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ABSTRACT

Irregular or off-the-grid spatial sampling of sources and receivers is inevitable in field seismic

acquisitions. Consequently, time-lapse surveys become particularly expensive since current

practices aim to replicate densely sampled surveys for monitoring changes occurring in the

reservoir due to hydrocarbon production. We demonstrate that under certain circumstances,

high-quality prestack data can be obtained from cheap randomized subsampled measurements

that are observed from nonreplicated surveys. We extend our time-jittered marine acquisition

to time-lapse surveys by designing acquisition on irregular spatial grids that render simul-

taneous, subsampled and irregular measurements. Using the fact that different time-lapse

data share information and that nonreplicated surveys add information when prestack data

are recovered jointly, we recover periodic densely sampled and colocated prestack data by

adapting the recovery method to incorporate a regularization operator that maps traces

from an irregular spatial grid to a regular periodic grid. The recovery method is, therefore, a

combined operation of regularization, interpolation (estimating missing fine-grid traces from



subsampled coarse-grid data), and source separation (unraveling overlapping shot records).

By relaxing the insistence on replicability between surveys, we find that recovery of the

time-lapse difference shows little variability for realistic field scenarios of slightly nonreplicated

surveys that suffer from unavoidable natural deviations in spatial sampling of shots (or

receivers) and pragmatic compressed-sensing based nonreplicated surveys when compared to

the “ideal” scenario of exact replicability between surveys. Moreover, the recovered densely

sampled prestack baseline and monitor data improve significantly when the acquisitions

are not replicated, and hence can serve as input to extract poststack attributes used to

compute time-lapse differences. Our observations are based on experiments conducted for an

ocean-bottom cable survey acquired with time-jittered continuous recording assuming source

equalization (or same source signature) for the time-lapse surveys and no changes in wave

heights, water column velocities or temperature and salinity profiles, etc.
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This is part 2 of a two-paper series on time-lapse seismic with compressed sensing. Part

1: “Low-cost time-lapse seismic with distributed Compressive Sensing—exploiting common

information among the vintages.” Authors: Felix Oghenekohwo, Haneet Wason, Ernie Esser,

and Felix J. Herrmann.

INTRODUCTION

Simultaneous marine acquisition is being recognized as an economic and environmentally

more sustainable way to sample seismic data and speedup acquisition, wherein single or

multiple source vessels fire shots at random, compressed times resulting in overlapping shot

records (de Kok and Gillespie, 2002; Beasley, 2008; Berkhout, 2008; Hampson et al., 2008;

Moldoveanu and Quigley, 2011; Abma et al., 2013), and hence generating compressed seismic

data volumes. The aim then is to separate the overlapping shot records into individual shot

records, as acquired during conventional acquisition, but with denser source sampling while

preserving amplitudes of the late, often weak, arrivals. This leads to recovering densely

sampled data economically, which is essential for producing high-resolution images of the

subsurface.

Mansour et al. (2012), Wason and Herrmann (2013) and Mosher et al. (2014) have showed

that compressed sensing (CS, Candès et al., 2006b; Donoho, 2006) is a viable technology to

sample seismic data economically with low environmental imprint—by reducing numbers of

shots (or injected energy in the subsurface) or compressing survey times. Mansour et al. (2012)

and Wason and Herrmann (2013) proposed an alternate sampling strategy for simultaneous

acquisition (“time-jittered” marine), addressing the separation problem through a combination

of tailored (simultaneous) acquisition design and sparsity-promoting recovery via convex

optimization using `1 objectives. This separation technique interpolates sub-Nyquist jittered
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shot positions to a fine regular grid while unraveling the overlapping shots. The time-jittered

marine acquisition is designed for continuous recording, fixed-receiver (or “static”) geometries,

which is different from the case of towed-streamer (or “dynamic”) geometries, wherein multiple

sources fire shots within a time interval of (0, 1) or (0, 2) s generating overlapping shot records

that need to be separated into its constituent sources, i.e., a data volume for each individual

source (Kumar et al., 2015). Our approach for conventional data recovery from simultaneous

data from static geometries can equally apply to other settings including static land and

other static marine geometries.

The implications of randomization in time-lapse (or 4D) seismic, however, are less well-

understood since the current paradigm relies on dense sampling and replicability amongst

the baseline and monitor surveys (Lumley and Behrens, 1998). These requirements impose

major challenges because the insistence on dense sampling may be prohibitively expensive

and variations in acquisition geometries (between the surveys) due to physical constraints

do not allow for exact replication of the surveys. In paper 1, we presented a new approach

(the “joint recovery method”) that addresses these acquisition- and processing-related issues

by explicitly exploiting common information shared by the different time-lapse vintages.

Our analyses were carried out assuming that the observations lied on a discrete grid so that

exact survey replicability is in principle achievable. We also assume sources to have the

same source signature for the time-lapse surveys. While assuming source equalization in this

paper, we extend our work on simultaneous time-jittered marine acquisition to time-lapse

surveys for more realistic field acquisitions that lie on irregular spatial grids, where the notion

of exact replicability of the surveys is inexistent. This is because the “real” world suffers

from unavoidable deviations between pre- and post-acquisition shot (and receiver) positions,

rendering regular, periodic spatial grids irregular, and hence exact replication of the surveys
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impossible. As mentioned later in the paper, accounting for the irregularity of seismic data

is key to recovering densely sampled data. Moreover, while we do not insist that we actually

visit predesigned (irregular) shot positions, but it is important to know these positions to

sufficient accuracy after acquisition for high-quality data recovery. Recent successes in the

application of compressed sensing to land and marine field data acquisition (see e.g., Mosher

et al., 2014) show that this can be achieved in practice.

Simultaneous time-jittered marine acquisition generates compressed and subsampled data

volumes, therefore, extending this to time-lapse surveys generates compressed and subsampled

baseline and monitor data. Consequently, we are interested in recovering densely sampled

vintages and time-lapse difference. Moreover, time-lapse differences are often studied via

differences in certain poststack attributes computed from the vintages (Landrø, 2001; Spetzler

and Kvam, 2006), hence, we prioritize on recovering the prestack vintages. In this paper, we

push this technology to realistic settings of off-the-grid acquisitions and demonstrate that we

actually gain if we relax the insistence to replicate surveys since even the smallest known

deviations from the grid can lead to significant improvements in the recovery of the vintages

with minimal compromise with the recovery of the time-lapse difference.

Motivation: on-the-grid vs. off-the-grid data recovery

Paper 1 illustrated that the joint recovery method gives better recoveries of time-lapse

data and time-lapse difference than the independent recovery strategy, since the former

approach exploits the common information shared by the vintages. It also showed that

“exact” replication of the baseline and monitor surveys lead to good recovery of the time-lapse

difference but not of the vintages. These analyses, however, were carried out assuming

5



that the observations lied on a discrete grid so that exact survey replicability is achievable.

