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ABSTRACT

We propose to solve the Estimation of Primaries by Sparse Inversion problem without
any explicit data reconstruction, from a seismic record with missing near-offsets and
large holes in the acquisition grid which does not produce aliasing but otherwise causes
large errors in the multiple prediction. Exclusion of the unknown data as an inversion
variable from the process is desirable, since it sidesteps possible issues arising from fitting
observations that are also unknowns in the same inversion problem. Instead, we simulate
their multiple contributions by augmenting the forward prediction model for the total
wavefield with a scattering series that mimics the action of the free surface reflector
within the confines of the unobserved trace locations. Each term in this scattering
series simply involves convolution of the predicted wavefield once more with the current
estimated surface-free Green’s function at these unobserved locations. We investigate
the necessary modifications to the primary estimation algorithm to account for the
resulting nonlinearity in the modeling operator, and also demonstrate that just a few
scattering terms are enough to satisfactorily mitigate the effects of near-offset data gaps
during the inversion process. Numerical experiments on synthetic data show that the
final derived method can significantly outperform explicit data reconstruction for large
near-offset gaps. This is achieved with a similar computational cost and better memory
efficiency compared to explicit data reconstruction. We also show on real data that our
scheme outperforms pre-interpolation of the near-offset gap.

INTRODUCTION

Surface-related multiple events are among the largest causes of errors in seismic subsurface
imaging, and its removal from survey records is an important aspect of seismic processing. It is
generally accepted that the most accurate model of surface-related multiples are derived from
wave equation-based, data-driven approaches, such as ones exploiting the Rayleigh-Helmholtz
reciprocity relationship between the field-measured wavefield data and its multiple-free version
(Fokkema and van den Berg, 1993; Frijlink et al., 2011). The most well-known method
of this type is what came to be known as Surface-Related Multiple Elimination (SRME,
Verschuur, 1992; Berkhout and Verschuur, 1997; Verschuur and Berkhout, 1997). There are
also many other contemporary methods that also rely on the same physical principle but
with a modified problem structure (Ziolkowski et al., 1999; Amundsen, 2001; Majdański
et al., 2011).

Perhaps the biggest technical challenges of this family of methods is the requirement
for recorded wavefields to be completely sampled over the survey area. This is because
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primaries in the measured wavefield are used as the source functions for the multiple wavefield.
Primaries that are not measured causes gaps in the subsequent ray paths that reflect back
down from the free surface, and consequently can lead to serious errors in the final surface
multiple prediction. This characteristic behavior poses serious budget and technical challenges
for survey design, and is one of the main motivations behind the the decades-long effort to
improve near-offset acquisition, since near-offset primaries are known to be the strongest
contributors of surface multiples. While it is now not uncommon for deep-water surveys
to use a combination of cables in over/under configurations and off-azimuth recordings to
reconstruct the ideal near-offset traces, this is still nearly impossible for shallow-water and
on-shore surveys.

Therefore, current practice calls for for intricate, on-the-fly trace interpolations, by insert-
ing moveout-corrected versions of kinematically similar traces into non-sampled locations as
a preprocessing step of the SRME multiple prediction. However, this paradigm is now being
challenged by the increasing ubiquity of simultaneous or blended source acquisition designs,
where overlapping wavefronts of conflicting dip and velocity are the norm. Alternative
interpolation methods that are more immune to this situation but coming at a higher com-
putational cost are generally transform-based, such as FK-domain reconstruction (sometimes
with weighted matching-pursuit), the venerable parabolic Radon-based interpolation (Kabir
and Verschuur, 1995), as well more contemporary methods based on advanced transforms
such as curvelets (Herrmann and Hennenfent, 2008; Hennenfent et al., 2010) or exploiting
low-rank structures (Ma, 2013; Kreimer et al., 2013; Kumar et al., 2015). Unfortunately,
these methods are all at their weakest when it comes to reconstructing parts of the wavefront
with high curvature and amplitude variation, which is typically characteristic of near-offset
traces in seismic data.

Some recent trends have developed where these data are explicitly reconstructed by
looking at the multiple information. A method that attempts to formulate multiple removal
from the view of mapping multiple arrivals back to primaries is the Estimation of Primaries
by Sparse Inversion (EPSI, van Groenestijn and Verschuur, 2009). This approach involves
finding the correct surface-free Green’s function that will unambiguously relate all wavefronts
in the observed data under a primary-multiple relationship through the action of the free
surface. In the original formulation of EPSI, it was proposed to include missing data as yet
another piece of unknown that must be found to be consistent with this model, forcing the
algorithm to alternate between estimating the surface-free (primary) Green’s function, the
missing data, and the source. While the initial results of this explicit reconstruction technique
in EPSI has been successful, it fails to take advantage of the tightly-coupled relationship
between the missing data and the surface-free Green’s function, by ignoring their partial
derivatives with respect to each other in the inversion process. Our main contribution in
this work is to come up with a formulation where the effects of missing data–i.e., a mask
acting on the data matrix zeroing entries where data is missing–are explicitly accounted for
in the forward model of EPSI through scattering terms at the surface boundary, modeled by
repeated autoconvolution with the observed part of the wavefield.

Our work is organized as follows. First, we briefly summarize the EPSI formulation as
an alternating optimization problem inverting for the source and surface-free Green’s by
promoting sparsity via the `1-norm on the latter. We demonstrate the effect of data gaps
in the near-offset on EPSI predictions and contrast it with its impact on SRME. Next, we
discuss the method proposed by van Groenestijn and Verschuur (2009), which extends EPSI
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to additionally invert for missing parts of the upgoing wavefield. We then contrast it with our
proposed method, where multiple contributions from the missing data are directly accounted
for using scattering terms of the estimated model of the Green’s function on just the observed
part of the wavefield. These terms account for the impact of missing data on the prediction
of surface-related multiples. The main difference of our method is that it allows formation
of exact gradients for the full Green’s function using, using correlating-type interferometry
explain data that we have, and Born scattering at the surface to emulate data that we don’t
have. We conclude by demonstrating the efficacy of this method on both synthetic and field
data sets.

THEORY

Similar to SRME, the multiple model of EPSI relies on wavefield convolution to add one
roundtrip through the Earth’s subsurface to all wave paths in the observed data. It assumes
the existence of a wavefield kernel g(x, ω;xa) for all frequencies ω that, under an surface
integral, produces all the multiples pm generated by that surface from a noiseless, densely-
sampled pressure wavefield p(x, ω;xsrc). The physical significance of g will be discussed
below, for now we simply require it to satisfy

pm(x, ω;xsrc) =

∫
S
g(x, ω;x′)r(x,x′)p(x′, ω;xsrc) dx′. (1)

Throughout this paper S is treated as both the multiple-generating free surface and the
observation surface on which x′ lies. This assumption can be relaxed by careful treatment
of the wavefield directionality of p and g based on where we position S in relation to both
surfaces (see Frijlink et al., 2011, for more details). The operator r models the reflection of
the free surface, and is typically assumed to be isotropic and well approximated by a Dirac
delta function δ(x − x′) scaled by a reflectivity coefficient of −1, although this can again
possibly be relaxed and estimated (AlMatar, 2010).

