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1 Abstract
Thanks to continued performance improvements in software and hardware, wave-equation based imaging
technologies, such full-waveform inversion and reverse-time migration, are becoming more common place.
However, wide-spread adaptation of these advanced imaging modalities has not yet materialized because
current implementations are not able to reap the full benefits from accelerators, in particular those offered by
memory-scarce graphics processing units. Through the use of randomized trace estimation, we overcome the
memory bottleneck of this type of hardware. At the cost of limited computational overhead and controllable
incoherent errors in the gradient, the memory footprint of adjoint-state methods is reduced drastically. Thanks
to this relatively simple to implement memory reduction via an approximate imaging condition, we are able
to benefit from graphics processing units without memory offloading. We demonstrate the performance of
the proposed algorithm on acoustic 2- and 3-D full-waveform inversion examples and on the formation of
image gathers in transverse tilted isotropic media.

2 Introduction
With the advance of high-performance computing, wave-equation based inversions such as full-waveform
inversion (FWI) and reverse-time migration (RTM) [Lions, 1971, Tarantola, 1984, Virieux and Operto,
2009] have become pivotal research topics with academic and industrial applications. While powerful, these
wave-based inversion methods come at high computational and memory costs, which explains their relatively
limited application to real-world problems. The fundamental limitation of wave-equation based inversion lies
in the excessive memory footprint of the time-domain adjoint-state method [Lions, 1971, Tarantola, 1984],
which requires access to the complete time history of the forward modeled wavefield when applying the
imaging condition. In its simplest form, this imaging condition entails, for each source experiment, on-the-fly
accumulation of a spatial cross correlation between the (stored) forward wavefield and time snapshots of
solutions of the adjoint wave equation as they become available. Because 3D forward modeled wavefields
require terabytes of storage, memory usage and input/output (I/O) bandwith demand continue to be major
bottlenecks. While dedicated high-memory hardware may address this issue, it precludes the use of modern
accelerators (e.g. graphical processing units (GPUs)), which generally do not have access to large amounts of
low-latency memory.

To tackle the high-memory requirements of the adjoint-state method, several solutions have been proposed.
Griewank and Walther [2000] and Symes [2007] presented optimal checkpointing, which avoids excessive
memory usage by balancing I/O and computational overhead optimally. This approach, which was initially
developed for generic adjoint-state methods on CPUs [Griewank and Walther, 2000], has been used successfully
in seismic imaging [Symes, 2007] and machine learning [Chen et al., 2016] and has recently been extended to
multi-stage timestepping [Zhang and Constantinescu, 2022]. By adding on-the-fly compression and decompres-
sion of the checkpointed forward wavefields, Kukreja et al. [2020] further reduced the computational overhead
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of optimal checkpointing. Instead of checkpointing the forward wavefield, McMechan [1983], Mittet [1994],
Raknes and Weibull [2016] rely on time-reversibility to reconstruct forward wavefields during backpropagation
from values stored on the boundary. Unfortunately, this type of wavefield reconstruction is only stable
for attenuation-free wave-equations, which limits its applicability. Finally, optimized implementations on
accelerators of these approaches quickly become involved, especially in situations where the wave physics
becomes more complex, e.g. when dealing with elastic or tilted transverse isotropic media. This added
complexity explains lack of native implementations of the time-domain adjoint-state method on accelerators
including GPUs.

While recomputing or decompressing forward wavefields as part of memory-footprint mitigation certainly
has its merits, we put forward algorithmically much simpler randomized approaches where memory use and
accuracy are traded against computational overhead. Unlike lossless approaches, which aim to compute
gradients exactly, we propose to approximate gradients with randomized estimates that balance computational
gains and loss of accuracy. Examples of trading computational cost and accuracy include working with
random subsets of shots [Friedlander and Schmidt, 2012], with simultaneous shots [Romero et al., 2000,
Krebs et al., 2009, Moghaddam et al., 2013, Haber et al., 2015, van Leeuwen and Herrmann, 2013], or with
randomized singular value decompositions [van Leeuwen et al., 2017, Yang et al., 2021] and trace estimation
[Halko et al., 2011]. The latter random trace estimation technique was used by Haber et al. [2015] to analyze
computational speedups of full-waveform inversion with computational simultaneous sources. As long as
errors are controlled [Friedlander and Schmidt, 2012, van Leeuwen and Herrmann [2014]], these approximate
methods all lead to inversion results that in stochastic expectation are equivalent to the original problem but
at a fraction of the computational costs.