Realistic field acquisitions, on the contrary, lie off the grid—i.e., have irregular spatial

sampling—where exact replicability of the surveys is inexistent. Figure 1 shows a comparison

between conventional periodic acquisition which generates data with nonoverlapping shot

records, and simultaneous time-jittered acquisition which generates compressed recordings

with overlapping shots. Note that the sampling grid for conventional acquisition “in the field”

would be slightly irregular, however, this in contrast to the jittered acquisition which by

virtue of its design is aperiodic and lies on an irregular sampling grid. Since the time-jittered

acquisition scheme leverages compressed sensing—the success of which hinges on randomized

subsampling—additional and unavoidable deviations in the field add to the randomization of

the designed irregular shot positions, and helps in sparsity-promoting inversion as long as we

know the final shot positions to sufficient precision.

Figures 2a-2c show receiver gathers from a conventional (synthetic) time-lapse data set

and the corresponding time-lapse difference. To recover periodic densely sampled data from

simultaneous, compressed and irregular data, we could implicitly rely on binning, however,

failure to account for irregularity of seismic traces can adversely affect the recovery as shown

in Figure 3. This is because binning does not represent accurate positions of irregular traces.

Note that this example corresponds to a time-jittered acquisition scheme for the baseline

that is exactly replicated for the monitor. The results show that binning offsets all the

gains of exact survey replication and also of the joint recovery method. Figure 4 illustrates

the importance of regularization of irregular traces for high-quality data recovery. In this

paper, therefore, we extend our work on simultaneous time-jittered acquisition to time-lapse

surveys by acknowledging the irregularity of field seismic data and incorporating sparsifying

transforms that exploit this irregularity to recover periodic densely sampled time-lapse data.
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[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

Contributions

The contributions of this work can be summarized as follows. First, we present an extension

of our simultaneous time-jittered marine acquisition for time-lapse surveys by working on

more realistic field acquisition scenarios by incorporating irregular spatial grids. Second,

we leverage ideas from compressed sensing and distributed compressed sensing to develop

an algorithm that separates simultaneous data, regularizes irregular traces and interpolates

missing traces—all at once. Third, through simulated experiments, we show that insistence

on replicability of time-lapse surveys can be relaxed since small known deviations in shot

positions from a regular grid (or deviations in shot positions of the monitor survey from

those in the baseline survey) lead to significant improvements in the recovery of the vintages,

without drastic modifications in the recovery of the time-lapse difference.

Outline

The paper is organized as follows. We begin with the description of the simultaneous

time-jittered marine acquisition design, where we explain how subsampled and irregular

measurements are generated. Next, we introduce the nonequispaced fast discrete curvelet

transform (NFDCT) and its application to recover periodic densely sampled seismic lines from
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simultaneous and irregular measurements via sparsity-promoting inversion. We then extend

this framework to time-lapse surveys where we modify the measurement matrices in the joint

recovery method to include the off-the-grid information—i.e., the irregular shot positions and

jittered times. Note that we do not describe the independent recovery strategy since it is clear

in paper 1 that the joint recovery method outperforms the former approach. We conduct a

series of synthetic seismic experiments with different random realizations of the simultaneous

time-jittered marine acquisition to assess the effects (or risks) of irregular sampling in the

field on time-lapse data and demonstrate that high-quality data recoveries are the norm and

not the exception. We show this by generating 2D seismic lines using two different velocity

models—one with simple geology and complex time-lapse difference (BG COMPASS model),

and the other with complex geology and complex time-lapse difference (SEAM Phase 1 model

with simulated time-lapse difference). Aside from computing signal-to-noise ratios measured

with respect to densely sampled true baseline, monitor, and time-lapse differences, we also

measure the economic and environmental performance of the proposed acquisition design

and recovery strategy by computing the improvement in spatial sampling.

TIME-JITTERED MARINE ACQUISITION

The objective of CS is to recover densely sampled data from (randomly) subsampled data

by exploiting sparse structure in the data during sparsity-promoting recovery. Mansour

et al. (2012), Wason and Herrmann (2013) presented a pragmatic simultaneous marine

acquisition scheme, termed as time-jittered marine, that leverages ideas from compressed

sensing by invoking randomness and subsampling—i.e., sample randomly with fewer samples

than required by Nyquist sampling criteria in the acquisition via random jittering of the

source firing times. The success of CS hinges on randomized subsampling since it renders
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subsampling related artifacts incoherent, and therefore nonsparse, favouring data recovery

via structure-promoting inversion. Consequently, source interferences (in simultaneous

acquisition) become incoherent in common-receiver gathers creating a favorable condition for

separating simultaneous data into conventional nonsimultaneous data via curvelet-domain

sparsity promotion. The CS paradigm, however, assumes signals to be sampled on a periodic

discrete grid—i.e., signals with sparse representation in finite discrete dictionaries.

Data volumes collected during seismic acquisition represent discretization of analog

finite-energy wavefields in up to five dimensions including time—i.e., we acquire an analog

spatiotemporal wavefield f̄(t, x) ∈ L2((0, T ]×[−X,X]4), two dimensions for receivers and two

dimensions for sources, with time T in order of seconds and length X in order of kilometers.

In an ideal world, signals would perfectly lie on a periodic, regular grid. Hence, with a

linear high-resolution analog-to-digital converter Φ̄s, the discrete signal is represented as

f [q] = f̄ ? Φ̄s(q), for 0 ≤ q < N (Mallat, 2008), where the samples lie on a grid. Typically,

these samples are organized into a vector f = f [q]q=0,...,N−1 ∈ RN . Signals we encounter

in the real world, however, are usually not uniformly regular and do not lie on a regular

grid. Therefore, it is imperative to define an irregular sampling adapted to the local signal

regularity (Mallat, 2008). For irregular sampling, the discretized irregular signal is represented

as f [qn] = f̄ ? Φ̄s(qn), for n = 0, ...,M − 1 and M ≤ N , where qn are irregular points (or

nonequispaced nodes) randomly chosen from the set {0, ..., N − 1}. Its vector representation

is f = f [qn]n=0,...,M−1.

For a signal f0 ∈ RN that admits a sparse representation x0 in some transform domain—

i.e., f0 is sparse with respect to a basis or redundant frame S ∈ CP×N , with P ≥ N , such

that f0 = SHx0 (x0 sparse), where H denotes the Hermitian transpose—the goal in CS is

to reconstruct the signal f0 from few random linear measurements, y = Af0, where A is
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an n × N measurement matrix with n � N . Utilizing prior knowledge that f0 is sparse

with respect to a basis or redundant frame S and assuming the signal to be sampled on a

periodic discrete grid, CS aims to find an estimate x̃ for the underdetermined system of

linear equations: y = Af0. This is done by solving the basis pursuit (BP, Candès et al.,

2006b; Donoho, 2006) convex optimization problem:

x̃ = arg min
x

‖x‖1 :=
N∑
i=1

|xi| subject to y = Ax. (1)

In the noise-free case, this problem finds amongst all possible vectors x, the vector that has

the smallest `1-norm and that explains the observed subsampled data.

