indeed, Aravkin and van Leeuwen (2012)
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and van Leeuwen et al. (2014) pointed out that the problem of FWI with source estimation

falls into a general category called separable nonlinear least-squares (SNLLS) problems

(Golub and Pereyra, 2003), which can be solved by the so-called variable projection method.

The method proposed by Pratt (1999) falls into that category. By virtue of these variable

projections, the gradient with respect to the source functions becomes zero, because the

estimated source is the optimal solution that minimizes the misfit between the observed

and predicted data given the current medium parameters (Aravkin and van Leeuwen, 2012).

For this reason, the gradient with respect to the medium parameters no longer contains

the non-zero cross derivative with respect to the source functions, and the inverse problem

becomes source-independent. In fact, because the problem of FWI with source estimation is

a special case of the SNLLS problem, the minimization of this source-independent objective

converges in fewer iterations than that of the original source-dependent objective theoretically

(Golub and Pereyra, 2003). Furthermore, Li et al. (2013) presented empirical examples

to illustrate that the variable projection method is more robust to noise compared to the

method that performs alternating gradient descent steps on two variables separately (Zhou

and Greenhalgh, 2003), as well as to the one that minimizes the two variables simultaneously

(Liu et al., 2008).

A well-known problem of the conventional adjoint-state method is that the resulting

optimization problem may have local minima in common situations where the starting model

for the velocity is not known accurately enough. As argued by van Leeuwen and Herrmann

(2013b), this sensitivity to the starting model is due to the fact that the adjoint-state

method eliminates the wave-equation constraint by explicitly solving it, which results in an

objective function that is highly nonlinear in the unknown medium parameters. To mitigate

the problem of these local minima, van Leeuwen and Herrmann (2013b) and van Leeuwen
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and Herrmann (2015) proposed a penalty formulation instead, where the wave-equation

constraint is replaced by a weak constraint in the form of an `2-norm penalty. This method

is known as wavefield-reconstruction inversion (WRI) (van Leeuwen and Herrmann, 2013b,

2015). Compared to the adjoint-state method, WRI relaxes the wave-equation constraint

by introducing the wavefields as auxiliary variables and adding a penalty term to the data

misfit. This idea of extending the search space was also recently utilized by Huang et al.

(2016), where an additional source term is introduced as the auxiliary variable. Both of these

approaches are more or less equivalent and are successful in mitigating the effects of local

minima, because the extended search space allows for fitting the observed data even in cases

where the velocity model is incorrect. As a result, we can carry out the inversion with poorer

initial models and start at higher frequencies (Peters et al., 2014). While these developments

are encouraging, WRI does, as illustrated in Figure 1, require accurate information on the

source functions. For instance, a small difference in the origin time of the source can lead to

a significant deterioration of the inversion result (cf. Figure 1).

[Figure 1 about here.]

Recognizing this sensitivity to source functions, we propose a modified WRI framework

with source estimation integrated, making the method applicable to field data. In this

new formulation, we continue to solve an optimization problem but now one that has the

source functions, medium parameters, and wavefields all as unknowns. For fixed medium

parameters, we observe that the objective function of this optimization problem is quadratic

with respect to both wavefields and source functions. As a result, if we collect the wavefield

and source function for each source experiment into one single unknown vector variable, the

optimization problem becomes an SNLLS problem with respect to the medium parameters
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and this new unknown variable. As before, we propose the variable projection method to solve

the optimization problem by projecting out this new unknown variable during each iteration.

After these least-squares problems, we compute single model updates either with the gradient

descent or limited-memory Broyden–Fletcher–Goldfarb–Shanno (l-BFGS) method (Nocedal

and Wright, 2006).

The outline of the paper is as follows. In the methodology section, we first start with

a review of the source estimation technique for the conventional FWI using the variable

projection method. Next, we introduce the standard WRI and propose our method for WRI

source estimation. We conclude by presenting a computationally efficient implementation,

which we evaluate on several synthetic examples to highlight the benefits of our approach.

METHODOLOGY

FWI with source estimation

During FWI, we solve the following least-squares problem for the discretized n

grid

-dimensional

unknown medium parameters, squared slowness m 2 Rngrid , which appear as coefficients in

the acoustic time-harmonic wave-equation, i.e.,

minimize
u,m

1

2

nsrcX

i=1

nfreqX

j=1

kPiui,j � di,jk22

subject to Aj(m)ui,j = qi,j .

(1)

Here, the i, j’s represent the source and frequency indices, and the vector d 2 Cnfreq⇥nsrc⇥nrcv

represents monochromatic Fourier transformed data collected at n

rcv

receiver locations from

n

src

seismic sources and sampled at n

freq

frequencies. The matrix Aj(m) = !

2
jdiag(m) +�

is the discretized Helmholtz matrix at angular frequency !j . The symbol � represents the

discretized Laplacian operator and the matrix Pi corresponds to a restriction operator for
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the receiver locations. Finally, the vectors qi,j and ui,j denote the unknown monochromatic

source term at the i

th source location and j

th frequency and the corresponding wavefield,

respectively. For simplicity, we omit the dependence of Aj(m) on the discretized squared

slowness vector m from now onwards.

Since the Aj ’s are square matrices, we can eliminate the variable u by solving the

discretized partial-differential equation (PDE) explicitly, leading to the so-called adjoint-state

method, which has the following reduced form (Virieux and Operto, 2009):

minimize
m

f

red

(m) =
1

2

nsrcX

i=1

nfreqX

j=1

kPiA
�1
j qi,j � di,jk22. (2)

In this form, the source function q is assumed to be available. However, in practice,

while spatial locations of the sources are often known quite accurately, the source function is

generally unknown. If we ignore spatial directivity of the sources, we can handle this situation

in the context of FWI by incorporating the source function through setting qi,j = ↵i,jei,j in

the frequency-domain, where ↵i,j is a complex number representing the frequency-dependent

source weight for the i

th source experiment at the j

th frequency. In this expression, the

symbol ei,j represents a unit vector that equals one at the source location and zero elsewhere.

When we substitute qi,j = ↵i,jei,j into the objective function in equation 2, we arrive at an

optimization problem with two unknown variables, i.e., we have

minimize
m,↵

f

red

(m, ↵) =
1

2

nsrcX

i=1

nfreqX

j=1

kPiA
�1
j ↵i,jei,j � di,jk22, (3)

where the vector ↵ = {↵i,j}1insrc,1jnfreq collects all the unknown source weights.