The surface integration in expression 1 with g effectively sends all wave paths in p exactly
one more time through the Earth’s subsurface using Huygen’s principle. This transforms all
detected primary events to the first-order surface multiples, as well as all later n-th ordered
multiples to the n+1 order (Anstey and Newman, 1966; Riley and Claerbout, 1976). In order
for equation 1 to only produce multiple events, both p and g should be free of direct arrivals,
as they would map to primary events.

The kernel g that satisfies this property can be physically interpreted as the normal
derivative (at surface S) of a particular wave equation’s associated Green’s function. The
propagation medium of this wave equation has no multiple-generating discontinuity at S,
but is otherwise identical to the Earth’s subsurface which produced p. Thus, g can be seen
as the primary wavefield po component of p, while also separated from the source wavelet q
with the relation po(x, ω;xsrc) = g(x, ω;xsrc)q(ω). To keep this paper manageable in scope,
we assume that all shots have roughly the same source function. We also refer to g as the
Green’s function instead of its normal derivative, and simply assume that all surface integrals
involving it includes a well-known obliquity factor.

In SRME, g is typically approximated with the observed wavefield p. This leads to an
incorrect model of the surface multiples in terms of amplitude and spectral content, and
relies on subsequent adaptive subtraction (Verschuur, 1992) in order to match it correctly
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with the recorded multiple events. On the other hand, EPSI tries to directly solve for a
discretized wavefield kernel g that can simultaneous explain both the multiples through
expression 1 as well as the primaries using a jointly-estimated wavelet. As we will show, this
fundamental difference allows us to address deficiencies in the acquisition of p by augmenting
the functionals involved in EPSI’s variational problem.

The EPSI forward model

With the assumptions given above, we have an expression that maps g to both the primary
and the surface-related multiple events in the total wavefield p. We represent this model
as a time-domain operator M(g, q; p) that is a function of g and the source wavelet q,
parameterized by the data:

M(g, q; p) := F−1ω
[
g(x, ω;xsrc)q(ω) +

∫
S
g(x, ω;x′)r(x,x′)p(x′, ω;xsrc) dx′

]
(2)

= po(x, t;xsrc) + pm(x, t;xsrc)

= p(x, t;xsrc),

where F−1ω represents the continuous inverse Fourier transform.

In practice, EPSI follows the discretize-then-optimize paradigm, which attempts to solve
directly for discretized representations g and q (discretized entities will be denoted by bold
font) using numeric algorithms. We are thus only concerned with the discretized version
of expression 2. Assuming a regularized sampling of source and receiver coordinates, the
surface integral in expression 1 can also be written as simple matrix multiplications between
monochromatic slices of data volumes, following the detail-hiding notation of Berkhout
and Pao (1982). We indicate a mono-frequency matrix view of a wavefield by writing it
in upper-case letters, and omitting writing the implied frequency dependence for brevity.
For example, a mono-frequency data matrix for the wavefield p (of size nt × nrcv × nsrc)
is written simply as P (of size nrcv × nsrc). We adhere to the convention of row (column)
indices of a data matrix corresponding to the discretized receiver (source) positions. Using
this notation, the discretized forward model is thus

M(g,q;p) = F−1ω
[
Mω(G,Q;P)

]
, (3)

Mω(G,Q;P) := GQ + GRP.

The operator F−1ω is the (padded) discrete inverse Fourier transform that prevents convolu-
tional wraparound effects in the time domain. The term GQ produces the primary events,
while the GRP term produces surface multiples. Note that the discretized notation allows
for a more arbitrary source function compared to the continuous expression, but we reconcile
the two by parameterizing Q = q(ω)I. Similarly, the reflectivity operator is made isotropic
with reflection coefficient −1, as above, by assuming R = −I. For clarity, we show in Figure 1
a common shot gather example of all the wavefields involved in the preceding expressions.

Simultaneously solving for g as well as the source wavelet q will in most cases, in
correspondence to nondeterministic blind-deconvolution problems, admit non-unique solutions
(Biggs, 1998; Bronstein et al., 2005; Ahmed et al., 2012). Thus, obtaining a useful solution
requires additional regularization on the unknowns. Based on the argument that a discretized
representation of the Green’s function g for a wave-equation (in 3-D) resemble a wavefield
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Figure 1: Shot gathers of the various wavefields involved in this paper. (a) the complete
pressure data p, (b) the true primary Green’s function g. Producing this is the primary
objective of the EPSI problem. (c) the EPSI primary model produced by the GQ term in
expression 3. (d) the EPSI multiple model produced by the GRP term in expression 3.

with impulsive wavefronts, the Robust EPSI algorithm (REPSI, Lin and Herrmann, 2013)
proposes to find the sparsest possible g (in the time domain) through `1-norm minimization.
Specifically, it solves the following optimization problem:

min
g, q
‖g‖1 subject to f(g,q;p) ≤ σ, (4)

f(g,q;p) := ‖p−M(g,q;p)‖2,

where f(g,q;p) is the misfit functional, which we to seek minimize below a tolerance σ, and
the modeling operator M(g,q;p) is as defined in expression 3. As described in Lin and
Herrmann (2013), a good solution to this problem can be found by employing an alternating
optimization method that, after a proper initialization for g, switches between updates on q
and g while gradually relaxing an `1-norm constraint on g in a deterministic way.

We will return to discuss the algorithmic aspect of solving problem (4) in more detail
after describing below the effects of missing data on M(g,q;p).

Effects of incomplete data coverage

Up to this point we have assumed that the observed wavefield p has complete coverage over
all source-receiver coordinates. We now consider the case where p is spatially well-sampled
enough for the multiple model in Equation 3 to have no aliasing issues, but otherwise has
significant gaps in its sampling coverage, such as a near-offset gap. To describe the effects of
coverage issues in field acquisition geometries, we adhere to the notation of van Groenestijn
and Verschuur (2009) that segregates all entries of p into actual sampled data p′ and missing
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data p′′, both of equal dimensions to p, such that p = p′ + p′′. Remember that p is the
hypothetical fully sampled (in terms of both source and receiver locations) data at a fixed,
regular sampling grid. We can model the available data p′ using a masking operator K that
eliminates (by setting to zero) traces belonging to unrecorded source-receiver coordinates.
Similarly, we can map to the missing data p′′ by the compliment of this mask Kc := I−K
(a stencil operator). This gives us

p = p′ + p′′ = Kp + Kcp.