Inspired by these contributions, and ideas from randomized trace estimation, we propose an approximate
adjoint-state method that leads to major memory improvements, is unbiased, relatively easy to implement,
and supported by rigorous theory [Avron and Toledo, 2011, Meyer et al., 2020]. Unlike methods based on
lossy compression [Kukreja et al., 2020] or on the on-the-fly Fourier transform [Witte et al., 2019a], artifacts
introduced by our proposed randomized trace estimation appear as incoherent Gaussian-like noise, which can
be handled easily by stacking, sparsity-promotion [Witte et al., 2019a], or constrained optimization [Peters
et al., 2018, Peters and Herrmann, 2019]. Below, we will support this claim empirically by means of carefully
selected seismic inversion examples.

Our paper is organized as follows. First, we introduce the method of randomized-trace estimation and
derive how computing gradients with the adjoint-state method can be recast in terms of trace estimation.
We show that random trace estimates allow for approximations with a low memory footprint and low
computational overhead. Next, we describe how to increase the accuracy of randomized-trace estimation
with data-informed probing vectors. After comparing the computational costs of our method with traditional
memory saving approaches, we show how our method leads to significant cost reductions when computing
image volumes and complex imaging conditions. Performance of our method on two realistic seismic inversion
problems will be demonstrated. We conclude by showcasing a 3D FWI example produced with a purely
GPU-native implementation.

3 Adjoint-state method with randomized probing
To arrive at our low-memory wave-equation based inversion formulation, we first describe the main theoretical
features of randomized-trace estimation. Next, we show how randomized-trace estimation can be used to
reduce the memory-footprint of time-domain gradient (isotropic an anisotropic) and subsurface-offset image
volume calculations. For comparison with existing state-of-the-art memory reduction approaches, we will also
derive estimates for memory use and computational overhead.

3.1 Randomized-trace estimation
With the increasing demand for large scale data-driven applications, randomized algorithms have steadily
gained popularity especially in situations where memory access comes at a premium and where access to
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compute cycles is relatively abundant. Unlike conventional techniques in linear algebra, which aim to carry
out accurate calculations at the price of high memory pressure, randomized algorithms [Halko et al., 2011,
Yang et al., 2021] limit their memory footprint at the cost of a controllable error. The technique we consider
relies on an unbiased estimator based on a randomized probing technique that yields estimates for the trace
(sum of the diagonal elements) of a matrix with errors that average to zero in stochastic expectation. Instead
of forming the matrix explicitly, randomize-trace estimation [Avron and Toledo, 2011, Meyer et al., 2020]
relies on matrix-free actions on random probing vectors. As long as these matrix-vector products are available
and cheap, the trace can be estimated even for matrices that are too large to fit into memory. Contrary to
earlier work where random-trace estimation was used to reduce the number of wave-equation solves [Haber
et al., 2015], we use randomized-trace estimation to reduce the memory cost of computing gradients of
wave-equation themselves.

At its heart, randomized-trace estimation [Avron and Toledo, 2011, Meyer et al., 2020] derives from an
unbiased approximation of the identity, I = E
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In these expressions, the zi’s are the random probing vectors collected as columns in the matrix Z. The
operatorE stands for stochastic expectation with respect to these random vectors. By ensuring E(z⊤z) = 1,
the above trace estimator is unbiased (exact in expectation) and converges to the true trace of the matrix A,
i.e. tr(A) =

