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ABSTRACT

Waveform inversion is the method of choice for determining a
highly heterogeneous subsurface structure. However, conven-
tional waveform inversion requires that the wavefield for each
source is computed separately. This makes it very expensive for
realistic 3D seismic surveys. Source-encoding waveform in-
version, in which the sources are modeled simultaneously, is
considerably faster than conventional waveform inversion but
suffers from artifacts. These artifacts can partly be removed
by assigning random weights to the source wavefields. We
found that the misfit function, and therefore also its gradient,
for source-encoding waveform inversion is an unbiased random
estimation of the misfit function used in conventional waveform

inversion. We found a new method of source-encoding wave-
form inversion that takes into account the random nature of
the gradients used in the optimization. In this new method,
the gradient at each iteration is a weighted average of past gra-
dients such that the most recent gradients have the largest
weights with exponential decay. This way we damped the ran-
dom fluctuations of the gradient by incorporating information
from the previous iterations. We compared this new method
with existing source-encoding waveform inversion methods
as well as conventional waveform inversion and found that
the model misfit reduction is faster and smoother than those
of existing source-encoding waveform inversion methods,
and it approaches the model misfit reduction obtained in con-
ventional waveform inversion.

INTRODUCTION

Since the early work of Tarantola (1984, 1986), full-waveform
inversion (FWI) has received little attention. This changed relatively
recently, when the oil and service industries started to use this meth-
od on a large scale (Virieux and Operto, 2009; Kapoor et al., 2010;
Vigh et al., 2010). FWI’s ability to directly estimate the velocity
model with minimal preprocessing and to use most of the recorded
data is appealing. Two of the main drawbacks of FWI are the re-
quirement to have an accurate initial model and its computational
cost. If the initial velocity model is not accurate, FWI is likely to
converge to the nearest local minimum, which can be quite far from
the global minimum. We will not address this important subject but
instead assume that a reasonably accurate initial velocity model is
available and that computational cost is the main problem, espe-
cially in 3D. In conventional FWI (Tarantola, 1984, 1986; Mora,

1987; Crase et al., 1990; Pratt and Worthington, 1990; Sun and
McMechan, 1992; Bunks et al., 1995; Pratt et al., 1996, 1998,
2001; Djikpéssé and Tarantola, 1999; Shipp and Singh, 2002;
Causse, 2002; Operto et al., 2004; Mulder and Plessix, 2004; Sirgue
and Pratt, 2004; Sourbier et al., 2008; Symes, 2008; Virieux and
Operto, 2009), the seismic simulations are performed for each in-
dividual seismic source separately. Therefore, the cost of conven-
tional FWI is proportional to the number of sources. In this paper,
we consider a significant reduction of the calculation time using
source encoding (Krebs et al., 2009; Li and Herrmann, 2010;
Moghaddam and Herrmann, 2010; van Leeuwen et al., 2011; Haber
et al., 2012; Li et al., 2012). Source encoding uses a linear combi-
nations of all shots, with random weights assigned to each shot.
Krebs et al. (2009) initially perform source encoding as part of
FWI by applying a þ1 or −1 weight randomly to each shot. This
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method can be further extended because Moghaddam and Herr-
mann (2010), van Leeuwen et al. (2011), and Li et al. (2012) find
that applying any random zero mean weights to each shot per
frequency achieves the same result.
There are two open questions in the source-encoding approach:

(1) What is the optimum choice for the encoding sequence? and
(2) Which is the best optimization method for the solution of the
problem? The first question has received wide attention (Boonya-
siriwat and Schuster, 2010; Gao et al., 2010; Habashy et al., 2010;
Symes, 2010; Wang and Goo, 2010). The second question has re-
ceived much less attention, despite its importance (Aravkin et al.,
2012; van Leeuwen and Herrmann, 2012). In an approach similar to
Haber et al. (2012), van Leeuwen et al. (2011), and Aravkin et al.
(2012), we prove mathematically that the misfit function for
source encoded inversion is an unbiased random estimation of
the true misfit function when all the shots are incorporated. The
same arguments hold true for the gradient of the misfit function.
Because the gradient of the FWI cost function is randomized,
the step toward the solution is randomized as well. However, most
authors (Krebs et al., 2009; Boonyasiriwat and Schuster, 2010;
Symes, 2010) still use deterministic optimization solutions such
as steepest descents or quasi-Newton approaches for the rando-
mized FWI problem and do not consider the fact that the search
direction in each iteration of the solver is random.
Stochastic optimization (Goldberg, 1989; Spall, 1992) refers to a