The separation can also be done on the monochromatic data-matrices through a binary
masking matrix A, with the same dimensions as the data-matrices G and P. The elements
of A is defined 1 at sampled positions and 0 otherwise. In this case applying the mask is
equal to a Hadamard product P′ = KP := A ◦ P. Likewise, the unacquired part of the
data-matrix comes form applying the complement stencil P′′ = KcP.

When the difference between p and p′ is large, the incomplete coverage can become
a significant source of error in the calculation of the surface multiples, especially at the
near-offset locations (Verschuur, 2006). The most well-known example of this is missing
near-offsets, as illustrated in Figure 2. The effects of these gaps on the multiple model are
felt throughout the wavefield volume due to the surface integral that underlies the prediction
process, which results in a non-stationary spatial convolution.

The approximation G ≈ P that SRME doubles the impact of missing data during
acquisition. Comparing Figure 1d with Figures 2b and 2c, it is clear that using P′ in place
of G greatly exasperates kinematic errors in the multiple prediction, resulting in completely
unrecognizable wavefronts even when we have data available up to 100 m. Due to this
effect, SRME usually requires some type of trace interpolation as a preprocessing step, since
adaptive subtraction alone is not able to account for this degree of error.

However, on the flip side, the non-local effect of the prediction error ultimately enables us
to probe the (actions of the) free surface inside the data gap based solely on measurements
outside of it. Since EPSI inherently relies on wavefield inversion, there is enough degrees
of freedom in the process to take advantage of this. van Groenestijn and Verschuur (2009)
proposes to explicitly reconstruct p′′ from intermediate estimates of g, such that the accuracy
ofM improves as the algorithm converges. Adapting this approach to the REPSI formulation
means extending the definition of Mω with the unobserved traces as another variable in the
forward modeling operator

Mω(G,Q,P′′;P′) := GQ + GR(P′ + P′′), (5)

which leads to a more complicated version of problem 4, with p′′ as an additional unknown:

min
g, q, p′′

‖g‖1 subject to f(g,q,p′′;p′) ≤ σ, (6)

f(g,q,p′′;p′) := ‖p′ + p′′ −M(g,q,p′′;p′)‖2.

A major issue with this method of independently updating g and p′′ in a cyclically
alternating fashion is that we end up needing to include the intermediate and incorrect
estimates of p′′ into the observation term of the misfit functional. Otherwise, the parts of G
inside the unobserved locations will tend to converge very slowly, if at all, since its gradients
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Figure 2: The effects of a 100 m near-offset gap in the observed data p′ shown in (a)
on both SRME and EPSI multiple predictions. (b) a shot gather of the SRME multiple
prediction produced by auto-convolution of the observed data P′P′. (c) a shot gather of the
EPSI multiple prediction produced by convolution with the correct, fully sampled, primary
Green’s function GP′. Despite knowing the true primary Green’s function, the EPSI multiple
prediction still contains errors caused by the missing near-offsets, although it is much more
accurate compared the SRME prediction which is twice affected by the near-offset gap.

would not be driven by the residuals that belong to the primaries, which only appears in p′′

inside the gap.

This approach also ignores the fact that g and p′′ are tightly coupled in an obvious way.
The strongest parts of these two wavefields (the primaries) overlap and relate to one another
through convolution with the wavelet. The full relation is implicitly defined by

P′′ = KcP = Kc

[
GQ + GRP′ + GRP′′

]
(7)

where it is evident that P′′ can be almost completely characterized by G. Therefore, we would
expect that ∂p′′/∂g and ∂g/∂p′′ should not be ignored when independently updating p′′ and
g. While ∂p′′/∂g is straightforward to compute, the expression for ∂g/∂p′′ is, conversely,
quite tricky and necessarily involves Q−1 (deconvolution by the unknown wavelet function q).
Motivated by this observation, in this paper we seek to remove p′′ as an inversion variable
all-together, and instead account for its multiple contribution with terms that only involve g,
q, and the known data p′.

Deterministic correction of surface multiple prediction by scattering terms

We start by attempting to eliminate p′′ from the EPSI modeling function (expression 5) by
recursively substituting it with the right-hand side of expression 7. This results in a new
modeling function that does not depend on p′′, but at the cost of having infinitely many
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terms in a series expansion

M̃ω(G,Q;P′) = K
[
(GQ + GRP′)

+ GRKc(GQ + GRP′) (8)
+ GRKc

(
GRKc(GQ + GRP′)

)
(9)

+ O(G4)
]

:= K
∞∑
n=0

(GRKc)n
(
GQ + GRP′

)
. (10)

This expression is no longer linear in G. The n=1 term (Equation 8) is a second-order
term since it is effectively a function of G2, and similarly the n=2 term (Equation 9) is a
third-order term.

Since multiples that we observe in nature will decay in amplitude as a function of its
order, we can assume from physical arguments that the spectral norm (i.e., largest singular
value) of G is ‖G‖ < 1, and therefore the infinite-term series expansion 10 converges to

KP = K (I−GRKc)−1
(
GQ + GRP′

)
. (11)

This expression states that we can recover the original EPSI forward model P =
GQ + GRP′ + GRP′′ if it is somehow possible to invert the data mask K by some
hypothetical exact data interpolation, which validates our recursive substitution derivation
above.

Although Equation 11 is not practically useful, it admits an useful interpretation of our
approach: that of a Born series solution to a Lippmann-Schwinger relation between the
total wavefield P and an “incident wavefield” composed of the erroneous EPSI prediction
(GQ + GRP′) from incomplete data. The perturbation in this case is the missing contri-
bution coming from within the acquisition gap. This view makes it clear that each term in
expression 10 is a term in the Born series expansion due to the free-surface reflector within
the confines of the acquisition gap (as bound by the stencil Kc). One direct consequence
of this interpretation is that we can expect all orders of surface multiples in every term of
expression 10, because the incident wavefield is not only composed of the primaries GQ but
also parts of all subsequent orders of surface multiples, as produced by the term GRP′.

This scattering-based interpretation is perhaps most commonly seen in literature on the
inverse scattering series (ISS) approach to multiple removal (Weglein et al., 1997, 2003).
However, unlike typical applications of ISS methodology where it is used on subsurface
reflectors for internal multiple removal, in this paper we know exactly that the scattering
boundary is at the free surface, and have only reflection effect from this scatterer. Perhaps
more significantly, we use the derived multiples as part of the modeling function in the
context of a full data-fitting inversion problem for the primary estimation, instead of an
adaptive subtraction scheme.