∑
i Aii, with an error that decays to zero for increasing r. Compared to the original computation

of the trace, randomized-trace estimation does not need access to the entries of the matrix A. Only actions
of the matrix A on probing vectors are needed. To improve the computational performance of the estimator,
we follow Graff-Kray et al. [2017] and Meyer et al. [2020]] and use a partial qr factorization [Trefethen and
Bau III, 1997] to derive the probing vectors collected in the matrix

[
Q,∼

]
= qr(AZ). These orthogonal

probing vectors are computed from the n× n matrix A with random probing vectors collected in the tall
n × r (with r ≪ n) Rademacher matrix Z with ±1 entries (1 or −1 with probability 0.5 each). In the
ensuing sections, we will exploit this randomized-trace estimation technique to reduce the memory footprint
of gradient calculations for the adjoint-state method of wave-equation based inversion.

3.2 Approximate gradient calculations
While this may sound controversial but non-convex optimization problems such as FWI [Virieux and Operto,
2009, Tarantola, 1984] benefit from stochastic errors in their gradients whether these are due to working with
randomized minibatches, as in stochastic gradient descent, a technique widely employed by machine learning,
or with subsamplings in terms of randomized (super)shots as in FWI. In either case, computational costs are
reduced and the optimization is less prone to local minima thanks to an annealing effect [Neelakantan et al.,
2015]. As shown by van Leeuwen and Herrmann [2014], it can also be computationally advantageous to allow
for errors in the gradient calculation themselves, which is the approach taken here.

For this purpose, let us consider the standard adjoint-state FWI problem, which aims to minimize the
misfit between recorded field data and numerically modeled synthetic data [Lions, 1971, Tarantola, 1984,
Virieux and Operto, 2009, Louboutin et al., 2017, 2018b]. In its simplest form, the data misfit objective for a
single shot record is given by

minimize
m

1
2 ||F(m; q)− dobs||22. (2)

In this expression, the vector m represents the unknown physical model parameter (e.g. the squared slowness
in the isotropic acoustic case), q the assumed to be known source, and dobs the observed data. The symbol F
denotes the nonlinear forward modeling operator. This data misfit is typically minimized with gradient-based
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optimization methods such as gradient descent [Plessix, 2006] or Gauss-Newton [Li et al., 2016]. Without
loss of generality, let us first consider scalar isotropic acoustic wave physics where the gradient δm can be
written as the sum over nt timesteps—i.e., we have

δm =
nt∑

t=1
ü[t]⊙ v[t] (3)

where the vectors u[t] and v[t] denote the vectorized (along space) forward and reverse-time solutions of the
wave-equation at time index t. The symbols¨and ⊙ represent second-order time derivative and elementwise
(Hadamard) product, respectively. To arrive at a form where randomized-trace estimation can be invoked, we
rewrite the above zero-lag crosscorrelations over time for each space index x separately in terms of the trace
of the outer product. By combining the dot product property, a⊤b = tr(ab⊤), for vectors a and b, with
Equation 1, we approximate the exact gradient in Equation 3 by

δm[x] = tr
(
ü[t, x]v[t, x]⊤

)
≈ 1

r
tr

(
(Q⊤ü[x])(v[x]⊤Q)

)
. (4)

We added parentheses and made dependence on the spatial coordinates (collected in the spatial index vector
x) explicit to show that the matrix-vector products between the forward and adjoint wavefields and the
adjoint of the probing matrix Q can be computed separately, independently along all spatial locations. This
property is essential because it allows us to on-the-fly accumulate, Q⊤ü[x], the second time derivative of the
forward wavefield in the variable ü. Compared to the original wavefield, the dimension of this wavefield is
reduced to N × r ≪ N × nt where N is the number of spatial gridpoints in x and, nt, the number of time
samples employed by the forward solver. As before, r represents the number of probing vectors (columns) of
Q. Similarly, the dimensionality-reduced adjoint wavefield, v, can be computed after the forward sweep is
completed via v[x]⊤Q. To avoid build up of coherent errors in the gradient due to the randomized probing,
we repeat this process for each separate gradient with a different probing matrix, Q. We compute this matrix
with a different random realization of the Rademacher matrix used in the qr factorization, which we use to
improve the accuracy of the random-trace estimator.