To solve the optimization problem in equation 3, one straightforward approach is to

compute the gradient of the objective function f

red

with respect to m and ↵, i.e.,

g
red

(m, ↵) =

2

664
r

m

f

red

(m,↵)

r↵f
red

(m,↵)

3

775 , (4)
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and update m and ↵ alternately (Zhou and Greenhalgh, 2003) or simultaneously (Liu et al.,

2008). While relatively straightforward to compute, this formulation may result in converging

to a local minimum, which requires a very good initial guess of ↵ to avoid. Moreover, while

the gradients r
m

f

red

(m,↵) and r↵f
red

(m,↵) seemingly provide all information that we

would need to drive the inversion, their amplitudes may also differ significantly in scale. An

undesired consequence of this mismatch between the two gradients is that the optimization

may tend to primarily update the variable with the larger gradient contribution resulting in

small updates for the other variable. This behavior may slow down the convergence, and

the small updates may lead to errors that end up in the other variable resulting in a poor

solution. Although we might mitigate this problem by manually scaling the two variables

and the corresponding gradients to the approximately same levels, the crosstalk between m

and ↵ may lead to more local minima in the objective function, resulting in the requirement

of a good initial guess of ↵ to ensure a successful inversion (Li et al., 2013).

Source estimation with the variable projection method

An alternative approach to solving the optimization problem in equation 3 is to use the

so-called variable projection method (Golub and Pereyra, 2003) to project out the source

weights ↵ during each iteration (Aravkin and van Leeuwen, 2012; Li et al., 2013). The

variable projection method is designed to solve SNLLS problems, which permit the following

standard expression:

minimize
✓,x

f(✓,x) =
1

2
k�(✓)x� yk2, (5)

where the matrix �(✓) varies (nonlinearly) with respect to the variable vector ✓. The vectors

x and y represent a linear variable and the observations, respectively. More specifically, we

can observe that the FWI problem with source estimation in equation 3 is a special case of
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SNLLS problems by setting

✓ = m, xi,j = ↵i,j , yi,j = di,j , and �i,j(✓) = PiA
�1
j ei,j , (6)

for each pair of (i, j). In this case, the vectors x and y are block vectors containing all

{xi,j}1insrc,1jnfreq and {yi,j}1insrc,1jnfreq . Likewise, �(✓) is a block-diagonal matrix.

When introducing the variable projection method, it is often useful to recognize that for

fixed ✓, the objective function f(✓,x) becomes quadratic with respect to x. As a consequence,

the variable x has a closed-form optimal least-squares solution x(✓) that minimizes the

objective f(✓,x):

x(✓) =
�
�(✓)>�(✓)

��1
�(✓)>y, (7)

where the symbol > denotes the (complex-conjugate) transpose. For each pair of (i, j), we

now have

xi,j(✓) =
�
�i,j(✓)

>�i,j(✓)
��1

�i,j(✓)
>yi,j . (8)

By substituting equation 7 into equation 5, we project out the variable x by the optimal

solution x(✓) and arrive at a reduced optimization problem over ✓ alone, i.e., we have

minimize
✓

f(✓) = f

�
✓,x(✓)

�
= k

⇣
I� �(✓)

�
�(✓)>�(✓)

��1
�(✓)>

⌘
yk2. (9)

The gradient of the reduced objective function f(✓) can be computed via the chain rule,

yielding

g(✓) = r✓f(✓) = r✓f
�
✓,x(✓)

�
= r✓f(✓,x)|

x=x(✓) +r
x

f(✓,x)|
x=x(✓)r✓x. (10)

Note that from the definition of x(✓), we have

r
x

f(✓,x)|
x=x(✓) = 0. (11)

9



With this equality, the gradient in equation 10 can be written as:

g(✓) = r✓f(✓,x)|
x=x(✓). (12)

Equation 12 implies that although the optimal solution x(✓) is a function of ✓, the construction

of the gradient g(✓) does not need to include the cross-derivative term r
x

f(✓,x)|
x=x(✓)r✓x

by the virtue of equation 11.

As shown by Aravkin and van Leeuwen (2012) and van Leeuwen et al. (2014), we can

through substituting equation 6 into equations 7, 9, and 12 successfully project out the source

weights by computing the optimal source weight ↵i,j(m) for each source and frequency:

↵i,j(m) =
d
>
i,jdi,j

d
>
i,jdi,j

, with di,j = PiA
�1
j ei,j , (13)

and arrive at minimizing the following reduced objective:

minimize
m

f̃

red

(m) = f

red

�
m,↵(m)

�
, (14)

with a gradient given by

g̃
red

(m) = r
m

f

red

(m,↵)|↵=↵(m). (15)

Compared to the objective function f

red

(m,↵) in equation 3, the objective function f̃

red

(m)

only depends on m. As a consequence, we avoid having to optimize over two different

variables that differ in scale. Moreover, because the objective f̃

red

(m) is source-independent,

the optimization with it does not require any initial guesses of the source weights, while the

optimization with the objective f(m,↵) does need a sufficiently accurate initial guess to

ensure reaching the correct solution. Empirically, Li et al. (2013) showed the outperformances

of minimizing f̃

red

(m) over minimizing f(m,↵), especially when the data contain noise.
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WRI with source estimation

Introduction of WRI

In the conventional FWI or adjoint-state method in equation 2, the dependence of the

objective function f

red

(m) on m runs through the nonlinear operator A�1
j qi,j , instead of via

the original linear operator Ajui,j in equation 1. As a result, the price we pay is that the

objective function f

red

(m) becomes highly nonlinear in m. The gain, of course, is that we no

longer have to optimize over the wavefields. However, this gain is perhaps a bit short-lived,

because the reduced objective function f

red

(m) may contain local minima (Warner et al.,

2013), which introduces more difficulties in the search for the best medium parameters using

the local derivative information only.

To make FWI less susceptible to these parasitic minima, van Leeuwen and Herrmann

(2013b) and van Leeuwen and Herrmann (2015) proposed WRI—a penalty formulation of

FWI that reads

minimize
m,u

f

pen

(m,u) =
1

2

nsrcX

i=1

nfreqX

j=1

�kPiui,j � di,jk22 + �

2kAjui,j � qi,jk22
�
. (16)

In this optimization problem, we keep the wavefields u as unknown variables instead of

eliminating them as in FWI, i.e., we replace the PDE constraint by an `2-norm penalty term.