As with all series expansion expressions, it is important to investigate how the approx-
imation error behaves as a function of the number of terms used. Since computing these
terms involve partial wavefield convolutions that have significant computation costs (although
not as much as the full wavefield convolution, as we will discuss later in the paper), it is
practically desirable to limit the number of terms as much as possible. We now claim what
is perhaps the main insight of this paper: that a very small number of these terms, even just
two or three, can be enough to account for most of the missing multiple contributions.
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Effects of term truncation on accuracy

As discussed in the previous section, the whole series up to the n-th term of expression 10
accounts for all of the missing n-th order multiples coming from the part of the free surface
confined within the acquisition gap. It also includes some part of all multiples of n+1-th order
and above, although for near-offset gaps these contributions may be small. Figure 3 shows
this with shot-gather representations of the different terms in expression 10 for the synthetic
dataset shown in Figure 2a. We can see that the majority of these terms is composed of the
n-th order surface multiple by comparing the wavefront shapes and traveltimes of panels 3b
and 3c to the true primaries shown in Figure 1c. The arrows in panel 3b shows two apexes
of the missing contribution of the second-order surface multiple, which we can see faintly in
the n=1 term (Equation 8) and very prominently the n=2 term (Equation 9). The sum of
these two terms, shown in panel 3d, perfectly accounts for the total missing contribution to
the wavefront without relying on any data inside the gap.
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Figure 3: Shot-gathers of various multiple contribution terms in the auto-convolution
based forward modeling operator M̃(G,Q;P′) (shown in expression 10) when applied to the
synthetic dataset with 100 m missing near-offsets in p′′ shown in Figure 2. (a) shows the total
error in multiple prediction due to missing near-offsets. Panels (b) and (c) are respectively
the first two terms of M̃(G,Q;P′) involving auto-convolutions with g (expressions 8 and 9).
(d) shows the sum of panels (b) and (c). Comparing panels (a) and (d), it is evident that
just the first two of the higher order terms of Equation 10 is enough to model most of the
significant EPSI multiple prediction errors due to the missing data.

Figure 3 also visually demonstrates that the sum of just the first three terms of the series
expansion 10 is enough to model most of the significant multiple contributions from the
missing data p′′. Panel 3d, which shows the sum of the n=1 and n=2 terms, explains all the
missing contributions from p′′ (panel 3a) up to the second-order surface multiple, and also
contains some kinematic imprints of all higher order ones. Together, these two terms were
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able to bring the normalized prediction error (defined by ‖pm − M̃(g,q;p′)‖/‖pm‖, where
pm is the true surface multiple) down from ≈22% down to ≈3%. Figure 4 summarizes the
effectiveness of these first two terms as a function of the nearest available offset.

From the general trend of the curves in Figure 4 we can see that, for a range of typical
near-offset gap sizes, just including the n=1 term can reduce the normalized multiple modeling
error of M̃ by more than one half (corresponding to a 6 dB improvement), and a further
halving of the error is achieved by including up to the n=2 term. The model used here the
same ones as used by van Groenestijn and Verschuur (2009), with a gently-varying water
column depth around 200 m throughout the model, and a water-bottom reflectivity coefficient
of ≈0.41 (seafloor p-wave velocity 2.0 km/s, density 1.8 g/cm3).
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Figure 4: Multiple modeling error for the nonlinear series expansion modeling operator
(expression 10) as a function of term truncation and the offset gap in the data. The different
lines plot this normalized modeling error from truncating all terms from expression 10 with
n higher than that indicated in the legend.

ALGORITHMIC CONSIDERATIONS

With the new augmented forward-modeling operator M̃(G,Q;P′) as defined in Equation 10
using data-matrix notation, we solve a new optimization problem by using it in place of the
uncorrected modeling operator in the original REPSI problem (c.f. Equation 6):

min
g, q
‖g‖1 subject to f(g,q;p′) ≤ σ, (12)

f(g,q;p′) := ‖p′ − M̃(g,q;p′)‖2.

The main challenge that we will address in this section is that, compared to the original
REPSI problem with fully-sampled data, this new one loses the linear relationship of the
modeling function with g. In Lin and Herrmann (2013), we relied on this bilinear property of
M(g,q;p′) in terms of g and q to solve problem (4) using an alternating coordinate-descent
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method. Below we first briefly recount how the original REPSI problem is solved, followed
by the proposal of two possible ways to modify our solution strategy to account for the
additional nonlinearity due to the existence of higher-order terms in M̃(G,Q;P′).

The existing approach to solving the original REPSI problem (4) is an alternating update
of g and q. Each new iteration of g is formed by a `1-norm constrained problem (called
a Lasso problem, Tibshirani, 1996) to give a sparse wavefront, which has a broadband,
impulsive appearance in time. We then use it to estimate the wavelet q by matching the
impulsive wavefronts against the data. The number of sparse wavefronts allowed into g is
kept small at the early iterations to capture only the most significant primary events, quickly
giving us the best estimate for the wavelet q. Later iterations will then gradually increase
the number of events allowed to better fit the remaining data residual.

This relaxation of sparsity constraint happens in a theoretically rigorous way for REPSI.
The sparsity of g is directly influenced by the `1-norm constraint value of the Lasso problems.
The initial `1-norm constraints start at a small value that is designed to be an underestimate
of the true minimum. It is then is gradually increased throughout the iterations in a way
such that it does not exceed the `1-norm of the true solution, yet approaches it quickly. This
scheme is enabled by the convex properties of the Pareto trade-off curve for Lasso problems
(van den Berg and Friedlander, 2008; Hennenfent et al., 2008; Daubechies et al., 2008).

We now roughly outline the main algorithm as described in Lin and Herrmann (2013),
using the notation of this paper and omitting some initialization details. We first set our
solution candidates p̃0 and q̃0 to zero vectors, and the inversion residue (prediction error) e
to p. Then we iterate over the following steps with iteration counter k.

1. Select a new `1 norm constraint τk > τk−1, which is evaluated through a closed-form
expression from the current residue ek, the target misfit σ, and the `1-norm of the
current solution gk.

2. Obtain gk+1 by solving through a spectral projected gradient method (van den Berg
and Friedlander, 2008; Birgin et al., 2000), using the previous solution gk as the initial
guess

min
g
‖p−M(g,qk;p)‖2 subject to ‖g‖1 < τk. (13)

3. Do an exact line-search scaling on gk+1 using the multiple term in M(g,qk;p) on p to
minimize the effect of the `1 constrain on the amplitude of gk+1.