3.3 Practical choice for the probing matrix Q
While the proposed random-trace estimator works for strictly random probing vectors, e.g. vectors with
random ±1entries, as in Rademacher matrices, or matrices with i.i.d. Gaussian entries [Avron and Toledo,
2011], its accuracy can according to Meyer et al. [2020] be improved. This leads to a reduction in the number
of probing vectors, r, and associated memory footprint needed to attain certain accuracy. However, this
improvement in performance calls for an extra orthogonalization step that involves a qr factorization of
AZ, which reduces errors due to “cross-talk”—i.e. ZZ⊤ ̸= I. Unfortunately, we do not have easy access to
matrix-vector multiplications with A during gradient calculations. Moreover, factorization costs become
prohibitively expensive when carried out for each of the N gridpoints separately.

3.3.1 Shot data informed QR factorization

To overcome computational costs and lack of access to matrix-vector products, we propose to work with a
single factorization for each shot record. We derive this factorization from observed shot data. To this end,
single shot data collected in the vector, dobs, are reshaped into a matrix, Dobs with the time index arranged
along the rows and the receiver coordinate(s) along the columns. Because the observed shot data contain the
wavefield along the receiver coordinate(s), we form the outer product, A = DobsD⊤

obs and argue that the
resulting nt × nt matrix can serve as a proxy for the temporal characteristics of the wavefield everywhere.
For each shot record, the r probing vectors are computed as follows:[

Q,∼
]

= qr(AZ) with A = DobsD⊤
obs. (5)
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Remember, as before we never form the matrix A. We only compute its action on the Rademacher matrix Z.
To demonstrate the benefits of the additional orthogonalization step, we include Figure 1 where comparisons

are made between crosstalk produced by probing with Rademacher vectors (Figure 1 first row); with
orthogonalized vectors derived from Rademacher probing according to Equation 5 (Figure 1 second row); and
probing with vectors selected randomly from the Fourier matrix (Figure 1 third row). The orthogonalized
vectors are computed using the same shot record from the 2D overthrust model with 751 samples and a 4ms
sampling rate (3sec recording). As expected, the crosstalk—i.e. energy leakage away from the main diagonal,
for these different cases varies but decrease with increasing r for all. However, the frequency content and
coherence of the errors do differ. Because the outer product converges the fastest the identity matrix within
the seismic frequency band, we argue that the orthogonalized probing vectors perform the best.

Figure 1: Crosstalk for different implementations of randomized probing as a function of increasing probing
size r = 4, 16, 32, 64, 256. Compared to probing with Fourier vectors (third column), crosstalk for probing
with Rademacher (first column) and orthogonalized Rademacher (second column) is less coherent with energy
converging to the main diagonal faster. As expected, this effect is the strongest for the orthogonalized probing
vectors within the seismic frequency band.

3.3.2 Algorithmic details and validation

Based on the above practical and computational considerations, we propose the implementation as outlined in
Algorithm 1 below. This algorithm runs for each source independently (possibly in parallel) and redraws a new
probing matrix Q for each gradient computation. By propagating the forward wavefield with a single timestep
(line 1), forward(u[t], u[t− 1], m, q[t]), followed by probing with r vectors (line 2), the second-derivative of the
dimensionality reduced forward wavefield is accumulated for each time index (the “for loop” starting at line
2). Notice that we suppressed the loop over the spatial index x, which is implied. After the forward loop is
completed, a similar process is followed when accumulating the dimensionality-reduced adjoint wavefield after
back propagation with a single timestep via v[t− 1] = backward(v[t], v[t + 1], m, δd[t]). After the second
loop is completed, Algorithm 1 produces an estimate for the trace via 1

r tr(u v⊤) = 1
r

∑
r u[r, :]⊙ v[r, :] in

which use is made of Matlab-style notation.
Before reviewing predicted memory savings, let us first make a comparison between single-source gradients