The scalar parameter � controls the balance between the data and the PDE misfits. As �

increases, the wavefield is more tightly constrained by the wave-equation, and the objective

function f

pen

(m,u) in equation 16 converges to the objective function of the reduced problem

in equation 2 (van Leeuwen and Herrmann, 2015). Different from the nonlinear objective

function of the reduced problem in equation 2, the WRI objective f

pen

(m,u) is a bi-quadratic

function with respect to m and u, i.e., for fixed m, the objective f

pen

(m,u) is quadratic
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with respect to u and vice versa. In addition, van Leeuwen and Herrmann (2013b) and van

Leeuwen and Herrmann (2015) indicated that WRI explores a larger search space by not

satisfying the PDE constraints exactly, which results in that WRI is less “nonlinear” and

may contain less local minima compared to the conventional adjoint-state method.

In the optimization problem of equation 16, both the wavefields u and medium parameters

m are unknown. Searching for both u and m by methods like gradient-descent and l-BFGS

method requires storing the two unknown variables. However, the memory cost of storing

u can be extremely large, because u 2 Cngrid⇥nfreq⇥nsrc . To mitigate the storage cost, van

Leeuwen and Herrmann (2013b) and van Leeuwen and Herrmann (2015) noticed that the

optimization problem in equation 16 is also a special case of SNLLS problems and applied

the variable projection method to solve it. Indeed, we have

✓ = m, xi,j = ui,j , yi,j =

2

664
�qi,j

di,j

3

775 , and �i,j(✓) =

2

664
�Aj

Pi

3

775 . (17)

Therefore, after substituting equation 17 into equations 7, 9, and 12, we can successfully

project out the wavefields u by computing the optimal wavefield ui,j(m) for each source and

frequency:

ui,j(m) =
⇣
�

2A>
j Aj +P>

i Pi

⌘�1 ⇣
�

2A>
j qi,j +P>

i di,j

⌘
, (18)

and arrive at minimizing the following reduced objective:

minimize
m

f

pen

(m) = f

pen

�
m,u(m)

�

=
1

2

nsrcX

i=1

nfreqX

j=1

�kPiui,j(m)� di,jk22 + �

2kAjui,j(m)� qi,jk22
�
,

(19)

with a gradient given by

g
pen

(m) =

nsrcX

i=1

nfreqX

j=1

�

2
!

2
i diag

⇣
conj

�
ui,j(m)

�⌘�
Ajui,j(m)� qi,j

�
. (20)
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Here the term diag
⇣
conj

�
ui,j(m)

�⌘
represents a diagonal matrix with the elements of the

complex conjugate of the vector ui,j(m) on the diagonal. With the projection of the

wavefields u in equation 18, the new reduced objective f

pen

(m) varies only with respect to

the variable m. As a result, we do not need to store the u’s reducing the storage costs from

O(n
grid

⇥ (n
freq

⇥ n

src

+ 1)) to O(n
grid

).

Source estimation for WRI

The standard formulation of WRI in equation 16 does not take situations with unknown

source functions into account. When the source functions are unknown, we face to solve an

optimization problem with three unknown variables, i.e., we have

minimize
m,u,↵

f

pen

(m, u, ↵) =
1

2

nsrcX

i=1

nfreqX

j=1

�kPiui,j � di,jk22 + �

2kAjui,j � ↵i,jei,jk22
�
, (21)

where the vector ↵ = {↵i,j}1insrc,1jnfreq contains all the source weights.

Because this new objective f

pen

(m, u, ↵) contains more than two unknowns, it no longer

corresponds to a standard SNLLS problem, so we cannot directly apply the variable projection

method to solve it. One simple approach that comes to mind to convert the problem in

equation 21 to a standard SNLLS problem would be to reduce the number of unknown

variables by collecting two of the three variables into a new variable. Since for fixed m and

↵, f
pen

(m, u, ↵) is still quadratic with respect to u, the most straightforward approach

would be to lump the medium parameters m and the source weights ↵ together. During

each iteration, we can apply the variable projection method to project out u, yielding an

objective function f̃(m, ↵) with respect to both m and ↵. However, as discussed in the

context of FWI with source estimation, minimizing f̃(m, ↵) by either simultaneously or

alternately updating m and ↵ would face the convergence-related problems caused by the
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crosstalk between the two unknowns and the mismatch of their amplitudes. Additionally, a

straightforward application of the variable projection method to project out ↵ from f̃(m, ↵)

is not viable, because it destroys the underlying assumption of the projection of u, i.e.,

r
u

f

pen

(m,u,↵)|
u=u(m,↵) 6= 0 with the projected ↵.

To address the challenge arising from the different amplitude scales of m and ↵ and their

gradients, we propose another strategy to reduce the original problem in equation 21. Instead

of collecting m and ↵ together, we lump u and ↵ into a single vector x. To understand the

potential advantage of this alternative strategy, let us rewrite the optimization problem in

equation 21 as

minimize
m,u,↵

f

pen

(m,u,↵) =
1

2

nsrcX

i=1

nfreqX

j=1

k

2

664
�Aj ��ei,j

Pi 0

3

775

2

664
ui,j

↵i,j

3

775�

2

664
0

di,j

3

775 k2

=
1

2

nsrcX

i=1

nfreqX

j=1

k

2

664
�Aj ��ei,j

Pi 0

3

775xi,j �

2

664
0

di,j

3

775 k2

: = f̂

pen

(m,x).

(22)

For fixed m, the objective function f̂

pen

(m,x) continues to be quadratic in the new variable

x, where u and ↵ are grouped together. As a result, we can rewrite the optimization problem

in equation 22 into the standard SNLLS form (see equation 5) when we use the following

notations:

✓ = m, xi,j =

2

664
ui,j

↵i,j

3

775 , yi,j =

2

664
0

di,j

3

775 , and �i,j(✓) =

2

664
�Aj ��ei,j

Pi 0

3

775 . (23)

Now by substituting the notations in equation 23 into equation 8, we can apply the variable

projection method again to project out x from the objective function f̂

pen

(m,x) for fixed m
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by computing the optimal solution

xi,j(m) =

2

664
ui,j(m)

↵i,j(m)

3

775 =

2

664
�

2A>
j Aj +P>

i Pi ��

2A>
j ei,j

��

2e>i,jAj �

2e>i,jei,j

3

775

�1 2

664
Pidi,j

0

3

775 .