4. Obtain qk+1 by solving a matched-filtering problem

min
q
‖p−M(gk+1,q;p)‖2

5. Form a new residue ek+1 = p−M(gk+1,qk+1;p) and check for convergence conditions.

6. (If explicitly reconstructing data as in Problem 6) Solve for the missing part of the
data p′′k+1, using the previous solution p′′k as the initial guess

min
p′′
‖p′ + p′′ −M(g,qk;p

′ + p′′)‖2

and form new data by p = p′ + p′′k+1.
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For steps 1 and 2 we depend on the notion of a smooth, monotonic Pareto curve (sometimes
known as the L-curve) for problem 4 to give us sensible `1-norm constraint parameters τk.
The smooth and monotonic property is generally no longer valid when the forward system is
nonlinear in g, so below we will discuss two possible approaches to work around this issue,
and propose how it can be applied to the above strategy to derive suitable methods for
solving 12.

Modified Gauss-Newton approach

Several existing works on regularized inversion of auto-convolution functions rely on either
the Gauss-Newton method or more generally the Levenberg-Marquardt method (Fleischer
et al., 1999; Fleischer and Hofmann, 1996). In the same vein, we introduce an approach
inspired by Li et al. (2012), which gives heuristically sparse solutions to the new nonlinear
REPSI problem (12) using a modified Gauss-Newton method.

The crux of this method is to always ensure that the Green’s function updates ∆g are as
sparse as possible for our a given amount of decrease in the objective. This is achieved most
effectively by taking as updates the solution to a Lasso problem formed around the Jacobian
Jk of M̃ evaluated at (gk,qk):

∆gk+1 = argmin
g
‖ek − Jkg‖2 s.t. ‖g‖1 ≤ τk, (14)

where ek is the current nonlinear residue p− M̃(gk,qk). The `1-norm constraint τk in this
case is again obtained deterministically by the optimization parameters of problem 14, using
the same expressions used in step 1. However, since we are explicitly solving for updates
∆g instead of g itself, the previous solution gk (and hence its `1-norm) for this linearized
problem is always zero. Each update formed this way will thus tend to have a much smaller
`1-norm constraint τk compared to the final `1-norm of the true solution, but the sum of all
the updates may have a final norm that exceeds it. The assumption here is that our series
of sparse updates will actually sum into a sparse final solution, which will depend on the
Jacobians evolving slow enough over the iterations, so that all updates ∆g kinematically all
consists of very similar wavefront sets. In practice, we find that this assumption is rarely a
problem if the acquisition gaps are not too large, and that we indeed usually end up with
sparse solutions for g.

The action of the Jacobian Jk is straightforward to obtain, but actually computing it will
pose a challenge. When we explicitly write it out using the data-matrix notation, it becomes
evident that the computational effort required escalates very quickly with the order of the
series expansion:

JkωG = K
[
(GQk + GRP′)

+ GkRKc(GQk + GRP′)

+ GRKc(GkQk + GkRP′)

+ GkRKc

(
GkRKc(GQk + GRP′)

)
+ GRKc

(
GkRKc(GkQk + GkRP′)

)
+ GkRKc

(
GRKc(GkQk + GkRP′)

)
+ ...

]
.

(15)
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The above expression is only written up to the n=2 nonlinear term (expression 9) of M̃ .
Comparing all the terms here to the original nonlinear expression 10, we can see that due to
partial derivatives, each of the O(Gn) terms expand into n linearized terms in the Jacobian.
In aggregate, this effectively introduces a quadratic complexity in the number of nonlinear
terms when computing the action. Although some reuse is possible in the calculation of these
terms, this approach may nonetheless present a prohibitive amount of computation overhead
compared to the original problem. In the next subsection we will discuss an alternative
scheme that forgoes using the Jacobian and will instead linearize the problem in some other
way.

To summarize the modified Gauss-Newton approach to solving problem 12, we essentially
modify steps 2 and 3 of the original algorithm above. In step 2 of each iteration we explicitly
compute the updates gk+1 = gk + ∆gk+1 with ∆gk+1 given by solving problem 14. In step 3
we then perform the exact line-search on the update ∆gk+1 itself against the current residual,
much like in the original algorithm, this mitigates the amplitude loss from the `1-norm
regularization while keeping its sparsifying effect.

Relinearization by substitution

As shown in expression 15, having to compute the action of the Jacobian of the operator
M̃ may be unacceptably costly, considering that each wavefield multiplication in these
expressions is computationally equivalent to one full SRME multiple prediction step. Since
our non-linearity only comes from essentially having quadratic and higher powers of G, a
possible alternative to avoid dealing with the Jacobian is to simply substitute the previous
iteration gk as a constant in the (GRKc)n part of Equation 10. This returns us to the
paradigm of inverting a linear operator in G at step 2:

M̃kω(G) = K
[
(GQk + GRP′)

+ GkRKc(GQk + GRP′)

+ GkRKc

(
GkRKc(GQk + GRP′)

)
+ ...

]
.

(16)

Similar to Gauss-Netwon, the approach also relinarizes the problem at step 2, except
that we do not have to find each update explicitly. Instead, we simply replicate step 2 of
the original REPSI algorithm (solving the Lasso problem in Equation 13 starting from the
previous solution gk) using the approximate but linear modeling operator of expression 16.
In effect, we now solve the following in step 2:

min
g
‖p− M̃k(g)‖2 subject to ‖g‖1 < τk. (17)

Theoretically speaking, we have to give up some nice properties of Gauss-Newton with
this method, such as possible quadratic convergence and guarantees of reaching a stationary
point. But in practice we find this method, which we call “relinearization” for the purpose
of this paper, to converge similarly to the Gauss-Newton approach while also having much
smaller per-iteration compute costs. In fact, the computational overhead here is marginal
compared to the original algorithm, as we explain in the Discussions section. However, to
achieve this result we find that it is necessary to manually precondition the first few gradients,
where we have zero contribution coming from the missing primary part of p′′.
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Improving convergence by gradient trace weighting

If we explicitly write out a (negative) gradient step of the Lasso problem in step 2 (where
the residue is at ek) using the approximate operator in expression 16 up to the n=1 term,
we obtain, assuming R = −I and using H for Hermitian adjoint,

(KEk)Q
H
k − (KEk)P

′H −KcG
H
k (KEk)Q

H
k + KcG

H
k (KEk)P

′H .

Recall that Ek is the data-matrix representation of the current residue error ek. From this
we can see that g is not being updated equally inside the acquisition mask compared to
the outside of it. In fact, the first term is actually zero inside the acquisition mask (i.e.,
KcK = 0 so Kc(KEk)QH

k = 0), due to the residue being zero inside the mask, and the fact
that the source wavelet applies a purely time domain convolution which does not spatially
“spread” the wavefield. Since this term contains all the contribution from primary wavefields,
which tends to be the strongest part of the wavefield, there is immediately a large loss of
amplitude for the updates inside the mask. The job of filling this void then naturally falls to
the subsequent terms, which all involve some sort of wavefield convolution and can potentially
generate events inside the mask. However, in the first few gradients where Gk is small in
amplitude (due to the `1-norm constraints), the third term and above are also unhelpfully
close to zero. This creates a convergence “lag” where traces of g outside of the mask must
already be well reconstructed in order for the inside of the mask to begin updating, which is
problematic because the outside traces are susceptible to overfit on multiples that should
ultimately be explained by contributions coming from the inside of the mask.