Mathematically, a seismic line with Ns sources, Nr receivers, and Nt time samples can be

reshaped into an N dimensional vector f , where N = Ns ×Nr ×Nt. Since real-world signals

are not exactly sparse but compressible—i.e., can be well approximated by a sparse signal—a

compressible representation, x, of the seismic line in the curvelet domain, S, is represented

as f = SHx. Since curvelets are a redundant frame (an over-complete sparsifying dictionary),

S ∈ CP×N with P > N , and x ∈ CP . With the inclusion of the sparsifying transform,

the measurement matrix A can be factored into the product of a n × N (with n � N)

acquisition matrix M and the synthesis matrix SH—i.e., A = MSH . For the real-world

irregular signals, however, we need to account for the acquired unstructured measurements

for high-resolution data recovery. We do this by introducing an operator in the recovery

algorithm (by modifying the measurement operator A—see details in the next sections) that

acknowledges the irregularity of seismic traces and uses this information to render regularized

and interpolated data.
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Acquisition geometry

In time-jittered marine acquisition, source vessels map the survey area firing shots at jittered

time instances, which translate to jittered shot positions for a given (fixed) speed of the source

vessel. The simultaneous data is time compressed, and therefore acquired economically with

low environmental imprint. The recovered separated data is periodic and dense. For simplicity,

we assume that all shot positions see the same receivers, which makes our method applicable

to marine acquisition with ocean bottom cables or nodes (OBC or OBN). The receivers record

continuously resulting in simultaneous shot records. Randomization via jittered subsampling

offers control over the maximum gap size (on the acquisition grid), which is a practical

requirement of wavefield reconstruction with localized sparsifying transforms such as curvelets

(Hennenfent and Herrmann, 2008). For simultaneous time-jittered acquisition, parameters

such as the minimum distance required between adjacent shots and minimum recharge time

for the air guns help in controlling the maximum acquisition gap while maintaining the

minimum realistic acquisition gap.

Conventional acquisition with one source vessel and two air-gun arrays where each air-gun

array fires at every alternate periodic location is called flip-flop acquisition. If we wish to

acquire 10.0 s-long shot records at every 12.5 m, the speed of the source vessel would have to be

about 1.25 m/s (≈ 2.5 knots). Figure 5a illustrates one such conventional acquisition scheme,

where each air-gun array fires every 20.0 s (or 25.0 m) in a flip-flop manner traveling at about

1.25 m/s, resulting in nonoverlapping shot records of 10.0 s every 12.5 m. In time-jittered

acquisition, Figures 5b and 5c, each air-gun array fires on average at every 20.0 s jittered

time-instances traveling at about 2.5 m/s (≈ 5.0 knots) with the receivers (OBC/OBN)

recording continuously, resulting in overlapping shot records (Figures 6a and 6b). Note that
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the acquisition design involves jittered subsampling—i.e., regular decimation of the (fine)

interpolation grid and subsequent perturbation of the coarse-grid points completely off the

fine grid. The idealized discrete jittered subsampling, by contrast, perturbs the coarse-grid

points on the fine grid, as presented in paper 1. The subsampling factor is represented

by η. Therefore, the acquired data volume has overlapping shots and missing shots/traces

(Figure 6a and 6b). For this reason, the jittered flip-flop acquisition might not mimic the

conventional flip-flop acquisition where air-gun array 1 and 2 fire one after the other—i.e., in

the center and right-hand plots of Figure 5d a circle (denoting array 1) may be followed by

another circle instead of a star (denoting array 2), and vice versa. However, the minimum

interval between the jittered times is maintained at 10.0 s (typical interval required for air-gun

recharge), while the maximum interval is 30.0 s. For the speed of 2.5 m/s, this translates

to jittering a 50.0 m source grid with a minimum (and maximum) interval of 25.0 m (and

75.0 m) between jittered shots. Both arrays fire at the 50.0 m jittered grid independent of

each other.

[Figure 5 about here.]

In time-jittered marine acquisition, the acquisition operator M is a combined jittered-

shot selector and time-shifting operator. Since data is acquired on an irregular grid, it is

imperative to incorporate operators in the design of the acquisition matrix M that account

for and hence regularize the irregularity in the data. This is critical to the success of the

recovery algorithm. The off-the-grid acquisition design is different from that presented by Li

et al. (2012), wherein an interpolated restriction operator accounts for irregular points by

incorporating Lagrange interpolation into the restriction operator—i.e., the measurements

are approximated using a kth-order Lagrange interpolation. In time-jittered acquisition, the
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jittered time instances are put on a time grid (defined by a time-sampling interval) where

each jittered time instance is placed on the point closest to it on the regular time grid. The

difference between the true jittered time and the regular grid point, ∆t, is corrected by

shifting the traces by e−iω∆t, where ω is the angular frequency. The irregularity in the shot

positions is corrected by including the nonequispaced fast Fourier transform, NFFT (Potts

et al., 2001; Kunis, 2006), in the sparsifying operator S (Hennenfent and Herrmann, 2006;

Hennenfent et al., 2010), as described in the next section. The NFFT evaluates a Fourier

expansion at nonequispaced locations defined by the time-jittered acquisition. Note that in

this framework it is also possible to randomly subsample the receivers.

Randomly subsampled and simultaneous measurements for the baseline and monitor

surveys are shown in Figures 6a and 6b, respectively. Note that only 40.0 s of the continuously

recorded data is shown. If we simply apply the adjoint of the acquisition operator to the

corresponding simultaneous data—i.e., MHy—the interferences (or source crosstalk) due to

overlapping shots appear as incoherent and nonsparse in the receiver gathers (Figures 7a

and 7b). Moreover, since regularization (and interpolation) is performed by the NFFT inside

a nonequispaced curvelet framework (see next section), Figures 7a and 7b have Ns
η irregular

traces, where η > 1 is the subsampling factor. Since the baseline and monitor surveys have

different irregular shot positions, the corresponding time-lapse difference cannot be computed

unless both time-lapse data are realigned to a common spatal grid. For this purpose, if

we apply the adjoint of a 1D NFFT operator N—i.e., NHMHy—the time-lapse data are

realigned to a common fine spatial grid (Figures 7c and 7d). The corresponding time-lapse

difference is shown in Figure 7e. As illustrated by these figures, in order to eventually remove

the interferences and interpolate missing traces it is important to consider the recovery

problem as an inversion problem. Since the time-jittered acquisition generates simultaneous,
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irregular data with missing traces, the recovery problem becomes a joint source separation,

regularization and interpolation problem.

[Figure 6 about here.]

[Figure 7 about here.]

From discrete to continuous spatial subsampling

Subsampling schemes that are based on an underlying fine interpolation grid incorporate

the discrete (spatial) subsampling schemes, since the subsampling is done on the grid. This

situation typically occurs when binning continuous randomly-sampled seismic data into

small bins that define the fine grid used for interpolation (Hennenfent and Herrmann, 2008).