class of iterative methods that takes the randomness of the search
directions into account. They correct for the fact that the steps are
random. This is done by either (1) averaging over all the past up-
dated models, (2) averaging over past gradients, or (3) averaging the
Hessian operator (Goldberg, 1989; Spall, 1992, 2003; Hoos and
Stutzle, 2004). In this paper, we borrow some ideas from the area
of stochastic optimization and propose our own method for the
solution of the source-encoding FWI problem. We show that sto-
chastic optimization methods perform better than the conventional
optimization methods (van Leeuwen et al., 2011). We call our sto-
chastic optimization method integrated stochastic gradient descent
(iSGD), and we show its superior performance over conventional
optimization.
We start with the formulation of conventional FWI, followed by

an explanation of source-encoding FWI. Then, an overview of sto-
chastic optimization and the algorithm for source-encoding FWI is
presented. The Marmousi model (Bourgeois et al., 1991) serves as a
test case for the various methods. We end with a summary of the
main conclusions and a discussion of future directions.

FULL-WAVEFORM INVERSION

FWI in the frequency domain can be defined as the minimization
of the cost function

JðσÞ ¼ 1

2
kd − DuðσÞk22; (1)

where d denotes the observed data and D is the detection operator
that samples the wavefield u at the receiver for a given shot in a
slowness model σðxÞ as a function of position x. The minimization
of the cost function is subject to a discretized solution of the scalar
wave equation assuming a constant density

ω2σ2uþ Δuþ f ¼ 0; (2)

where uðω; xÞ is the wavefield, fðω; xÞ is the source function in
the frequency domain, ω is the angular frequency, and Δ is the
Laplacian operator.
To minimize JðσÞ, we need to calculate its gradient with respect

to the slowness σ. The gradient with respect to the slowness σðxÞ at
some point is

∂JðσÞ∕∂σ ¼ −Refð∂u∕∂σÞHDT ½d − DuðσÞ�g; (3)

where Ref·g denotes the real part, ð:ÞH is the Hermitian or conjugate
transpose of a matrix, and ð:ÞT is the transpose. The computation of
the sensitivity matrix ∂u∕∂σ can be avoided by using the adjoint-
state method (Lions and Magenes, 1972; Lailly, 1983; Tarantola,
1984; Giles et al., 2003; Plessix, 2006; Virieux and Operto,
2009). Having calculated the gradient of the cost function in
equation 3, the cost function can be minimized using one of various
optimization methods such as the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (LBFGS) method (Byrd et al., 1995;
Mulder and Plessix, 2004; Nocedal and Wright, 2006; Plessix,
2009), a preconditioned conjugate gradient method (Ravaut et al.,
2004), Gauss-Newton (Virieux and Operto, 2009), and so on. The
result for conventional FWI in this paper is obtained with the
LBFGS method. Currently, the determination of the best optimiza-
tion strategy for FWI is an area of active research.
Following Virieux and Operto (2009), the step length η for a com-

puted update direction δσ can be found by an additional demigration
and solving

min
η

1

2
kd − Duðσ þ ηδσÞk22: (4)

Instead of computing the wavefield uðσ þ ηδσÞ, we use the Born
approximation

ω2σ2 ~uþ Δ ~uþ 2σδσω2u ¼ 0 (5)

to find ~u and approximate uðσ þ ηδσÞ ≃ uðσÞ þ η ~u. The solution of
equation 4 then becomes

η̂ ¼ aTb
bTb

; (6)

with a ¼ d − DuðσÞ and b ¼ D ~u.

SOURCE-ENCODING FWI

In source-encoding FWI (Moghaddam and Herrmann, 2010; van
Leeuwen et al., 2011), the inversion is performed on a linear com-
bination of all shots, called a supershot, rather than on each indi-
vidual shot separately and summing the result. Each individual shot
contributes to the supershot with a random weight that changes for
each iteration during the optimization. Note that the receiver posi-
tions should be the same for all shots. This condition is relaxed in
the recent work of van Leeuwen and Herrmann (2012) and Choi and
Alkhalifah (2011). For each single frequency, the supershot form of
FWI has the cost function

JsðσÞ ¼
1

2
kM½d − DuðσÞ�k22; (7)
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with d being the observed data for all shots and u being the wave-
field for these shots. The random weighting matrix associated with
the supershot experiment can be written as

M ¼ w ⊗ I; (8)

where I is the identity matrix of size Nr × Nr, with Nr being the
number of receivers. w1×N (N is the number of shots) is a random
Gaussian matrix with entries drawn from a normal distribution with
zero mean and standard deviation 1, i.e., Nð0; 1Þ, and ⊗ is the Kro-
necker product. Basically, a supershot is a linear combination of all
shots with a random weight associated with each shot. The cost
function in equation 7 becomes