(24)

The linear system in equation 24 is solvable if and only if the rank of the matrix �i,j(✓) in

equation 23 is n

grid

+ 1, which requires

PiA
�1
j ei,j 6= 0. (25)

In fact, this means that the wavefields corresponding to a point source do not vanish at all

the receiver locations simultaneously, which holds in almost all seismic situations. Indeed,

even in the extremely rare situation where a source is made nearly “silent” or non-radiating

due to its surrounding geological structures, we can simply discard this source in the inversion

to avoid inverting a rank deficient matrix. After the projection in equation 24, we obtain an

objective function that only depends on m:

f̂(m) = f

pen

�
m,u(m),↵(m)

�
, (26)

whose gradient ĝ(m) can be derived as

ĝ(m) = r
m

f̂(m) = r
m

f

pen

(m,u,↵)|
u=u(m),↵=↵(m)

=

nsrcX

i=1

nfreqX

j=1

�

2
!

2
i diag

⇣
conj

�
ui,j(m)

�⌘�
Ajui,j(m)� ↵i,j(m)ei,j

�
.

(27)

As a result, we avoid optimizing over two different variables that differ in scale. Moreover,

the optimization with f̂(m) does not require any initial guesses of the source weights.

Optimization scheme

With the gradient ĝ(m) we derived in the previous section we can compute updates for the

medium parameters via the steepest-descent method (Nocedal and Wright, 2006):

mk+1 = mk � �kĝ(mk). (28)

15



Here, the value �k is an appropriately chosen step length at the k

th iteration, which requires

a line search to determine. Even with an optimized step length, as a first-order method, the

steepest-descent method can be slow. To speed up the convergence, second-order methods

including Newton method, Gauss-Newton method, and quasi-Newton method may be more

desirable (Pratt, 1999; Akcelik, 2002; Askan et al., 2007). During each iteration, Newton

method and Gauss-Newton method use the full or Gauss-Newton Hessian to compute the

update direction. However, the construction and inversion of the full or Gauss-Newton

Hessian for both FWI (Pratt, 1999) and WRI (van Leeuwen and Herrmann, 2015) involve a

large amount of additional PDE solves, which makes these two methods less attractive in

this context. On the other hand, the quasi-Newton method, especially the l-BFGS method

(Nocedal and Wright, 2006; Brossier et al., 2009; van Leeuwen and Herrmann, 2013a), utilizes

the gradient at the current iteration k and a few previous gradients (typically, 3-20 iterations)

to construct an approximation of the inverse of the Hessian. Hence, except for the increased

memory, the l-BFGS method constructs the approximation of the inverse of the Hessian for

free. For this reason, we use the l-BFGS method as our optimization scheme and denote the

l-BFGS update as

mk+1 = mk � �kH(mk)
�1ĝ(mk), (29)

where the matrix H(mk) is the l-BFGS Hessian and the step length �k is determined by

a weak Wolfe line search. We give a detailed description of the l-BFGS method for the

proposed WRI framework with source estimation in Algorithm 1.
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Algorithm 1 l-BFGS algorithm for WRI with source estimation
1. Initialization with an initial model m0

2. for k = 1 ! n

iter

3. for j = 1 ! n

freq

4. for i = 1 ! n

src

5. Compute ui,j(mk) and ↵i,j(mk) by equation 24

6. end

7. end

8. Compute f̂k and ĝk by equations 26 and 27

9. Apply l-BFGS Hessian with history size n

his

10. pk = lbfgs(�ĝk, {tl}kl=k�nhis
, {sl}kl=k�nhis

)

11. {mk+1, f̂k+1, ĝk+1} = line search(f̂k, ĝk,pk)

12. tk+1 = mk+1 �mk

13. sk+1 = ĝk+1 � ĝk

14. end

Fast solver for WRI with source estimation

Most of the computational burden for the objective function and its gradient in equations 26

and 27 lies within inverting the matrix

Ci,j(m) = �i,j(m)>�i,j(m) =

2

664
�

2A>
j Aj +P>

i Pi ��

2A>
j ei,j

��

2e>i,jAj �

2e>i,jei,j

3

775 . (30)

For 2D problems, we can invert the matrix Ci,j(m) by direct solvers such as the Cholesky

method, while for 3D problems, we may need an iterative solver equipped with a proper

preconditioner. In either case, following computational challenges arise from the fact that

the matrix Ci,j(m) differs from source to source and frequency to frequency. First, to
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apply the Cholesky method, we need to calculate the Cholesky factorization for each i

and j, i.e., for each source and frequency. As a result, the computational cost arrives

at O�
n

src

⇥ n

freq

⇥ (n3
grid

+ n

2
grid

)
�
, which prohibits the application to problems with a

large number of sources. Second, for iterative solvers, because the matrix Ci,j(m) varies

with respect to i and j, the corresponding preconditioner may as well as depend on i

and j. Therefore, we may have to design n

src

⇥ n

freq

different preconditioners, which can

be computationally difficult and intractable. Moreover, the additional terms ��

2A>
j ei,j ,

��

2e>i,jAj , and �

2e>i,jei,j may lead to the condition number of the matrix Ci,j worse than that

of the matrix �

2A>
j Aj +P>

i Pi. As a result, without a good preconditioner, the projection

procedure in the framework of WRI with source estimation may be much slower than that

without source estimation.

To lighten the computational cost of inverting the matrix Ci,j(m), we describe a new

inversion scheme to implement the algorithm when the projection operator P remains the

same for all sources. This situation is common in ocean bottom node acquisition and the

land acquisition where all sources “see” the same receivers. When we replace Pi by a single

P in equation 30, the matrix Ci,j(m) can be simplified as

Ci,j(m) =

2

664
�

2A>
j Aj +P>P ��

2A>
j ei,j

��

2e>i,jAj �

2e>i,jei,j

3

775 . (31)

Unfortunately, this matrix Ci,j(m) still depends on the source and frequency indices, and a

straightforward inversion still faces the aforementioned computational challenges. However,

this form, equation 31, allows us to use an alternative block matrix formula to invert Ci,j(m).