For such cases, the wrapping-based fast discrete curvelet transform, FDCT via wrapping

(Candès et al., 2006a) can be used to recover the fully sampled data since the inherent fast

Fourier transform (FFT) assumes regular sampling along all coordinates. For the interested

reader, the curvelet transform is a multiscale, multidirectional, and localized transform that

corresponds to a specific tiling of the f-k domain into dyadic annuli based on concentric squares

centered around the zero-frequency zero-wavenumber point. Each annulus is subdivided into

parabolic angular wedges—i.e., length of wedge ∝ width2 of wedge. The architecture of the

analysis operator (or forward operation) of the FDCT via wrapping is as follows: (1) apply

the analysis 2D FFT; (2) form the angular wedges; (3) wrap each wedge around the origin;

and (4) apply the synthesis 2D FFT to each wedge. The synthesis/adjoint operator—also

the inverse owing to the tight-frame property—is computed by reversing these operations

(Candès et al., 2006a).
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Seismic data, however, is usually acquired irregularly, typically nonuniformly sampled

along the spatial coordinates. Simultaneous time-jittered marine acquisition, mentioned

above, is an instance of acquiring seismic data on irregular spatial grids. Hence, binning can

lead to a poorly-jittered subsampling scheme, which will not favor wavefield reconstruction

by sparsity-promoting inversion. Moreover, failure to account for the nonuniformly sampled

data can adversely affect seismic processing, imaging, etc. Therefore, we should work with an

extension to the curvelet transform for irregular grids (Hennenfent et al., 2010). Using this

extension for the simultaneous time-jittered marine acquisition will produce colocated fine-

scale time-lapse data. Continuous random sampling typically leads to improved interpolation

results because it does not create coherent subsampling artifacts (Xu et al., 2005).

Nonequispaced fast discrete curvelet transform (NFDCT)

For irregularly acquired seismic data, the (FFT inside) FDCT (Candès et al., 2006a) assumes

regular sampling along all (spatial) coordinates. Ignoring the nonuniformity of the spatial

sampling no longer helps in detecting the wavefronts because of a lack of continuity. Hen-

nenfent and Herrmann (2006) addressed this issue by extending the FDCT to nonuniform

(or irregular) grids via the nonequispaced fast Fourier transform, NFFT (Potts et al., 2001;

Kunis, 2006). The outcome was the ‘first generation NFDCT’ (nonequispaced fast discrete

curvelet transform), which relied on accurate Fourier coefficients obtained by an `2-regularized

inversion of the NFFT.

The NFDCT handles irregular sampling, thus, exploring continuity along the wavefronts

by viewing seismic data in a geometrically correct way—typically nonuniformly sampled

along the spatial coordinates (source and/or receiver). In Hennenfent et al. (2010), the
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authors introduced a ‘second generation NFDCT’, which is based on a direct, `1-regularized

inversion of the operator that links curvelet coefficients to irregular data. Unlike the first

generation NFDCT, the second generation NFDCT is lossless by construction—i.e., the

curvelet coefficients explain the data at irregular locations exactly. This property is important

for processing irregularly sampled seismic data in the curvelet domain and bringing them

back to their irregular recording locations with high fidelity. Note that the second generation

NFDCT is lossless for regularization not interpolation. The NFDCT framework as setup in

Hennenfent et al. (2010) basically involves a Kronecker product (⊗) of a 1D FFT operator

Ft, used along the temporal coordinate, and a 1D NFFT operator Nx, used along the

spatial coordinate, followed by the application of the curvelet tilling operator T that maps

curvelet coefficients to the Fourier domain—i.e., B def
= T(Nx ⊗ Ft). Therefore, B is the

NFDCT operator that links the curvelet coefficients to nonequispaced traces. The 1D NFFT

operator (Nx) replaces the 1D FFT operator (Fx) that acts along the spatial coordinate

in FDCT. Note that the NFDCT operator described above is written differently than in

Hennenfent et al. (2010) because the latter defines the synthesis FFT operator as F, whereas

F is the analysis FFT operator in this paper. This also ensures consistency of notation and

terminology with paper 1.

For the proposed simultaneous acquisition, the joint problem of source separation, regu-

larization and interpolation is addressed by using a sparsifying operator (S) that handles

the multidimensionality of this problem. Therefore, S def
= C⊗W, where C is a 2D NFDCT

operator and W is a 1D wavelet operator. The NFDCT operator is modified as

C
def
= T(Nxs ⊗ Fxr), (2)

where the 1D NFFT operator Nxs acts along the jittered shot coordinate and the 1D FFT
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operator Fxr acts along the regular receiver coordinate. The 1D wavelet operator is applied

on the time coordinate. As mentioned previously, the measurement matrix A = MSH . From

a practical point of view, it is important to note that matrix-vector products with all the

matrices are matrix free—i.e., these matrices are operators that define the action of the

matrix on a vector, but are never formed explicitly.

In summary, recovery of nonoverlapping, periodic and densely sampled data from simulta-

neous, irregular and compressed data is achieved by incorporating an NFFT operator inside

the curvelet framework that acts along the irregular spatial coordinate(s) and applying time

shifts to the traces wherever necessary. Note that the NFFT operator is incorporated in the

2D NFDCT operator C, which is incorporated in the sparsifying operator S, and the time

shift ∆t is incorporated in the acquisition operator M. The NFFT computes (fine grid) 2D

Fourier coefficients by mapping the coarse nonuniform spatial grid to a fine uniform grid.

The curvelet coefficients are computed directly from the 2D Fourier coefficients.

TIME-LAPSE ACQUISITION VIA JITTERED SOURCES

In paper 1, we extended the time-jittered marine acquisition to time-lapse surveys where

the shot positions were jittered on a discrete periodic grid. In this paper, we extend

the framework to more realistic field acquisition scenarios by incorporating irregular grids.

Figure 5a illustrates a conventional marine acquisition scheme and two realizations of the

off-the-grid time-jittered marine acquisition are shown in Figures 5b and 5c, one each for

the baseline and the monitor survey. Remember that these surveys generate simultaneous,

irregular and subsampled measurements. We assume no significant variations in the water

column velocities, wave heights or temperature and salinity profiles, etc., amongst the different

surveys. The source signature is also assumed to be the same.
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We describe noise-free time-lapse data acquired from a baseline and a monitor survey

as yj = Ajxj for j = {1, 2}, where y1 and y2 represent the subsampled, simultaneous

measurements for the baseline and monitor surveys, respectively; A1 and A2 are the cor-

responding flat (n � N < P ) measurement matrices. Note that both the measurement

matrices incorporate the NFDCT operator, as described above, to account and correct for

the irregularity in the observed measurements of the baseline (y1) and monitor surveys (y2).

Recovering densely sampled vintages for each vintage independently (via Equation 1) is

referred to as the independent recovery strategy (IRS). Since in paper 1 we demonstrated

that recovery via IRS is inferior to recovery via the joint recovery method, we work only

with the latter in this paper.

Joint recovery method

The joint recovery method (JRM) performs a joint inversion by exploiting shared information

between the vintages. The joint recovery model (DCS, Baron et al., 2009) is formulated as

y1

y2

 =

A1 A1 0

A2 0 A2



z0

z1

z2

 , or

y = Az.