JsðσÞ ¼
1

2Ns
½d − DuðσÞ�TMTM½d − DuðσÞ�

¼ 1

2Ns
½d − DuðσÞ�TI ⊗ wTw ⊗ I½d − DuðσÞ�: (9)

The expected value of EfwTwg ¼ NsI. The expected value of the
cost function in equation 7 satisfies

EfJsðσÞg ¼ 1

2
½d − DuðσÞ�T ½d − DuðσÞ�

¼ 1

2

XN

i¼1

kdi − DuiðσÞk22; (10)

with N being the number of shots; di the recorded data; and uiðσÞ
the wavefield, for the ith shot (see also Haber et al. [2012] and Ara-
vkin et al. [2012]). This is the cost function associated with all the
shots. The above shows that each randomized realization of the cost
function is an unbiased random estimate of the cost function asso-
ciated with conventional full waveform inversion in which the shots
are modeled sequentially. The gradient of the randomized cost func-
tion has the same property.

STOCHASTIC OPTIMIZATION

The minimization method for randomized inversion is called sto-
chastic optimization and is based on machine learning methods
(Goldberg, 1989; Spall, 1992, 2003; Hoos and Stutzle, 2004; Yu
et al., 2010). In the stochastic optimization framework, the search
direction in each iteration of the inverse problem is considered to be
a random but educated guess that should lead toward the true solu-
tion. However, special measures are needed to ensure that this ran-
domized optimization method will converge to the true solution
(van Leeuwen et al., 2011).
Source-encoding FWI uses the randomized supershot experi-

ment, in which the randomized weights are different for each itera-
tion. As discussed in the previous section, the expectation of each
realization of the gradient of the function at each iteration can be
shown to be equal to the gradient obtained when all the shots are
treated independently and not randomly. This makes stochastic op-
timization methods appealing because they are constructed using
the fact that the gradient toward the solution is a random perturba-
tion of the actual gradient. Table 1 describes the source-encoding
FWI method, assuming that Jðσ;wiÞ is the cost function associated
with the ith set of random weights wi.

In this section, we briefly explain two conventional optimiza-
tion methods, steepest descent and LBFGS, for the source-
encoding problem. Then we review a recent stochastic optimization
solver that is called online LBFGS (oLBFGS) (Schraudolph et al.,
2007; Yu et al., 2010) and is based on smoothing the Hessian.
Finally, we propose our own stochastic optimization method that
we call iSGD. Contrary to the recently proposed method by Aravkin
et al. (2012), we do not rely on controlling the random error by
growing the number of randomized supershots, but instead we
damp the random fluctuations of the gradient by incorporating in-
formation from previous iterations in the updates.

Stochastic gradient descent

Stochastic gradient descent (Schraudolph et al., 2007; Sunehag
et al., 2009) takes the following form:

σkþ1 ¼ σk − ηk∇Jðσk;wkÞ; (11)

where k is the iteration number, ηk is the step length, J is the misfit
function, σk is the model at iteration k, and wk is the current ran-
domized weight. The step length ηk can be obtained by a line search.

Stochastic LBFGS

Stochastic LBFGS is regular LBFGS with randomized gradients.
Each step of the LBFGS algorithm has the following form:

σkþ1 ¼ σk − ηkHk∇Jðσk;wkÞ; (12)

where ηk is the step length,Hk is the inverse Hessian matrix updated
in each iteration,

Hkþ1 ¼ VT
kHkVk þ ρksksTk ; (13)

with ρk ¼ 1
yTk sk

, Vk ¼ I − ρkyksTk , and sk ¼ σkþ1 − σk, yk ¼
∇Jðσkþ1;wkÞ − ∇Jðσk;wkÞ. Note that for construction of yk, we
use the same random weighting wk for the current gradient
Jðσkþ1Þ and the previous one at k. This is crucial for the conver-
gence of the LBFGS method with source encoding (Schraudolph
et al., 2007). An alternative approach suggested by Guitton and
Diaz (2012) is to keep the weights and the encoding sequence con-
stant during several iterations.
The LBFGS routine is carried out in two steps. First, the vectors

yk−m; : : : ; yk and sk−m; : : : ; sk at the latest mþ 1 iterations are cal-
culated, where m ¼ 10 is the buffer size for the LBFGS routine.
Second, the routine that updates the LBFGS direction (see Table 2)
is applied, with H0

k ¼ ðyTk skÞ∕ðyTk ykÞ.

Table 1. Algorithm for source-encoding FWI.