We can mitigate the inherent imbalance on the early gradients through a simple weighting
to all traces inside the acquisition gap. This can be seen as applying a diagonal right
preconditioner to the linearized modeling operator. For the Gauss-Newton approach, this
kind of scaling is automatically handled by the implicit Hessian, but for the relinearization
method we must form and apply this preconditioner manually. An averaged, trace-independent
version can be obtained by finding an exact line-search for a scaling α of Kcgk+1 which
maximally reduces the residual left over from the contributions of Kgk+1 under the action of
the next forward operator M̃k+1 (not that it is linearized around the newly obtained gk+1).
In other words, we seek the scalar α, which solves the following problem

min
α
‖
(
p′ −KM̃k+1(Kgk+1)

)
− αKM̃k+1(Kcgk+1)‖22.

The computation of this scaling can be effectively free in the process of computing the
residual of iteration k+1, by producing the new predicted wavefield due to the two parts of
gk+1 separately:

eoutside = p′ −KM̃k+1(Kgk+1)

p̃inside = KM̃k+1(Kcgk+1)

αk+1 = p̃Tinsideeoutside/‖p̃inside‖22. (18)

Note that all the computational cost for this scaling is in the last line, which only involves
the vector inner products between p̃inside and eoutside, as well as `2 norms. All the terms
needed to form these two wavefields are already computed once we have the final residue for
this iteration. As an aside, this scaling should be calculated after the line-search over all of g
described in step 3, to minimize the impact of the accuracy of the current wavelet estimate
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(simply ignoring the primary GQ term when forming p̃inside and eoutside will have a similar
effect).

After obtaining α, we use it as a right-preconditioner αKc in step 2 of the next iteration,
where we now solve

min
g̃
‖p− M̃k(αKcg̃)‖2 subject to ‖g̃‖1 < τk. (19)

This will effectively scale all gradient traces inside the stencil by α. After the inversion
is complete, we obtain the new estimate of the Green’s function by gk+1 = αKcg̃, which
removes the imprint of the right preconditioner. As the iteration count increases and g
becomes more accurate, we should see α trend towards 1.

Figure 5 demonstrates the effectiveness of this method. Panel 5a shows the first gradient
update for g (assuming we use the true wavelet q) we would have obtained from a full-sampled
data (shown in Figure 1a). Panel 5b shows the same gradient step that we would obtain
using data with missing near-offsets (Figure 2a). We can see that this update contains mostly
correct kinematic information about the wavefield, but is much weaker in amplitude for
traces inside the near-offset gap. After applying the preconditioner αKc, with α computed
using the inaccurate gradient in Panel 5b as the approximate solution, we see in Panel 5c
that this amplitude imbalance is effectively mitigated.

To summarize, in the “relinearization” approach we essentially replace the steps 2 and 3
of the original algorithm with the following modified steps:

2. Solve the modified Lasso problem (Equation 19) instead of the original one (Equation 13).
This replaces the wavefield modeling function with the approximately linearized version
of M̃ , defined in expression 16, and adds a right preconditioner αkKc. Once solution
is obtained, apply αkKc to invert the preconditioner and get gk+1.

3. Compute the scaling for all of gk+1 as in the original. After applying the scaling,
compute the next preconditioner scaling αk+1 using expression 18.

NUMERICAL EXAMPLES

In this section we demonstrate the efficacy of our proposed methods, focusing on the missing
near-offset problem. We compare the results given by both the Gauss-Newton and the
relinearization approach, using up to the n = 2 term (expression 9) in the augmented
nonlinear modeling operator M̃(g,q;p′). We also compare our results to the explicit data
reconstruction approach (problem 6) based on the method suggested by van Groenestijn and
Verschuur (2009), as well as a parabolic Radon-domain interpolation done as a preprocessing
step. We first show results using the synthetic data shown in 1a, then move on to a field
data example from the North Sea. Although we only show 2D acquisition examples, note
that our method makes no assumptions on the coordinate system used for the data matrices,
so it is trivially extendable to a 3D survey geometry.
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Figure 5: Early gradient updates for g need to be preconditioned, otherwise converge will be
slow inside the acquisition mask due to amplitude imbalances. (a) the exact first gradient for
g from fully sampled data, given exact q. (b) the first gradient from data with missing near-
offsets (shown in Figure 2a) using the relinearized forward model M̃ω. Inside the near-offset
gap, the events are correct but greatly diminished in amplitude. (c) the gradient shown
in (b) after applying the preconditioning scaling described. Our average trace-independent
scaling is effective in balancing the amplitude of the updates inside the near-offset gap to be
more comparable to the outside.

Synthetic data example

In this section we focus on how effectively the proposed methods in this paper handle different
sizes of near-offset gaps, and how it fares compared to explicitly inverting for the missing
data p′′. We use the same 5 km fixed-spread synthetic data used in all the figures so far in
the paper, a shot gather of which is shown in Figure 1a. For reference, the corresponding
true primary model is shown in Figure 1c. This model appears in almost all existing EPSI
literature today and serves as an effective benchmark.

Figure 6 shows a comparison of methods for a 45 m near-offset gap (in both positive and
negative offsets). This is an extremely mild offset gap and typically poses no major problems
for SRME workflows. In this case, the data reconstruction (Panel 6b), the Gauss-Newton
(Panels 6c and 6d), and the relinearization strategies (Panel 6e) all performed very similarly
and gave good results without needing to interpolate the near-offsets in preprocessing. All the
results plotted here is the direct primary estimation (the final g from the inversion convolved
with the final q from the same inversion), as the effects of reconstruction inside the offset gap
is clearer this way. In practical applications, usually a multiple model would be formed with
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the solution g instead, so it can be subtracted from the data under perhaps more scrutiny.

Comparing the Gauss-Newton results allows us to examine the effects of term truncation
in the nonlinear modeling operator M̃ . Panel 6c shows the Gauss-Newton solution using up
to the n=1 term (second-order in g) in M̃ . As discussed in the theoretical section, this term
alone cannot fully account for the second-order surface multiples, and thus some part of the
first order multiple is put into g by the algorithm to make up some of the difference. This is
especially apparent inside the offset gap, where g is less constrained by the observed data.