(3)

In this model, the vectors y1 and y2 represent observed measurements from the baseline and

monitor surveys, respectively. The vectors for the vintages are given by

xj = z0 + zj , j ∈ 1, 2, (4)

where the common component is denoted by z0, and the innovations are denoted by zj for

j ∈ 1, 2 with respect to this common component that is shared by the vintages. The symbol
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A is overloaded to refer to the matrix linking the observations of the time-lapse surveys to

the common component and innovations pertaining to the different vintages. The above joint

recovery model can be extended to J > 2 surveys, yielding a J × (number of vintages + 1)

system.

Since the vintages share the common component in Equation 3, solving

z̃ = arg min
z
‖z‖1 subject to y = Az, (5)

will exploit the correlations amongst the vintages. Equation 5 seeks solutions for the common

component and innovations that have the smallest `1-norm such that the observations explain

the incomplete recordings for both vintages. The densely sampled vintages are estimated via

Equation 4 with the recovered z̃ and the time-lapse difference is computed via z̃1 − z̃2.

Given a baseline data vector f1 and a monitor data vector f2, x1 and x2 are the corre-

sponding sparse representations. Given the measurements y1 = M1f1 and y2 = M2f2, and

A1 = M1S
H
1 , A2 = M2S

H
2 , our aim is to recover the wavefields (or sparse approximations) f̃1

and f̃2 by solving the sparse recovery problem as described above from which the time-lapse

signal can be computed. Note that S
def
= C ⊗W, where C is the NFDCT operator (see

Equation 2) and W is a 1D wavelet operator. The reconstructed wavefields f̃1 and f̃2 are

obtained as: f̃1 = SH x̃1 and f̃2 = SH x̃2, where x̃1 and x̃2 are the recovered sparse represen-

tations and the operator S is overwritten to represent the Kronecker product between the

standard FDCT operator and the 1D wavelet operator. The standard FDCT operator is

used because the recovered sparse representations x̃1 and x̃2 correspond to the coefficients of

the regularized wavefields. Since we are always subsampled in both the baseline and monitor

surveys, have irregular traces and cannot exactly repeat, which is inherent of the acquisition

design and due to natural environmental constraints, we would like to recover the periodic
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densely sampled prestack vintages and time-lapse difference. For the given recovery problem,

the vintages and time-lapse difference are mapped to one colocated fine regular periodic grid.

ECONOMIC PERFORMANCE INDICATORS

To quantify the cost savings associated with simultaneous acquisition, we measure the

performance of the proposed acquisition design and recovery scheme in terms of an improved

spatial-sampling ratio (ISSR), defined as

ISSR =
number of shots recovered via sparsity-promoting inversion

number of shots in simultaneous acquisition
. (6)

For time-jittered marine acquisition, a subsampling factor η = 2, 4, ..., etc., implies a gain in

the spatial sampling by factor of 2, 4, ..., etc. In practice, this corresponds to an improved

efficiency of the acquisition by the same factor. Recently, Mosher et al. (2014) have shown

that factors of two or as high as ten in efficiency improvement are achievable in the field.

The survey-time ratio (STR)—a performance indicator proposed by Berkhout (2008)—

compares the time taken for conventional and simultaneous acquisition:

STR =
time of conventional acquisition
time of simultaneous acquisition

. (7)

As mentioned previously, if we wish to acquire 10.0 s-long shot records at every 12.5 m, the

speed of the source vessel would have to be about 1.25 m/s (≈ 2.5 knots). In simultaneous

acquisition, the speed of the source vessel is approximately maintained at (the standard)

2.5 m/s (≈ 5.0 knots). Therefore, for a subsampling factor of η = 2, 4, ..., etc., there is an

implicit reduction in the survey time by 1
η .
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SYNTHETIC SEISMIC CASE STUDY

To illustrate the performance of our proposed joint recovery method for off-the-grid surveys,

we carry out a number of experiments on 2D seismic lines generated from two different

velocity models—first, the BG COMPASS model (provided by BG Group) that has simple

geology with complex time-lapse difference; and second, the SEAM Phase 1 model (provided

by HESS) that has complex geology with complex time-lapse difference due to the complexity

of the overburden. Note that for the SEAM model, we generate the time-lapse difference via

fluid substitution as shown below. Also, the geology of the BG COMPASS model is relatively

simpler than the SEAM model, although it does have vertical and lateral complexity.

BG COMPASS model—simple geology, complex time-lapse difference

The synthetic BG COMPASS model has a (relatively) simple geology but a complex time-

lapse difference. Figures 8a and 8b display the baseline and monitor models. Note that this

is a subset of the BG COMPASS model, wherein the monitor model includes a gas cloud.

The time-lapse difference in Figure 8c shows the gas cloud.

[Figure 8 about here.]

Using IWAVE (Symes, 2010), a time-stepping simulation software, two acoustic data sets

with a conventional source (and receiver) sampling of 12.5 m are generated, one from the

baseline model and the other from the monitor model. Each data set has Nt = 512 time

samples, Nr = 260 receivers and Ns = 260 sources. The time sampling interval is 0.004 s.

Subtracting the two data sets yields the time-lapse difference. Since no noise is added to

the data, the time-lapse difference is simply the time-lapse signal. A receiver gather from
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the simulated baseline data, the monitor data and the corresponding time-lapse difference is

shown in Figure 2a, 2b and 2c, respectively. The first shot position in the receiver gathers—

labeled as 0 m in the figures—corresponds to 1.5 km in the synthetic velocity model. Given

the spatial sampling of 12.5 m, the subsampling factor η for the time-jittered acquisition is

2. Hence, the number of measurements for each experiment is fixed—i.e., n = N/η = N/2,

each for y1 and y2. We also conduct experiments for η = 4.

To reflect current practices in time-lapse acquisition—where people aim to replicate the

surveys—we simulate 10 different realizations of the time-jittered marine acquisition with

100% overlap between the baseline and monitor surveys. The term “overlap” refers to the

percentage of shot positions from the baseline survey revisited (or replicated exactly) for

the monitor survey, and therefore rows in the measurement matrices A1 and A2 are exactly

the same. Note that these shot positions are irregular, and hence off the grid. However,

since exact replication of the surveys in the field is not possible, we conduct experiments

to study the impact of deviations in the shot positions that would occur naturally in the

field. We introduce small deviations of average ±(1, 2, 3) m in the shot positions of the

baseline surveys to generate the shot positions for the monitor surveys. For instance, given

a realization of the time-jittered baseline survey, deviating each shot position by ≈ ±1 m

generates shot positions for the corresponding monitor survey. Note that these deviations are

average deviations in the sense that for a given realization of the time-jittered baseline survey,

the shot positions are deviated by random real numbers resulting in average deviations of

±1 m, ±2 m or ±3 m. One of our aims is to analyze the effects of nonreplication of the

time-lapse surveys on time-lapse data—i.e., when A1 6= A2. By virtue of the design of

the simultaneous acquisition and based upon the subsampling factor (η), it is not possible

to have two completely different (0% overlap) realizations of the time-jittered acquisition.
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Therefore, we compare recoveries from the above cases with the acquisition scenarios that

have least possible (or unavoidable) overlap between the time-lapse surveys. In all cases, we

recover periodic densely sampled baseline and monitor data from the simultaneous data y1

and y2, respectively, using the joint recovery method (by solving Equation 5). The inherent

time-lapse difference is computed by subtracting the recovered baseline and monitor data.