To arrive at this result, let us first write Ci,j(m) in a simpler form

Ci,j(m) =

2

664
M1 M2

M3 M4

3

775 , (32)
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where the matrix M1 = �

2A>
j Aj +P>P, the vector M2 = M>

3 = ��

2A>
j ei,j , and the scalar

M4 = �

2e>i,jei,j . Now if we apply the block matrix inversion formula (Bernstein, 2005) to

compute C�1
i,j (m), we arrive at the following closed form analytical expression

C�1
i,j (m) =

2

664
(I+M�1

1 M2(M4 �M3M
�1
1 M2)

�1M3)M
�1
1 �M�1

1 M2(M4 �M3M
�1
1 M2)

�1

�(M4 �M3M
�1
1 M2)

�1M3M
�1
1 (M4 �M3M

�1
1 M2)

�1

3

775 .

(33)

While complicated the right-hand side of this equation only involves the inversion of the

source-independent matrix M1, all other terms are all scalar inversions that can be evaluated

at negligible costs. Substituting equation 33 into equation 24, we obtain an analytical solution

for the optimal variable

xi,j(m) = C�1
i,j (m)

2

664
P>di,j

0

3

775

=

2

664
(I+M�1

1 M2(M4 �M3M
�1
1 M2)

�1M3)M
�1
1 P>di,j

�(M4 �M3M
�1
1 M2)

�1M3M
�1
1 P>di,j

3

775 .

(34)

In equation 34, we have to invert two terms, i.e., M1 and M4 �M3M
�1
1 M2. Because M4

is a scalar, the term (M4 �M3M
�1
1 M2)

�1 is a scalar inversion, whose computational cost

is negligible. Therefore, to construct xi,j(m), we only need to compute the following two

vectors:

w1 = M�1
1 M2

= ��

2(�2A>
j Aj +P>P)�1A>

j ei,j ,

(35)

and

w2 = M�1
1 P>di,j

= (�2A>
j Aj +P>P)�1P>di,j .

(36)

From these two expressions, we can observe that the computation of the vectors w1 and

w2 for each source is independent from that of other sources, therefore, we can sequentially
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compute them from source to source, yielding a negligible requirement of storing only 2

additional wavefields during the inversion. For each frequency, because the matrix M1 is

source-independent, we only need one Cholesky factorization, whose computational cost

is O(n3
grid

). With the pre-computed Cholesky factors, for each source, solving w1 and w2

by equations 35 and 36 requires inverting the matrix M1 twice with a computational cost

of O(n2
grid

). Consequently, we reduce the total cost from O�
n

src

⇥ n

freq

⇥ (n3
grid

+ n

2
grid

)
�

to O�
n

freq

⇥ (n3
grid

+ 2 ⇥ n

src

⇥ n

2
grid

)
�
. As a reference, the computational complexity of

WRI without source estimation is of a close order O�
n

freq

⇥ (n3
grid

+ n

src

⇥ n

2
grid

)
�

(van

Leeuwen and Herrmann, 2015). A comparison of the computational complexity of WRI

with and without source estimation using the Cholesky method is shown in Table 1. In

this table, we refer to the scheme that directly inverts the matrix Ci,j(m) as the old form,

and refer to the proposed scheme in equation 34 as the new form. Compared to the old

form, instead of requiring n

src

Cholesky factorizations, the proposed new form only requires

1 Cholesky factorization for each frequency, which significantly reduces the computational

cost. Furthermore, besides reducing the cost for direct solvers, the proposed inversion scheme

can also benefit iterative solvers. For each frequency, since all sources only need to invert

the same matrix M1, the proposed new form avoids inverting the potentially ill-conditioned

matrix Ci,j directly and only requires one preconditioner instead of n
src

, which significantly

simplifies the projection procedure. In the following section of numerical experiments, we

will only show the computational gain for direct solvers.

[Table 1 about here.]
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NUMERICAL EXAMPLES

BG model with frequency-domain data

To compare the performance of the two source estimation methods for WRI described in the

previous section, we conduct numerical experiments on a part of the BG compass model m
t

shown in Figure 2a, which is a geologically realistic model created by BG Group and has been

widely used to evaluate performances of different FWI methods (Li et al., 2012; van Leeuwen

and Herrmann, 2013a). We will refer to the method that combines m and ↵ as WRI-SE-MS

and the one that combines u and ↵ as WRI-SE-WS. For our discretization, we use an optimal

9-point finite-difference frequency-domain forward modeling code (Chen et al., 2013). Sources

and receivers are positioned at the depth of z = 20m with a source distance of 50m and a

receiver distance of 10m, resulting a maximum offset of 4.5 km. Data is generated with a

source function given by a Ricker wavelet centered at 20Hz with a time shift of 0.5 s. We

do not model the free-surface, so the data contain no free-surface related multiples. As

is commonly practiced (see e.g. Pratt (1999)), we perform frequency continuation using

frequency bands ranging from {2, 2.5, 3, 3.5, 4, 4.5}Hz to {27, 27.5, 28, 28.5, 29, 29.5}Hz

with an overlap of one frequency between every two consecutive bands. During the inversion,

the result of the current frequency band serves as a warm starter for the inversion of the

next frequency band. During each iteration, we also apply a point-wise bound constraint

(Peters and Herrmann, 2016) to the update to ensure that each gridpoint of the model update

remains within a geologically reasonable interval. In this experiment, because the lowest and

highest velocities of the true model are 1480m/s and 4500m/s, we set the interval of the

bound constraint to be [1300, 5000]m/s. The initial model m0 (Figure 2b) is generated by

smoothing the original model, followed by an average along the horizontal direction. The
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difference between the initial and true models is shown in Figure 2c. We use this initial

model and apply the source estimation method proposed by Pratt (1999) to obtain an initial

guess of the source weights for WRI-SE-MS. Because this guess minimizes the difference

between the observed and predicted data with the initial model, it can be considered as the

best choice, when there is no more additional information. For WRI-SE-WS, as described

in the previous sections, it does not need an initial guess of the source weights. To control

the computational load, we fix the maximum number of l-BFGS iterations to be 20 for each

frequency band. We select the penalty parameter � = 1e4 according to the selection criteria

in van Leeuwen and Herrmann (2015) that optimizes the performance of WRI.

[Figure 2 about here.]