STATE Set: σ ¼ σ0, initial model;

WHILE k∇σJðσ;wiÞk ≥ ϵ

STATE f∇σJðσ;wiÞg ←Compute the gradient for a new
randomized supershot

STATE σ ←Update the model with the new gradient using
stochastic optimization

END WHILE
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Stochastic oLBFGS

The oLBFGS method (Schraudolph et al., 2007; Yu et al., 2010)
is different from regular LBFGS in two ways. It uses yk ¼
∇Jðmkþ1;wkÞ − ∇Jðmk;wkÞ þ λsk with an additional term λsk
for better convergence. Step r←H0

kq in Table 2 is replaced by

r ¼ q
minðk;mÞ

Xminðk;mÞ

i¼1

sTk−iyk−i
yTk−iyk−i

: (14)

Schraudolph et al. (2007) and Yu et al. (2010) claim that these
changes smooth the Hessian and average away sampling noise
by diagonal loading and therefore minimize the random behavior
of the search direction. In our simulations, we set λ ¼
0.1kJðm0;w0Þk22∕km0k22.

Integrated stochastic gradient descent

Because the gradients are randomized, we propose averaging of
the gradients over the past iterations. However, simple averaging is
not a good idea for two reasons. First, the current gradient probably
provides a more accurate description of the current update than the

gradients of past iterations. Second, the convergence of stochastic
gradient descent decreases when we average over previous model
iterations as proposed by van Leeuwen et al. (2011). Although this
latter averaging method guarantees convergence, it slows down the
convergence, which we would like to avoid.
To overcome this slowdown, we suggest a weighted averaging of

the past gradients as a good candidate for the true gradient. We
explored various schemes for weighted averages and found that
exponential weighting among previous gradients gave the best per-
formance. Therefore, we suggest an exponential weighting for the
averaging. In this approach, called iSGD, the iteration step takes
into account the past history of the gradients and has the form

σkþ1 ¼ σk − ηk∇JðσkÞ; (15)

with ∇JðσkÞ defined as

∇JðσkÞ ¼
P

k
i¼k−m eαði−kÞ∇Jðσi;wiÞP

k
i¼k−m eαði−kÞ

: (16)

Here, m is the number of earlier steps. Note that for α ¼ 0, ∇JðσkÞ
is an average of the gradients over pastm iterations. We set the value
of m ¼ 10 during our simulations. As before, the value of ηk is
obtained by a line search. We will determine the optimum value
of α heuristically in the next section.

EXAMPLES

Subset of the Marmousi model

We perform a test for constant-density acoustic FWI on a subset
of the Marmousi model shown in Figure 1. The subset is 5-km long
and 3-km deep with a 10-m grid spacing. The source wavelet for all
the shots is a Ricker wavelet with a 10-Hz central frequency.
The synthetic data are generated with 125 shots at lateral posi-

tions between 40 and 4960 m with a 40-m shot spacing at 50-m
depth and with 250 receivers at lateral positions between 20 and
4990 m and a 20-m receiver spacing at 20-m depth. The acquisition
is a fixed spread with all the receivers at the same location for each
shot. The total recording time is 3.6 s with a time sampling of
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Figure 1. Subset of the Marmousi model.
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Figure 2. Initial model.

Table 2. LBFGS algorithm, inner loop.

q←∇Jðmk;wkÞ
FOR i ¼ k − 1 to k −m

STATE αi←ρisTi q

STATE q←q − αiyi
END FOR

STATE r←H0
kq

FOR i ¼ k −m to k − 1

STATE β←ρiyTi r

STATE r←rþ siðαi − βÞ
END FOR

STATE stop with result r ¼ Hk∇Jðmk;wkÞ
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0.9 ms, which is a smooth version of the true velocity model. We
first invert for the velocity model using conventional waveform in-
version, with all sequential shots separately, in the frequency band
3–30 Hz with a 0.5-Hz increment. We then run the source-encoding
optimization methods on the same data. We stopped the computa-
tion after 1∕40th times the calculation time of the conventional ap-
proach, which has 125 separate shots, and considered the error in
the reconstructed model. The reduction time of 1∕40 is chosen heur-
istically. We stopped the computation after the misfit reduction of
the conventional (or “sequential”) waveform inversion was more
than 90. The misfit reduction of our new method iSGD at this itera-
tion was 85. It is not entirely true that each additional shot adds
another Helmholtz inversion to the computational cost of conven-
tional FWI because we can save the LU decomposition and apply it
to multiple sources at the same time. However, in the case of large
2D models or 3D models, it is not possible to do this. Our evaluation
of speed up in this paper is based on the assumption that the inverse
of the operator is applied implicitly to each shot separately. Figure 1