Panel 6d shows the solution we can obtain by just using one more term in M̃ , up to the
n=2 term which is third-order in g. We see that the imprint from the first-order multiple is
much less severe in this result. This result, notably, is already very close to the solution from
fully sampled data as shown in Figure 1c, even though only two additional terms from the
series expansion is used. The results of the relinearization method (also using up to the n=2
term) shown in Panel 6e is almost identical to the Gauss-Newton solution, despite being
much faster to compute. In fact it is arguably cleaner, perhaps due to less overfit of the
remaining multiple prediction errors from the lack of higher order terms.

Figure 7 shows the opposite end of the near-offset gap severity scale with a 225 m offset gap.
As we can see in panel 7a, the majority of the near-offset wavefront curvature information is
missing, which poses a serious challenge for standard workflow tools to accurately reconstruct
near-offset traces. In this case the explicit data reconstruction (Figure 7b) fails to remove
some of the later surface multiples, such as those after 0.6 s. The augmented nonlinear
modeling operator approach introduced in this paper all arguably fared better in comparison.
The Gauss-Newton approach up to the second-order term (Figure 7c) is better at recovering
the wavefronts inside offset gap, even building up some of the diffraction events, but also
similarly fails to remove some of the later surface multiples. The multiple removal is improved
greatly by including up to the third-order term (Figure 7d), although some still remain,
again possibly due to overfit. The relinearization method remains the overall winner in this
case (Panel 7e), producing the cleanest primary estimation that is nearly identical to the
reference primary outside of the near-offset gap, while also computing it much faster than
the Gauss-Newton method.

Field data example

We now demonstrate the effectiveness of our proposed methods using a North Sea shallow-
water marine 2D seismic line with a 100 m near-offset gap. Pre-processing has been applied
to convert the collected dual-sensor data to an upgoing pressure wavefield using the method
described in Cambois et al. (2009). Data regularization and interpolation were carried out as
part of the preprocessing, so in this example we will compare our method with the existing
parabolic Radon interpolated near-offsets. A 3D-to-2D correction factor

√
t has also been

applied after data regularization.

Figure 8 show the moveout-corrected stacks of the field data experiments. Panel 8a shows
the data itself. All near-offsets are excluded from the stack to keep comparisons consistent.
Panel 8b shows the results obtain from using the original REPSI on the regularized data where
the near-offset is pre-interpolation using parabolic Radon. Panel 8c show results obtained by
inverting the third order (keeping up to n=2 terms) nonlinear operator M̃(g,q;p′) using
the relinearization method, while panel 8d shows the same using the Gauss-Newton method.
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Figure 6: Direct primary estimation results from a 5 km fixed-spread synthetic data with a
nearest recorded offset of 45 m, for which a shot-gather at 2.5 km is shown in (a) up to 1
km offset. (b) the estimated primary using explicit data reconstruction (solving problem 6).
(c) estimated primary using the Gauss-Newton method described in this paper, using up
to the n=1 term (second-order in g) in M̃ . (d) the results obtained with the same method
as (c), but including up to the n=2 term (third-order in g). (e) estimated primary using
the relinearization strategy, including up to the n=2 term. All the methods produce similar
quality results for this small offset gap, although we clearly see the benefit of using the
n=2 term in the nonlinear forward model when comparing (c) and (d). The relinearization
strategy produced slightly better results over the Gauss-Newton methods, despite also being
computationally faster.

Our methods are successful at improving on the results obtained by using unmodified
EPSI on pre-interpolation data. In shallow water data most pre-interpolation methods
are known to be inaccurate, often under-estimating near-offset amplitudes and incorrectly
assessing wavefront curvature at the apex. Comparing panel 8b with panels 8c and 8d
shows that our methods exhibit a much improved ability to remove large water-bottom
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Figure 7: Direct primary estimation results from a 5 km fixed-spread synthetic data with a
nearest recorded offset of 225 m, for which a shot-gather is shown in (a). The panels in this
figure show the same strategies as the ones shown in Figure 6. (b) the estimated primary
using explicit data reconstruction (solving problem 6). (c) estimated primary using the
Gauss-Newton method described in this paper, using up to the n=1 term (second-order in g)
in M̃ . (d) the results obtained with the same method as (c), but including up to the n=2
term (third-order in g). (e) estimated primary using the relinearization strategy, including
up to the n=2 term. The explicit data reconstruction result in (b) fails to reject some of the
later surface multiples, while the methods introduced in the paper manages to do a better
job. As in Figure 6, we readily see the benefit of including up to the n=2 term, and also
that the relinearization strategy manages to produce the best cleanest result despite being
faster to compute than Gauss-Newton.
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multiples that is evident at 0.25 s, 0.55s, and 0.8 s of the stack. This is especially evident by
looking at the multiples removed from the pre-interpolation result (panel 8e) and comparing
it to the multiples removed using the relinearization result (panel 8f). By discarding the
pre-interpolated near-offset and using the augmented modeling operator M̃ to account for
its effects, we are able to get a much better defined multiple model with more accurate
amplitude. Pre-interpolation also led to some ringing kinematic artifacts in the multiple
model near the large diffraction events at 3 km and 1.0 s, which is not present in our methods.

Panel 8g shows a difference plot between inverting the second order (keeping up to n=2
terms) and the third order forward operator using relinearization. We see that the impact
of using the additional term is already very small, and mainly consists of the imprint of
second-order surface multiples. The comparison between relinearization and Gauss-Newton
is more interesting (panel 8h). It is not very clear from the difference plot which method
produced a better multiple model, although when carefully examining the primary stacks we
see that the amplitude of the first water-bottom multiple (at 0.25 s) is slightly over-estimated
for Gauss-Newton. This is possibly due to the over-fitting issues discussed earlier in the
synthetic example section. Nevertheless, the relinearization method once again provided a
very good result at a fraction of the compute time required for Gauss-Newton.

DISCUSSION

The synthetic results shown in the previous section demonstrated that our proposed scattering-
based correction to the multiple modeling with incomplete data can outperform the existing
explicit data reconstruction approach used in literature, especially when larges gaps are
encountered in the near-offset. As far as we are aware, our proposed method is also the first
practical formulation where a scattering series is rigorously used in a variational problem
for primary estimation, with all its numerical approximations explicitly stated and explored.
The real data example also demonstrates a significant improvement over using parabolic
Radon interpolation for the near-offset. These improvements are tangible regardless of the
algorithmic approach used to invert the augmented and non-linear modeling operator.