As a benchmark, we depict the inversion result obtained with the true source weights

in Figure 3a. Figures 3b and 3c show the inversion results obtained by WRI-SE-MS and

WRI-SE-WS, respectively. Figure 3d shows the difference between the results in Figures 3a

and 3b, and Figure 3e displays the difference between the results in Figures 3a and 3c. We

observe that while both the results obtained by WRI-SE-MS and WRI-SE-WS are close to

the result obtained with the true source weights, the difference shown in Figure 3d is almost

10 times larger than that shown in Figure 3e. In addition, we compare the true source weights

and the estimated source weights obtained with WRI-SE-MS and WRI-SE-WS in Figures 4a

(phase) and 4b (amplitude). From these two figures, we observe that both methods can

provide reasonable estimates of the source weights while the estimates with WRI-SE-WS

contain smaller errors. These errors found in the source weights may result in the large

model differences shown in Figure 3d. In Figure 5, we display the relative model errors

kmt�mk
kmt�m0k versus the number of iterations during the three inversions. The dashed, solid, and
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dotted curves correspond to inversions with the true source weights and those estimates using

WRI-SE-MS and WRI-SE-WS. The relative model errors of WRI-SE-WS are almost the

same as those using the true source weights, while the errors of WRI-SE-MS are clearly larger

than the other ones. Figure 6 depicts a comparison of the data residuals corresponding to the

inversion results of WRI-SE-MS and WRI-SE-WS. Clearly, the data residual of WRI-SE-WS

is much smaller than that of WRI-SE-MS. In Table 2, we quantitatively compare the inversion

results obtained by WRI-SE-MS and WRI-SE-WS in terms of the final model errors, source

errors, and data residuals, which also illustrates the outperformances of WRI-SE-WS over

WRI-SE-MS. These observations imply that compared to iteratively updating ↵, projecting

out ↵ and u together during each iteration can provide more accurate estimates of source

weights, which further benefits the inversions of medium parameters.

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Table 2 about here.]

To evaluate the computational performance of the fast inversion scheme of WRI-SE-WS,

we compare the time spent in evaluating one objective for three cases, namely (i) WRI without

source estimation; (ii) WRI-SE-WS with the old form, equation 24; and (iii) WRI-SE-WS

with the new form, equation 34. The computational time for each of the three cases is 94 s,
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2962 s, and 190 s, respectively. As expected, case (iii) spends twice the amount of time as

case (i), because of the additional PDE solves for each frequency and each source. As only

one Cholesky factorization is required for case (iii), the computational time is only 1/15 of

that for case (ii). This result illustrates that the proposed approach can estimate source

weights in the context of WRI with a small computational overhead.

BG model with time-domain data

To test the robustness of the two source estimation techniques in less ideal situations, we

perform the inversion tests on non-inverse-crime data. For this purpose, we generate time-

domain data with a recording time of 4 seconds using iWAVE (Symes et al., 2011) and

transform the data from the time domain to the frequency domain for the inversions. The

data are generated on uniform grids with a grid size of 6m, while the inversions are carried

out on uniform grids with a coarser grid of 10m. As a result, modeling errors arise from the

differences between the modeling kernels and the grid sizes. All other experimental settings

in this example are the same as example 1. Figures 7a and 7b show the inversion results with

WRI-SE-MS and WRI-SE-WS, respectively. From Figure 7a, we can observe that method

WRI-SE-MS fails to converge to a reasonable solution, as there is a large low-velocity block

at the depth of z = 1500m, which does not exist in the true model. On the other hand, the

result of WRI-SE-WS (Figure 7b) is more consistent with the true model. The average model

errors presented in the inversion results of WRI-SE-MS and WRI-SE-WS are 0.18 km/s and

0.11 km/s, respectively. Moreover, compared to the true source weights, the amplitudes of

the estimated weights obtained with WRI-SE-MS contain very large errors, while the results

obtained with WRI-SE-WS are almost identical to the true source weights (see Figure 8).

Additionally, the residual between the observed and predicted data computed by the inversion
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results of WRI-SE-WS is much smaller than that of WRI-SE-MS (see Figure 9). We can also

obtain similar observations from the quantitative comparison presented in Table 3. These

results imply that compared to WRI-SE-MS, WRI-SE-WS is more robust with respect to

the modeling errors.

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

[Table 3 about here.]

BG model with noisy data

To test the stability of the proposed two techniques with respect to measurement noise in

data, we add 40% Gaussian noise into the data used in example 2. Again, other experimental

settings remain the same as in example 2. As expected, due to the noise in the data, both

inverted models (Figures 10a and 10b) contain more noise than the inverted models in

example 2. Similar to example 2, the result of WRI-SE-MS still contains a large incorrect

low-velocity block at the depth of z = 1500m, which we do not find in the result of WRI-

SE-WS. The final average model errors of WRI-SE-MS and WRI-SE-WS are 0.22 km/s and

0.16, km/s, respectively. A comparison of the true source weights (+), estimated source

weights obtained with WRI-SE-MS (⇥) and WRI-SE-WS (�) is depicted in Figure 11. The

estimated source weights with WRI-SE-WS agree with the true source weights much better

than those obtained with WRI-SE-MS. We also compare the data residuals corresponding to
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the inversion results of WRI-SE-WS and WRI-SE-MS in Figure 12. Clearly, WRI-SE-MS

produces larger data residuals than WRI-SE-WS. Moreover, the quantitative comparison in

Table 4 illustrates that the inversion results of WRI-SE-WS exhibit smaller model errors,

source errors, and data residuals when compared to that of WRI-SE-MS. These observations

imply that compared to WRI-SE-MS, WRI-SE-WS is more robust and stable with respect

to measurement noise.

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

[Table 4 about here.]

Comparison with FWI

Finally, we intend to compare the performances of FWI with source estimation and WRI-SE-

WS under bad initial models. We use the same experimental settings as example 1 except with

frequency bands ranging from {7, 7.5, 8, 8.5, 9, 9.5}Hz to {27, 27.5, 28, 28.5, 29, 29.5}Hz

and the selection of the penalty parameter � = 1e0. During the inversions, we use the initial

model displayed in Figure 13a. This model is difficult for both FWI and WRI with the

given frequency range, because in the shallow part of the model, i.e., from the depth of 0m

to 120m, the velocity of the initial model is 0.2 km/s higher than the true one (shown in

Figure 13b), which can produce cycle-skipped predicted data shown in Figure 14. Moreover,

as the maximum offset is 4.5 km, the transmitted waves that the conventional FWI uses to
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build up long-wavelength structures can only reach the depth of 1.5 km (Virieux and Operto,

2009). When the transmitted data are cycle-skipped, the resulting long-wavelength velocity

structures would be erroneous, which would further adversely affect the reconstruction of the

short-wavelength velocity structures, especially those below 1.5 km.