We conduct 10 experiments for the baseline measurements, wherein each experiment has

a different random realization of the measurement matrix A1. Then, for each experiment,

we fix the baseline measurement and subsequently work with different realizations of the

monitor survey generated by introducing small deviations in the shot positions and jittered

firing times from the baseline survey, resulting in slightly different overlaps between the

surveys. To get better insight on the effects of nonreplication of the time-lapse surveys, we

also conduct experiments for the case of least possible overlap between the surveys. Tables 1

and 2 summarize the recovery results for the time-lapse data for η = 2 and 4, respectively, in

terms of the signal-to-noise ratio defined as

SNR(f , f̃) = −20 log10

‖f − f̃‖2
‖f‖2

. (8)

Each table compares recoveries for different overlaps between the baseline and monitor surveys,

with and without position deviations. Each SNR value is an average of 10 experiments

including the standard deviation. Note that for time-jittered acquisition with η = 2, the

least possible overlap between the surveys is observed to be greater than 0% and less than

15%. Hence, Table 1 shows the SNRs for the overlap of < 15%. Similarly, for time-jittered

acquisition with η = 4, Table 2 shows the SNRs for the overlap of < 5%.

We recover periodic densely sampled data from simultaneous, subsampled and irregular

data by solving Equation 5. The recovered time-lapse data is colocated, regularized and
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interpolated to a fine uniform grid since both the measurement matrices A1 and A2 incorpo-

rate a 2D nonequispaced fast discrete curvelet transform that handles irregularity of traces

by viewing the observed data in a geometrically correct way. The SNRs of the recovered

time-lapse data lead to some interesting observations. First, there is little variability in the

recovery of the time-lapse difference from (the ideal) 100% overlap between the surveys to

the more realistic scenarios of in-the-field acquisitions that have natural deviations or irregu-

larities in the shot positions. Second, time-lapse difference recovery from the least possible

overlap (between the surveys) is similar to the recovery of 100% overlap with and without

deviations. This is significant because it indicates a possibility to relax the insistence on

replication of the time-lapse surveys, which makes this technology challenging and expensive.

The small standard deviations for each case suggest little variability in the recovery for

different random realizations. Moreover, the standard deviations are greater for cases other

than the minimum overlap. The above observations hold for both subsampling factors, η = 2

and 4, as illustrated in Figures 10 and 12.

Third, increasing deviations or irregularities in shot positions improve recovery of the

vintages (Figures 9c, 9e, 9g), with the minimum overlap between surveys giving the best

recovery (Figure 9i). This is due to the (partial) independence of the measurement matrices

that contribute additional information via the first column of A in Equation 3 connect-

ing the common component to observations of both vintages—i.e., for time-lapse seismic,

independent surveys give additional structural information leading to improved recovery

quality of the vintages. The improvement in the recoveries is better visible through the

corresponding difference plots in Figures 9d, 9f, 9h, 9j. This observation is important because,

as mentioned previously, time-lapse differences are often studied via differences in certain

poststack attributes computed from the (recovered) prestack vintages. Hence, as the quality
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of the recovered prestack vintages improves with decrease in the overlap, they serve as better

input to extract the poststack attributes. Moreover, the small standard deviations for each

overlap indicate little variability in the recovery from one random realization to another. This

is desirable since it offers a possibility to relax the insistence on replication of the time-lapse

surveys along with embracing the naturally occurring random deviations in the field. The

standard deviations for different overlaps also do not fluctuate as much as compared to those

of the time-lapse difference. Recovery of the vintages and the corresponding difference plots

for a subsampling of η = 4 are shown in Figure 11.

An increase in the subsampling factor leads to decrease in the SNRs of the recovered

time-lapse data, however, the recoveries are reasonable as shown in Figures 11 and 12. This

observation is in accordance with the CS theory wherein the recovery quality decreases

for increased subsampling. Note that recovery of weak late-arriving events can be further

improved by rerunning the recovery algorithm using the residual as input, using weighted

one-norm minimization that exploits correlations between locations of significant transform-

domain coefficients of different partitions—e.g., shot records, common-offset gathers, or

frequency slices—of the acquired data (Mansour et al., 2013), etc. This needs to be carefully

investigated. Remember that for a given subsampling factor the number of measurements

is the same for all experiments and the observed differences can be fully attributed to the

performance of the joint recovery method in relation to the overlap between the two surveys

encoded in the measurement matrices. Also, given the context of randomized subsampling

and irregularity of the observed data, it is important to recover the densely sampled vintages

and then the time-lapse difference. Moreover, as mentioned previously, while we do not

insist that we actually visit predesigned irregular (or off-the-grid) shot positions for the

time-lapse surveys, however, it is important to know these positions to sufficient accuracy
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after acquisition for high-quality data recovery. This can be achieved in practice as shown by

Mosher et al. (2014).

[Table 1 about here.]

[Table 2 about here.]

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

SEAM Phase 1 model—complex geology, complex time-lapse difference

The SEAM model is a 3D deepwater subsalt earth model that includes a complex salt

intrusive in a folded Tertiary basin. We select a 2D slice from the 3D model to generate a

seismic line. Figure 13a shows a subset of the 2D slice used as the baseline model. We define

the monitor model, Figure 13b, from the baseline model via fluid substitution resulting in a

time-lapse difference under the overburden as shown in Figure 13c.

[Figure 13 about here.]

Using IWAVE (Symes, 2010), two acoustic data sets with a conventional source (and

receiver) sampling of 12.5 m are generated, one from the baseline model and the other from

the monitor model. Each data set has Nt = 2048 time samples, Nr = 320 receivers and
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Ns = 320 sources. The time sampling interval is 0.004 s. Subtracting the two data sets yields

the time-lapse difference. Since no noise is added to the data, the time-lapse difference is

simply the time-lapse signal. A receiver gather from the simulated baseline data, the monitor

data and the corresponding time-lapse difference is shown in Figures 14a, 14b and 14c,

respectively. Note that the amplitude of the time-lapse difference is one-tenth the amplitude

of the baseline and monitor data. Therefore, in order to make the time-lapse difference

visible, the color axis for the figures showing the time-lapse difference is one-tenth the color

axis for the figures showing the baseline and monitor data. This colormap applies for the

remainder of the paper. Given the spatial sampling of 12.5 m, the subsampling factor η

for the time-jittered acquisition is 2. The number of measurements for each experiment is

fixed—i.e., n = N/η = N/2, each for y1 and y2.

[Figure 14 about here.]