Perhaps more interestingly, we find that the Gauss-Newton method did not converge
appreciably faster than the conceptually simpler and computationally cheaper relinearization
method, despite its more solid theoretical convergence guarantees. This might be because
the number of total gradient updates typically involved in REPSI is already fairly small
(typically around 50), since the projected gradient method that we employ to solve the Lasso
problems forms an implicit Hessian of the problem by using spectral step lengths (Birgin
et al., 2000). The Gauss-Newton Hession might not have ben able to improve much more on
this scaling information. On the other hand, we find to our surprise that the relinearization
strategy often produced better results. One possible explanation is that in some of the later
iterations, the Gauss-Newton method is more prone to over-fitting g, particularly inside
the trace mask where it is less sensitive to data misfit, to account for some of the inherent
modeling error due to term truncation.

Although we have only shown near-offset acquisition gap effects in this paper, the
derivations in this paper is valid for missing data located anywhere on the acquisition
geometry. We impose no special structure on our diagonal masking operator K, so in theory
the missing traces can be anywhere. Near-offset traces are well-understood to be responsible
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Figure 8: Moveout-corrected stacks (near-offsets excluded) of the North Sea field data with
100 m near-offset gap after conservative multiple removal, with the multiple model generated
from the Green’s function obtained using the methods introduced in this paper. (a) the field
data. (b) the results using parabolic Radon near-offset interpolation and the unmodified
REPSI algorithm. (c) the results obtained by discarding the near-offset traces and using the
relinearization method with up to the n=2 term in M̃ . (d) the same as (c) but using the
Gauss-Newton method. (e) the final multiple model from the Radon interpolated data result
shown in (b). (f) the final multiple model from the relinearization method result shown
in (c). (g) difference plot between solving the relinearization problem using up to the n=1
term versus up to the n=2 term. (h) difference plot between the solutions obtain from the
relinearization method and the Gauss-Newton method.
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for the majority of the constructively interfering part of the multiple contribution gather, so
we conveniently use it as a worst-case scenario where the presence of K can introduce the
largest errors.

In theory, our scattering-based method to account for missing data works only when we
can trace ray paths that reaches the inside of the masked location from the observed data
positions, using the estimated Green’s function. This would imply that missing traces near
the edge of the acquisition grid would be less effectively mitigated, which we do observe
in practice. However, we find that the resulting edge effects tend to be overshadowed in
magnitude by what would typically be produced in imaging algorithms.

Another important exception to the generality of our method is that the methods in
this paper cannot deal with regular undersampling, even if it strictly counts as missing data
in our framework. This is mainly because the mechanisms employed here also depends on
wavefield interferometry, which is fundamentally erroneous when strong, coherent spatial
aliasing is present in the data.

Finally, we note that one additional advantage of our approach over explicit data re-
construction is the possibility of exploiting any existing regularization schemes for g, such
as the curvelet-based estimation shown in Lin and Herrmann (2013), although a thorough
investigation is outside the scope of this paper. This has the potential to improve the accuracy
of the recovery inside the gap using constraints such as wavefront continuity and lateral
smoothness. While it is also possible to regularize explicitly reconstructed data, it is much
easier in our approach to take advantages of regularizations that are already in place.

Computation costs

In each of the scattering terms GRKc in expression 10, the wavefield convolution is done after
stencilling out the traces that lie inside unobserved locations. Therefore the computation cost
of applying each of the higher-order terms will depend on the ratio of unobserved to observed
locations, and can be much smaller than the convolution cost for the whole wavefield if we
are only interested in near-offsets. Since we only have to apply a single GRKc to the current
term to obtain the subsequent subsequent term, the marginal cost of using higher-order
terms is small, and the aggregate cost of computing expression 10 will only be a fractional
overhead to the uncorrected modeling operator.

The story is different when applying the adjoint of the relinearized operator (expression 16)
to form the gradient for g in the relinearization step. In this case each of the scattering
terms add a KcR

HGH to the previous-order term. Although we still involve the stencil
Kc before computing the next term, there is a special case when computing the n=1 term,
where we do not have a stencil between GH and the residual wavefield, and instead need
to compute one full wavefield convolution over the whole grid. The cost of the (linearized)
adjoint is thus two times the cost compared to the uncorrected modeling operator, plus the
same fractional overhead for higher order terms as in the forward.

However, note that the method in this paper avoids the cost of updating and store the
unknown data p′′ as described in step 6 of the original algorithm. The gradients for p′′ also
require a full wavefield convolution, so the overall cost of updating the unknown wavefield is
actually absorbed into the cost of updating g. In fact, if we only use the n=1 term, then
the overall computational cost of the relinearization strategy is identical to the original



23 Scattering-based EPSI

REPSI algorithm with explicit data reconstruction (assuming the same number of gradient
updates is applied on both p′′ and g), while being slightly more memory efficient due to not
having to store and compare p′′. As discussed in the algorithms section, the cost of using the
Gauss-Newton approach is significantly higher due to the partial derivatives in the Jacobian.
Depending on the number of terms used, we find that the Gauss-Newton approach adds a
two-to-three time computational overhead compared to the relinearization approach.

CONCLUSIONS

We have presented a modification of the REPSI problem that accounts for large gaps in
the acquisition grid (as a function of both source and receiver coordinates), such as the
near-offsets, without having to explicitly interpolate or invert for the missing near-offset data.
The main idea of this method is to modify the forward modeling operator to fully explain
the multiples in the observed data as long as the correct surface-free Green’s function is
obtained, even though the data operator itself is not completely sampled. This is achieved
by augmenting the forward model for the observed wavefield with a truncated scattering
series that approximately mimic the action of the free surface reflector within the acquisition
gap. Inverting this modified operator can thus recover the primary Green’s function without
involving the unobserved data in any way.

Part of our main contribution is demonstrating that just two terms in the scattering series
is enough to reach a useable accuracy for the REPSI inversion problem. We demonstrated
on both synthetic and real data that this level of approximation already leads to significant
improvements over existing methods. The scattering terms involve the same wavefield
convolution kernel as the original REPSI problem, so not much effort is required to implement
its action. Furthermore, because the effective aperture of the multiple contribution for these
scattering terms is limited to the inside of the acquisition gap, each additional term imposes
only a small computational overhead compared to the original problem.

Unlike the original REPSI problem, the augmented modeling operator is no longer linear
with respect to the primary Green’s function; each term in the scattering series involve
higher powers of the primary Green’s function. We presented two possible modifications
to the REPSI algorithm for dealing with this nonlinearity: a Gauss-Newton type approach
(which involves a costly computation of the action of the Jacobian), and a straightforward
relinearization approach that simply fixes the primary Green’s function used in higher-order
scattering terms at its previous iteration value. A simple scaling preconditioner allows the
relinearization approach to perform similarly to the Gauss-Newton approach while keeping the
same computational complexity as the original REPSI algorithm with explicit missing-data
inversion, making it a suitable candidate for large industry-scale multiple-removal problems.
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