[Figure 13 about here.]

[Figure 14 about here.]

Figures 15a and 15b show the inversion results obtained by WRI and FWI, respectively. As

expected, due to the cycle-skipped data and absence of low-frequency data, the conventional

FWI fails to correctly invert the velocity in the shallow area where the transmitted waves

arrive, i.e., z  1.5 km, which subsequently yields larger errors within the inverted velocity in

the deep part of the model, i.e., z > 1.5 km. On the other hand, WRI mitigates the negative

effects of the cycle-skipped data to the inversion and correctly reconstructs the velocity in

both areas that can and cannot be reached by the transmitted turning waves. The final

average model error of WRI is 0.1 km/s, which is much smaller than that of FWI—0.22 km/s.

Moreover, as shown in Table 5, the `2-norm model error of FWI is twice as large as that of

WRI. This implies that besides the transmitted waves WRI also uses the reflection waves

to invert the velocity model. Clearly, the main features and interfaces in the model are

reconstructed correctly by WRI. Figure 16 displays three vertical cross-sections through

the model. Compared to FWI, WRI provides a result that matches the true model much

better. Figure 17 shows the comparison of the estimated source weights obtained by FWI

and WRI. From the comparisons in Figures 17a and 17b, we observe that compared to FWI,

WRI provides estimates of source weights with mildly better phases and significantly better
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amplitudes. The `2-norm source error of FWI is much larger than that of WRI as shown

in Table 5. This is not surprising as the quality of the source estimation and the inverted

velocity model are closely tied to each other. Figure 18 shows the comparisons between the

observed data and predicted data computed with the final results of WRI and FWI. The

predicted data computed from the WRI inversion (Figures 18a and 18b) almost matches the

observed data, while the mismatch of that from the FWI inversion is much larger (Figures 18c

and 18d), which can also be found in the quantitative comparison in Table 5. All these

results imply that besides providing a better velocity reconstruction, WRI also produces a

better estimate of the source weights.

[Table 5 about here.]

[Figure 15 about here.]

[Figure 16 about here.]

[Figure 17 about here.]

[Figure 18 about here.]

DISCUSSION

Source functions are essential for wave-equation-based inversion methods to conduct a

successful reconstruction of the subsurface structures. Because the correct source functions

are typically unavailable in practical applications, an on-the-fly source estimation procedure

is necessary for the inversion. In this study, we proposed an on-the-fly source estimation

technique for the recently developed WRI by adapting its variable projection procedure for
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the wavefields to include the source functions. Through simultaneously projecting out the

wavefields and source functions, we obtained a reduced objective function that only depends

on the medium parameters. As a result, we are able to accomplish the inversion without

prior information of the source functions.

The main computational cost of the proposed source estimation method lies within

the procedure of projecting out the wavefields and source weights, in which we have to

invert a potentially ill-conditioned source-dependent matrix. For ocean bottom node and

land acquisitions where all sources “see” the same receivers, we applied the block matrix

inversion formula and arrived at a new inversion scheme that only involves inverting a

source-independent matrix. This new scheme brings benefits to both direct and iterative

solvers when compared to the direct inversion of the original source-dependent matrix. For

2D problems, we illustrated that without losing accuracy, the inversion of the proposed

scheme only needs one Cholesky factorization for each frequency, while the direct inversion

requires n

src

. Indeed, this benefit does not only apply to the Cholesky method, but also to

other faster direct solvers including the multifrontal massively parallel sparse direct solver

(MUMPS, Amestoy et al. (2016)), which can further speed up the projection procedure.

When solving 3D problems with iterative solvers, the proposed inversion scheme reduces

the number of preconditioners for each frequency from n

src

to one; therefore, it significantly

reduces the computational complexity. Furthermore, the source-independent matrix required

to invert is the same one as in the conventional WRI without source estimation. Thus, we

avoid iteratively inverting the potentially ill-conditioned source-dependent matrix and can

straightforwardly apply any efficient and scalable methods designed for the conventional WRI

(Peters et al., 2015) to the proposed approach, which allows us to extend the application of

this approach to 3D frequency-domain waveform inversions.
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Aside from benefiting inversions with ocean bottom node and land acquisitions, the

proposed scheme may also benefit inversions with conventional 3D marine towed-streamer

acquisitions where all sources “see” different receivers. In this case, we may lose the benefit of

reducing the number of preconditioners due to the acquisition geometry, however, the benefit

that avoids the direct inversion of the potentially ill-conditioned source-dependent matrix

remains. As a result, we still can straightforwardly apply any preconditioners designed for the

conventional WRI without source estimation to solve the proposed scheme. With carefully

designed preconditioners, the computational cost of the proposed WRI with source estimation

can be roughly equal to that of standard 3D frequency-domain FWI using iterative solvers,

because the total numbers of the iterative PDE solves required by the two approaches are

approximately the same. As a result, it should be viable to apply the proposed WRI with

source estimation to inversions with the conventional 3D marine towed-streamer acquisitions.

While the presented examples illustrated the feasibility of the proposed approach—WRI

with source estimation—for frequency-domain inversions, its extension to the time-domain

inversions is not trivial. The main computational challenge lies in the fact that in the time

domain, the projection procedure requires us to solve a very large linear system, whose size

is n

time

(number of time slices) times larger than that in the frequency domain. As a result,

the computational and storage cost in the time domain is larger than that in the frequency

domain. Moreover, the time-domain source function is a time series rather than a complex

number in the frequency domain. In order to estimate the time series successfully, we may

need additional constraints, such as the duration of the source function, to regularize the

unknown source functions. Due to the two facts, the extension of the proposed approach to

the time-domain inversions requires further investigations.
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CONCLUSION

We showed that the recently proposed wavefield-reconstruction inversion method can be

modified to handle unknown source situations. In the proposed modification of wavefield-

reconstruction inversion, we considered the source weights as unknown variables and updated

them jointly with the medium and wavefields parameters. To update the three unknowns,

we proposed an optimization strategy based on the variable projection method. During each

iteration of the inversion, for fixed medium parameters, the objective function is quadratic

with respect to both wavefields and source weights. This fact motivates us to use the variable

projection method to first project out the wavefields and source weights simultaneously, and

then to update the medium parameters. As a result, we obtained an objective that does not

depend on the wavefields and the source weights. Numerical experiments illustrated that

equipped with the proposed source estimation method wavefield-reconstruction inversion

can produce accurate inversion results without prior knowledge of the true source weights.