We simulate a realization of the time-jittered marine acquisition with 100% overlap

between the baseline and monitor surveys. Since our main aim is to analyze the effects

of nonreplication of the time-lapse surveys on time-lapse data—i.e., when A1 6= A2—we

compare recovery from the above case with the acquisition scenario that has least possible

(or unavoidable) overlap between the time-lapse surveys only. Given the bigger size of the

data set and limited computational resources, we restrict ourselves to one experiment for

each case and a subsampling of η = 2. Periodic densely sampled baseline and monitor data

is recovered from the simultaneous data y1 and y2, respectively, by solving Equation 5. The

inherent time-lapse difference is computed by subtracting the recovered baseline and monitor

data.

The recovered time-lapse data is colocated, regularized and interpolated to a fine uniform
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grid. We note that all the observations made for the BG COMPASS model, which is a

relatively simpler model, hold true for the more complex SEAM model. Minimum overlap

(or nonreplication) between time-lapse surveys improves recovery of the vintages since

independent surveys give additional structural information. Hence, they serve as better input

to extract certain poststack attributes used to study time-lapse differences. Figures 15a,

15b, 15c and 15d show the corresponding monitor data recovery. The SNR for the vintage

recovery for minimum overlap between the surveys is 30.2 dB—a significant improvement

from the 19.5 dB recovery for 100% overlap between the surveys. Moreover, as seen in

Figures 15e, 15f, 15g and 15h, there is little variability in the recovery of the time-lapse

difference from (the ideal) 100% overlap between the surveys to the more realistic almost

nonreplicated surveys. The corresponding SNRs for the recovered time-lapse difference are

9.6 dB for 100% overlap and 4.1 dB for minimum overlap between the surveys. We note

that the SNR for the minimum overlap between the surveys is biased due the presence

of incoherent noise—between 3.5 s to 5.0 s—above the main time-lapse difference. If we

compute the SNRs for the lower-half of the data that contains the time-lapse difference—i.e.,

after 4.5 s—the SNR for minimum overlap between the surveys increases to 6.8 dB. More

importantly, if we look at the plots themselves, we see that there is not much difference in

the two recoveries. We are able to recover the primary arrivals and some reverberations

below. Recall that the amplitude of the time-lapse difference is one-tenth the amplitude of

the vintages. It is quite remarkable that we get good results given the complexity of the

model and the low amplitude of the time-lapse difference. Recovery of the vintages and the

time-lapse difference for a subsampling of η = 4 follows the same trend as above.

[Figure 15 about here.]
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DISCUSSION

Realistic field seismic acquisitions suffer, amongst other possibly detrimental external factors,

from irregular spatial sampling of sources and receivers. This poses technical challenges for

the time-lapse seismic technology that currently aims to replicate densely sampled surveys

for monitoring changes due to production. The experiments and synthetic results shown in

the previous sections demonstrate favourable effects of irregular sampling and nonreplication

of surveys on time-lapse data—i.e., decrease in replicability of the surveys leads to improved

recovery of the vintages with little variability in the recovery of the time-lapse difference

itself—while unraveling overlapping shot records. Note that we do not insist on replicating

the irregular spatial positions in the field, however, the above observations hold as long as

we know the irregular sampling positions after acquisition to a sufficient degree of accuracy,

which is attainable in practice (see e.g., Mosher et al., 2014). Furthermore, we assume that

there are no significant variations in the water column velocities, wave heights or temperature

and salinity profiles amongst the different surveys while the source signature is also assumed

to be the same. As long as these physical changes can be modeled, we do not foresee major

problems. For instance, we expect that our approach can relatively easily be combined

with source equalization (see e.g., Rickett and Lumley, 2001) and curvelet-domain matched

filtering techniques (Beyreuther et al., 2005; Tegtmeier-Last and Hennenfent, 2013).

The proposed methodology involves a combination of economical randomized samplings

with low environmental imprint and sparsity-promoting data recovery that aims to reduce

cost of surveys and improve quality of the prestack time-lapse data without relying on

expensive dense sampling and high degrees of replicability of the surveys. The combined

operation of source separation, regularization and interpolation renders periodic densely
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sampled time-lapse data from time-compressed, and therefore economical, simultaneous,

subsampled and irregular data. While the simultaneous data are separated reasonably

well, recovery of the weak late-arriving events can be further improved by rerunning the

recovery algorithm using the residual as input, using weighted one-norm minimization that

exploits correlations between locations of significant transform-domain coefficients of different

partitions—e.g., shot records, common-offset gathers, or frequency slices—of the acquired

data (Mansour et al., 2013), etc. This needs to be examined in detail. Effects of noise and

other physical changes in the environment also need to be carefully investigated. Nevertheless,

as expected using standard CS, our recovery method should be stable with respect to noise

(Candès et al., 2006b). Moreover, recent successes in the application of compressed sensing

to land and marine field data acquisition (see e.g., Mosher et al., 2014) support the fact that

technical challenges with noise and calibration can be overcome in practice.

CONCLUSIONS

We present an extension of our simultaneous time-jittered marine acquisition to time-lapse

surveys for realistic, off-the-grid acquisitions where the sample points are known but do not

coincide with a regular periodic grid. We conduct a series of synthetic seismic experiments

with different random realizations of the simultaneous time-jittered marine acquisition to

assess the effects of irregular sampling in the field on time-lapse data and demonstrate that

dense, high-quality data recoveries are the norm and not the exception. We achieve this by

adapting our proposed joint recovery method—a new and economic approach to randomized

simultaneous time-lapse data acquisition that exploits transform-domain sparsity and shared

information among different time-lapse recordings—to incorporate a regularization operator

that maps traces from an irregular grid to a regular periodic grid. The recovery method
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is a combined operation of source separation, regularization and interpolation, wherein

periodic densely sampled and colocated prestack data is recovered from time-compressed,

and therefore economical, simultaneous, subsampled and irregular data.

We observe that with decrease in replication between the surveys—i.e., shot points are

not replicated amongst the vintages—recovery of time-lapse data improve significantly with

little variability in recovery of the time-lapse difference itself. We make this observation

assuming source equalization and no significant changes in wave heights, water column

velocities or temperature and salinity profiles, etc., amongst the different surveys. We also

demonstrate the delicate reliance on exact replicability (between surveys) by showing that

known deviations as small as average ±(1, 2, 3) m in shot positions of the monitor surveys

from the baseline surveys vary recovery quality of the time-lapse difference—expressed as

slight decrease or increase in the signal-to-noise ratios—and hence negate the efforts to

replicate. Therefore, it would be better to focus on knowing what the shot positions were

(post acquisition) than aiming to replicate. Moreover, since irregular spatial sampling is

inevitable in the real world, the requirement for replicability in time-lapse surveys can perhaps

be relaxed by embracing or better purposefully randomizing the acquisitions to maximize

collection of information by effectively doubling the number of measurements for the common

component, leading to surveys acquired at low cost and environmental imprint.
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Figure 1: Schematic of conventional acquisition and simultaneous, compressed (or time-
jittered) acquisition. If the source sampling grid for conventional acquisition is 25.0 m (or
50.0 m for flip-flop acquisition), then the time-jittered acquisition jitters (or perturbs) shot
positions on a finer grid, which is 1/4 th of the conventional flip-flop sampling grid, for a
single air-gun array. Following the same strategy, adding another air-gun array makes the
acquisition simultaneous, and hence results in a compressed data volume with overlapping,
irregular shots and missing traces. The sparsity-promoting inversion then aims to recover
densely sampled data by separating the overlapping shots, regularizing irregular traces and
interpolating missing traces.
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(a) (b) (c)