shows the subset of the model used for our tests. The initial model
for the inversion is displayed in Figure 2. To evaluate the quality of
the results, we calculate the relative least-squares error ðRLSEÞ ¼
ðkδm − δmk22∕kδmk22Þ with δm the reference result shown in
Figure 3, which is a region of the true model with a good source
and receiver coverage, and δm the result of each experiment in that
region. Figure 4 depicts the inversion result for all shots, treated
separately, after 30 iterations of the LBFGS method with
RLSE ¼ 0.1.
Figures 5 to 8 show the inversion results for the various stochastic

optimization methods described in the previous section. The re-
quired computational time for each of these results is up to 40 times
smaller than that for the conventional result of Figure 4. This reduc-
tion is obtained by decreasing the number of shots from 125 to
1 — i.e., one random supershot, and increasing the number of
source-encoding optimizer iterations from 30 to 95.
Figure 5 shows the inversion results for the stochastic gradient

descent algorithm with RLSE ¼ 0.54, Figure 6 shows those for
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Figure 6. Inverted model using stochastic LBFGS (RLSE ¼ 0.39).
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Figure 4. Inverted model after 30 iterations of LBFGS, all shots; 54
frequencies were used from 3 to 30 Hz with a 0.5-Hz increment.
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Figure 5. Inverted model based on the stochastic gradient descent
method (RLSE ¼ 0.54).
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stochastic LBFGS with RLSE ¼ 0.39, and Figure 7 shows the in-
version results for oLBFGS with RLSE ¼ 0.22. To find the opti-
mum value of the history parameter α for the iSGD method, we
run a test over a range of values for α. Table 3 lists the resulting
RLSE. The RLSE for the stochastic gradient descent algorithm
is 0.54. The results in Table 3 show that a reduction in the cal-
culation time of a factor of 40 is obtained when compared to
conventional FWI.

Figure 8 displays the inversion result obtained with the iSGD
algorithm for α ¼ 0.5 with RLSE ¼ 0.17. Figure 9 plots RLSE
versus the number of iterations for different optimization methods.
We observe from this figure that the iSGD method has the smallest
error RLSE among the various stochastic optimization methods.
Therefore, it is our preferred choice.
One might think that the result in Figure 7 is better than that of

Figure 8 because the velocity under the faults is more accurate.
However, this method has a higher RLSE. The reason for this is
that the amount of crosstalk left is larger with LBFGS than with
iSGD, as is evident from the figures.
To investigate whether the optimum value of α depends on

frequency, we perform another test. We divide the frequency band
0–30 Hz into five different subbands, and we invert the model for
each subband separately, using the initial model shown in Figure 2.
As we see from Figure 10, the RLSE for each subband is generally
smallest around α ¼ 0.5, suggesting that this value is a reasonable
choice for our proposed stochastic inversion method.
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Figure 9. RLSE versus number of iterations for different optimiza-
tion methods.
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Figure 8. Inverted model using the iSGD method (RLSE ¼ 0.15).

Table 3. Signal-to-noise ratios, RLSE � kδm − δmk22∕kδmk22
for reconstructions with the iSGD algorithm for different
exponential weighting α.

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

RLSE 0.52 0.41 0.25 0.21 0.19 0.15 0.18 0.22 0.29 0.36
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Figure 10. RLSE versus α for different frequency band inversion.
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Figure 7. Inverted model using the oLBFGS method
(RLSE ¼ 0.22).
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CONCLUSIONS

The computational cost for 3D FWI with thousands of shots
is expensive, even on today’s computers. Source-encoding FWI
reduces the number of forward-modeling runs (i.e., nf), whereas
accuracy can be preserved by increasing the number of iterations
(i.e., ni). Thus source-encoding FWI is nf∕ni times faster than
conventional FWI. As in practice with a large number of sources
(typically more than 100), nf is considerably larger than ni, which
makes source-encoding FWI a viable alternative to conven-
tional FWI.
Here, we showed that each realization of the misfit, as well as its

gradient, in a source-encoding scheme is an unbiased estimate of the
misfit when all sources are treated independently. This property is
essential for stochastic optimization methods.
We considered various stochastic optimization methods for the

solution of source-encoding FWI. The optimization methods per-
formed differently in terms of their convergence rate. We proposed
a new stochastic optimization algorithm, the iSGD method, which
exponentially weights and averages the gradients of the past itera-
tions. We showed that this performs better than known methods in
terms of convergence rate, smoothness of the misfit reduction, and
accuracy of the solution in an example.
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