computed with the three different probing vectors juxtaposed in Figure 1. To assess the accuracy of results
with randomized-trace estimation, we set side by side the approximate gradients as a function of the probing
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Algorithm 1 Approximate gradient calculation with random trace estimation
Draw probing matrix Q with Equation 5, set initial condition u[0], u[1] and final conditions v[nt], v[nt − 1].
0. for t = 1 : nt − 1 # forward propagation
1. u[t + 1] = forward(u[t], u[t− 1], m, q[t])
2. for i = 1 : r

u[i] += Q[i, t]ü[t]
end for

3. end for
4. for t = nt − 1 : −1 : 1 # back propagation
5. v[t− 1] = backward(v[t], v[t + 1], m, δd[t])
6. for i = 1 : r

v[i] += v[t]Q[i, t]
end for

7. end for
8. output: 1

r tr(u v⊤) = 1
r

∑r
i=1 u[i]⊙ v[i]

size, r = 4, 16, 32, 64, 256, and compare these gradients with the true gradient. We make these comparisons
for 2D gradients computed from the overthrust model [Lecomte et al., 1994] with an experimental setting
detailed in the Synthetic case studies section below.

The results of this exercise are summarized in Figure 2, which includes difference plots between the true
and approximate gradients. The following observations can be made. First, in accordance with the results in
Figure 1, the accuracy of the approximate gradient calculations improves for increasing r. Second, probing
with Rademacher vectors (Figure 2a) yields gradients that contain noisy relatively high-spatial frequency
artifacts that extend across the model and that decay relatively slowly as r increases. Results obtained with
the orthogonalization (Figure 2b) and Fourier (Figure 2c) build up the gradient more slowly as a function of
increasing r, capturing the small amplitudes far away from the source only for relatively large r. Because
both the orthogonalized and Fourier approaches act within the data’s temporal frequency spectrum, they
do not contain high-frequency artifacts. Third, as expected results from the orthogonalized probing vectors
converge the fastest with the smallest errors. Before conducting more rigorous tests on realistic 2- and 3-D
examples, we will first discuss projected memory savings and various extensions involving more elaborate
imaging conditions and derived products such as subsurface-offset image volumes.

3.4 Estimates for the memory footprint
As we mentioned before, excessive memory usage of adjoint-state methods constitute a major impediment
to the implementation of wave-based inversion technology on modern accelerators where memory access
comes at a premium. For this reason, we proposed approximate calculations with randomized probing
where the dimensionality of the forward and adjoint wavefield is reduced by the method described in
Algorithm 1. Theoretical estimates of the memory imprint can be computed easily from Equation 4. We
compare these estimates with the memory footprint and computational overhead associated with other
low-memory approaches, including optimal checkpointing [Griewank and Walther, 2000, Symes, 2007, Kukreja
et al., 2020]; reconstruction from wavefields on the boundary [McMechan, 1983, Mittet, 1994, Raknes and
Weibull, 2016], and the closely related method based on probing with the discrete Fourier transform (DFT)
[Nihei and Li, 2007, Sirgue et al., 2010, Witte et al., 2019a]. Without loss of generality, we will make these
comparisons for the scalar acoustic wave equation in 3D where N = Nx ×Ny ×Nz is the total number grid
points and Nx, Ny, and Nz the number of gridpoints in the x−, y−, and z−directions. In that setting, the
total memory requirement of conventional FWI is N × nt (single-precision) floating point values, which is
prohibitive in practice.

Table 1 lists estimates for memory use and computational overhead to achieve the anticipated memory
savings. Values for optimal checkpointing and reconstruction from the boundary are taken from the literature.
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(a) (b)

(c)

Figure 2: Comparison between approximate gradients of the 2D overthrust model for a single source and
increasing numbers of probing vectors. (a) contains approximate gradients and errors obtained by probing
with Rademacher vectors. (b) the same but with orthogonalized Rademacher probing vectors. (c) the same
but with probing vectors randomly selected from the Fourier matrix.