Figure 2: Synthetic receiver gathers from a conventional (a) baseline survey, (b) monitor
survey. (c) Corresponding time-lapse difference.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Data recovery via the joint recovery method and binning. (a), (b) Binned vintages
and (c) corresponding time-lapse difference. (d), (e), (f) Corresponding difference plots.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Data recovery via the joint recovery method and regularization. (a), (b) Vintages
and (c) time-lapse difference recovered via sparsity promotion including regularization of
irregular traces. (d), (e), (f) Corresponding difference plots. As illustrated, regularization is
imperative for high-quality data recovery.
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(a) (b) (c)

(d)

Figure 5: Marine acquisition with one source vessel and two air-gun arrays. (a) Conventional
flip-flop acquisition. Time-jittered acquisition with a subsampling factor η = 2 for the (b)
baseline and (c) monitor. Note the acquisition speedup during jittered acquisition, where
the recording time is reduced to one-half the recording time of the conventional acquisition.
(d) Zoomed sections of (a), (b) and (c), respectively.
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(a) (b)

Figure 6: Simultaneous data for the (a) baseline and (b) monitor surveys. Only 40.0 s of
the full data is shown. Time-jittered acquisition generates a simultaneous data volume with
overlapping shots and missing shots.
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(a) (b)

(c) (d) (e)

Figure 7: Interferences (or source crosstalk) in a common-receiver gather for the (a) baseline
and (b) monitor surveys, respectively. Receiver gathers are obtained via MHy for the
time-lapse surveys. For a subsampling factor η, (a) and (b) have Ns

η irregular traces. (c), (d)
Common-receiver gathers for the baseline and monitor surveys, respectively, after applying
the adjoint of a 1D NFFT operator to (a) and (b). (e) Corresponding time-lapse difference.
As illustrated, the recovery problem needs to be considered as a (sparse) structure-promoting
inversion problem, wherein the simultaneous data volume is separated, regularized and
interpolated to a finer sampling grid rendering interference-free data.
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(a) (b) (c)

Figure 8: Subset of the BG COMPASS model. (a) Baseline model; (b) monitor model; (c)
difference between (a) and (b) showing the gas cloud.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 9: JRM recovered monitor receiver gathers from the BG COMPASS model for a
subsampling factor η = 2. Recovered monitor data and residual with (a,b) 100% overlap
in the measurement matrices (A1 and A2); (c,d) 100% overlap and average shot-position
deviation of 1 m; (e,f) 100% overlap and average shot-position deviation of 2 m; (g,h) 100%
overlap and average shot-position deviation of 3 m; (i,j) < 15% overlap, respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 10: JRM recovered time-lapse difference receiver gathers from the BG COMPASS
model for a subsampling factor η = 2. Recovered time-lapse difference and residual with (a,b)
100% overlap in the measurement matrices (A1 and A2); (c,d) 100% overlap and average
shot-position deviation of 1 m; (e,f) 100% overlap and average shot-position deviation of
2 m; (g,h) 100% overlap and average shot-position deviation of 3 m; (i,j) < 15% overlap,
respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 11: JRM recovered monitor receiver gathers from the BG COMPASS model for a
subsampling factor η = 4. Recovered monitor data and residual with (a,b) 100% overlap
in the measurement matrices (A1 and A2); (c,d) 100% overlap and average shot-position
deviation of 1 m; (e,f) 100% overlap and average shot-position deviation of 2 m; (g,h) 100%
overlap and average shot-position deviation of 3 m; (i,j) < 5% overlap, respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 12: JRM recovered time-lapse difference receiver gathers from the BG COMPASS
model for a subsampling factor η = 4. Recovered time-lapse difference and residual with
(a,b) 100% overlap in the measurement matrices (A1 and A2); (c,d) 100% overlap and
average shot-position deviation of 1 m; (e,f) 100% overlap and average shot-position deviation
of 2 m; (g,h) 100% overlap and average shot-position deviation of 3 m; (i,j) < 5% overlap,
respectively.
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(a) (b) (c)

Figure 13: Subset of the SEAM model. (a) Baseline model; (b) monitor model; (c) difference
between (a) and (b) showing the time-lapse difference.
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(a) (b) (c)

Figure 14: Synthetic receiver gathers from the conventional SEAM (a) baseline survey, (b)
monitor survey. (c) Corresponding time-lapse difference. The amplitude of the time-lapse
difference is one-tenth the amplitude of the baseline and monitor data.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15: JRM recovered monitor and time-lapse difference receiver gathers from the SEAM
model for a subsampling factor η = 2. Recovered monitor data and residual with (a,b)
100% overlap in the measurement matrices (A1 and A2); (c,d) < 15% overlap, respectively.
Recovered time-lapse difference and residual with (e,f) 100% overlap in the measurement
matrices; (g,h) < 15% overlap, respectively. Note that the amplitude of the time-lapse
difference is one-tenth the amplitude of the monitor data.
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Overlap ± avg. deviation Baseline Monitor 4D signal

100% 19.8 ± 1.0 19.7 ± 1.0 11.3 ± 2.2
100% ± 1.0 m 19.7 ± 1.0 19.6 ± 1.0 10.3 ± 1.5
100% ± 2.0 m 20.3 ± 1.1 20.2 ± 1.0 10.7 ± 1.1
100% ± 3.0 m 20.8 ± 1.2 20.7 ± 1.1 11.0 ± 1.4
< 15% 23.8 ± 1.4 23.6 ± 1.4 10.2 ± 1.2

Table 1: Summary of recoveries in terms of SNR (dB) for data recovered via JRM for a
subsampling factor η = 2. The SNRs show little variability in the time-lapse difference
recovery for different overlaps between the surveys offering a possibility to relax insistence
on replicability of time-lapse surveys. This is supported by the improved recovery of the
vintages as the overlap decreases. Note that the deviations are average deviations.

54



Overlap ± avg. deviation Baseline Monitor 4D signal

100% 14.3 ± 0.6 14.2 ± 0.6 6.4 ± 0.7
100% ± 1.0 m 14.9 ± 0.8 14.8 ± 0.8 6.5 ± 1.0
100% ± 2.0 m 15.6 ± 1.0 15.5 ± 1.0 6.4 ± 1.3
100% ± 3.0 m 16.4 ± 0.9 16.3 ± 0.9 6.4 ± 0.7
< 5% 18.4 ± 0.7 18.2 ± 0.7 5.8 ± 0.4

Table 2: Summary of recoveries in terms of SNR (dB) for data recovered via JRM for a
subsampling factor η = 4. The SNRs show little variability in the time-lapse difference
recovery for different overlaps between the surveys offering a possibility to relax insistence
on replicability of time-lapse surveys. This is supported by the improved recovery of the
vintages as the overlap decreases. Note that the deviations are average deviations.
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