Moreover, this method can also produce reliable results when the observations contain noise.

We also compared the proposed on-the-fly source estimation technique for wavefield-

reconstruction inversion to the conventional source estimation technique for full-waveform

inversion. The numerical result illustrated that by extending the search space and the inexact

PDE-fitting, the proposed source estimation technique for wavefield-reconstruction inversion

is less sensitive to inaccurate initial models and can start the inversion with data without

low-frequency components.
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(c) Result with the true source
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Figure 1: (a) The true model. (b) Comparison of the correct (blue) and wrong (red) source
wavelets. (c) Inversion result with the correct source wavelet. (d) Inversion result with the
wrong source wavelet.
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(a) True model
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(b) Initial model
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(c) Difference between the initial and true models

Figure 2: (a) True model, (b) initial model, and (c) the difference between them.
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(a) Inversion result with the true source weights
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(b) Inversion result with WRI-SE-MS
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(c) Inversion result with WRI-SE-WS
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(d) Model difference for WRI-SE-MS
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(e) Model difference for WRI-SE-WS

Figure 3: (a) Inversion result with the true source weights. (b) Inversion result with WRI-
SE-MS. (c) Inversion result with WRI-SE-WS. (d) Model difference between (a) and (b). (e)
Model difference between (a) and (c).
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Figure 4: Comparison of the true source weights (+) and the estimated source weights with
WRI-SE-MS (⇥) and WRI-SE-WS (�). (a) Phase comparison. (b) Amplitude comparison.
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Figure 5: Comparison of the relative model errors.
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Figure 6: Comparison of the data residuals corresponding to the inversion results of WRI-
SE-MS (dashed line) and WRI-SE-WS (dotted line).
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(a) Inversion result with WRI-SE-MS
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(b) Inversion result with WRI-SE-WS

Figure 7: Inversion results with (a) WRI-SE-MS and (b) WRI-SE-WS.
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Figure 8: Comparison of the true source weights (+) and the estimated source weights with
WRI-SE-MS (⇥) and WRI-SE-WS (�). (a) Phase comparison. (b) Amplitude comparison.
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Figure 9: Comparison of the data residuals corresponding to the inversion results of WRI-
SE-MS (dashed line) and WRI-SE-WS (dotted line).
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(a) Inversion result with WRI-SE-MS
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(b) Inversion result with WRI-SE-WS

Figure 10: Inversion results with (a) WRI-SE-MS and (b) WRI-SE-WS.
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Figure 11: Comparison of the true source weights (+) and the estimated source weights with
WRI-SE-MS (⇥) and WRI-SE-WS (�). (a) Phase comparison. (b) Amplitude comparison.
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Figure 12: Comparison of the data residuals corresponding to the inversion results of
WRI-SE-MS (dashed line) and WRI-SE-WS (dotted line).

49



0 1000 2000 3000 4000
Lateral [m]

0

500

1000

1500

2000

D
ep

th
 [m

]

1.5

2

2.5

3

3.5

4

4.5

5
km/s

(a) Initial model
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(b) Difference between the initial and true models

Figure 13: (a)Initial model and (b) difference between the initial model and true models.
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Figure 14: Comparisons between the observed (dashed line) and predicted data (dotted line)
computed with the initial model for a source located at the center of the model. (a) Real
part comparison. (b) Imaginary part comparison.
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(a) Inversion result with WRI
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(b) Inversion result with FWI

Figure 15: Inversion results with (a) WRI and (b) FWI.
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(a) x = 1000m
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(b) x = 2500m
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Figure 16: Vertical profiles of the true model (solid line), initial model (dashdot line), and
the inversion results with WRI (dashed line) and FWI (dotted line) at (a) x = 1000m, (b)
x = 2500m, and (c) x = 4000m.
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Figure 17: Comparison of the true source weights (+) and the estimated source weights with
FWI (⇥) and WRI (�). (a) Phase comparison. (b) Amplitude comparison.

54



0 1000 2000 3000 4000
Receiver [m]

-1000

-500

0

500

1000

1500

2000

2500

R
ea

l(d
)

Observed data
Predicted data

(a) Real part - WRI

0 1000 2000 3000 4000
Receiver [m]

-1200

-1000

-800

-600

-400

-200

0

200

400

600

Im
ag

(d
)

Observed data
Predicted data

(b) Imaginary part - WRI

0 1000 2000 3000 4000
Receiver [m]

-1000

-500

0

500

1000

1500

2000

2500

R
ea

l(d
)

Observed data
Predicted data

(c) Real part - FWI

0 1000 2000 3000 4000
Receiver [m]

-1500

-1000

-500

0

500

1000

Im
ag

(d
)

Observed data
Predicted data

(d) Imaginary part - FWI

Figure 18: Comparisons between the observed (dashed line) and predicted data (dotted line)
computed with the final results of WRI and FWI. (a) Real part and (b) imaginary part of
WRI result. (c) Real part and (d) imaginary part of FWI result.
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nr. of Cholesky factorization nr. of invertion with Cholesky factors

w/o source estimation 1 per frequency 2 per source per frequency
w/ source estimation – old form n

src

per frequency 2 per source per frequency
w/ source estimation – new form 1 per frequency 4 per source per frequency

Table 1: Comparison of the computational costs for different algorithms
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Table 2: Comparisons between inversion results obtained by WRI-SE-MS and WRI-SE-WS
in terms of the final model errors, source errors, and data residuals.
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Table 3: Comparisons between inversion results obtained by WRI-SE-MS and WRI-SE-WS
in terms of the final model errors, source errors, and data residuals.
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Table 4: Comparisons between inversion results obtained by WRI-SE-MS and WRI-SE-WS
in terms of the final model errors, source errors, and data residuals.
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Table 5: Comparisons between inversion results obtained by FWI and WRI in terms of the
final model errors, source errors, and data residuals.
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