From these figures, we observe that optimal checkpointing could in principle achieve the largest memory
savings at the expense of computational overhead and a relatively complex implementation. While memory
savings achieved with the boundary reconstruction method do limit memory usage, this approach scales
unfavorably with the number of timesteps, nt, compared to the methods based on probing with Fourier
or the proposed orthogonalized data-adaptive vectors. Because probing with the DFT involves complex
numbers, its memory use and computational overhead doubles. Our method, on the other hand, probes with
Q ∈ Rnt×r and thus requires storage of only N × r floating point values during each of the forward and
backward passes, which results in a total storage of 2×N × r values and a memory reduction by a factor of,
nt/2r. This memory reduction corresponds to approximating the gradient with r

2 Fourier modes and puts
the DFT approach in a relative disadvantage. Because the errors decay more slowly with r compared to our
randomized-trace method, this drawback is made worse for the Fourier-based method.

FWI randomized-trace DFT [Witte et al., 2019a] Optimal checkpointing [Symes, 2007] Boundary reconstruction [Mittet, 1994]

Memory N × nt r ×N 2r ×N O(log(nt))×N nt ×N
2
3

Compute 0 O(r)× nt ×N O(2r)× nt ×N O(log(nt))× nt ×N nt ×N

Table 1: Memory estimates and computational overhead of different seismic inversion methods for nt time
steps and N grid points. Analytical estimates are extracted from the literature for the methods listed in the
table.
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Aside from its relative simplicity and favorable (nt-independent) memory scaling, probing methods can,
as we will show below, relatively easily be extended to different imaging conditions and vector-valued wave
equations. In addition, the proposed method also works for wave propagation in attenuating media, which
renders wavefield reconstruction from the boundaries unstable.

4 Extensions
In this section, we will show how the proposed randomized probing technique also leads to computationally
efficient implementations of more involved imaging conditions including formating of subsurface offset image
gathers. Both instances benefit from reductions in computational costs by a factor of nt/r ≪ 1.

4.1 Imaging conditions
So far, we limited ourselves to the scalar isotropic acoustic wave equation with the standard zero-offset imaging
condition. While adequate in some applications, seismic imaging and inversion methodologies often call for
more sophisticated imaging conditions designed to bring out certain features in migrated images or to make
FWI more sensitive to reflections. Because imposing various imaging conditions requires manipulations with
the forward and adjoint wavefields, we stand to benefit from replacing these wavefields by their dimensionality
reduced counterparts. After incurring the computational overhead of probing, by mapping {ü, v} → {u, v},
these wavefield manipulations come almost at no additional costs. Below, we showcase a number of illustrative
examples that underline this important feature.

4.1.1 Spatial differential operations

To improve RTM or FWI, different contributions of the gradient of the adjoint-state method can be
(de)emphasized by changing the imaging condition. For instance, tomographic artifacts can be removed from
reverse-time migrated images by imposing the inverse scattering imaging condition [Stolk et al., 2009, Op’t
Root et al., 2012, Whitmore and Crawley, 2012, Witte et al., 2017]. In a related but different approach, in
reflection FWI [Liu et al., 2011, Irabor and Warner [2016], Chang et al. [2020]], tomographic contributions
to the gradient can be emphasized via wavefield separation. As with most imaging conditions, the inverse
scattering condition does not entail manipulations along time and involves (differential) operators acting along
the spatial coordinates only. Because imaging conditions are often linear, these operations commute with
probing, which allows for direct application of imaging conditions on the dimensionality reduced wavefield by
using the following identity:

Q⊤ (Dxu[·, x]) = Dx

(
Q⊤u[·, x]

)
(6)

where the symbol Dx represents a linear differential operator acting along the spatial coordinates. By virtue
of this identity, numerically expensive operations with Dx can be factored out, reducing the number of
applications of this operator from nt to r. Because r ≪ nt this can lead to significant computational savings,
especially in the common situation where imposing imaging conditions may become almost as computationally
expensive as solving the wave-equation itself.

4.1.2 Subsurface-offset image gathers

Another benefit of approximating gradients via the trace (cf. Equation 4) is that it makes it possible to
compute subsurface-offset image volumes directly on GPUs by working with the dimensionality reduced
wavefields—i.e., we have

δM[x, h] ≈ 1
r

tr
(¯̈u[·, x + h]v̄[·, x− h]⊤

)
. (7)

In this expression, the symbol h corresponds to the (horizontal) subsurface offset and δM[h] to the subsurface
image volume. As with computing the zero-offset imaging condition (Equation 4), the cost of computing
these extended image volumes is reduced by a factor of r/nt. Finally, note that δm[x] = δM[x, h]|h=0.
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4.1.3 Coupled vector-valued wave equation

Adequate representation of the wave physics balanced by computational considerations are prerequisites
to the success of seismic inversion on 3D field data. A good example where such a balance is struck is
wave modeling with the acoustic tilted transverse isotropic (TTI) wave-equation, where elastic anisotropic
behavior of the subsurface is modeled by an acoustic approximation [Thomsen, 1986] that is computationally
feasible. However, compared to the isotropic scalar acoustic wave equation, the TTI wave-equation requires
the solution of two coupled PDEs. Because the gradient with respect to the squared slowness and anisotropic
parameters now involves four wavefields, this increases memory pressure. According to [Bube et al., 2016,
Zhang et al., 2011, Louboutin et al., 2018a], the gradient for the squared slowness in TTI media reads

δm =
∑

t

p̈[t]⊙←−p [t] + r̈[t]⊙←−r [t] = tr(p̈←−p ⊤) + tr(r̈←−r ⊤) (8)

where p and r are solutions of two coupled PDEs and ←−p and ←−r are solutions of the adjoint of these coupled
PDEs. When implemented naively, the memory footprint would effectively double when the above gradients
are approximated with separate randomized-trace estimations for p̈[t]⊙←−p [t] and r̈[t]⊙←−r [t]. However, these
extra costs can be avoided if we make use of the following identity:

tr(p̈←−p ⊤) + tr(r̈←−r ⊤) = tr(
[
p̈
r̈

] [←−p
←−r

]⊤

), (9)

which holds for the trace of vector-valued wavefields. When cast in this form, the above gradient can be
approximated by

δm = tr(
[
p̈
r̈

] [←−p
←−r

]⊤

) ≈ 1
r

tr(
[
Q
Q

]⊤ [
p̈
r̈

] [←−p
←−r

]⊤ [
Q
Q

]
)

≈ 1
r

tr
(
(Q⊤(p̈ + r̈))((←−p +←−r )⊤Q)

) (10)

if the same probing vectors are used for each component of the vector-valued wavefield. Using this expression
reduces the memory cost to that of a single probed wavefield and consequently its memory use remains the
same as that of gradients of isotropic acoustic media, which we consider as a major advantage or our method.
In practice, we observe that the accuracy of this approximation does not decrease when the same probing
matrix Q is used. With significant computational and memory savings established, we will now validate its
performance on realistic numerical experiments of varying complexity and problem size.

5 Numerical case studies
While the presented methodology has the potential to unlock usage of memory-scarce accelerators, its
performance needs to be validated on realistic wave-equation based inversion examples. For this purpose,
we consider three synthetic examples that vary in complexity of the wave physics. First, we revisit the 2D
overthrust model and compare conventional FWI results with inversions obtained with randomized-trace
estimation for increasing numbers of probing vectors. In the second example, we demonstrate that our
probing method is capable of producing high-quality subsurface-offset image volumes at significantly reduced
computational cost. We conclude by showcasing a 3D FWI example. We limit our considerations to synthetic
data because it allows us to make informed comparisons between exact and approximate gradient calculations.

6 2D Full-waveform inversion
As part of validating our random-trace estimation technique, we consider a synthetic 2D acoustic FWI
example with a geometry representing a sparse OBN acquisition while applying source-receiver reciprocity
(coarse sources, dense receivers). The data is simulated for a 20km by 5km section taken from the overthrust
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model [Lecomte et al., 1994] and plotted in Figure 3 top left. For the FWI experiment, we work with 97 shot
records sampled 200m apart, mimicking sparse OBNs sampled at one source position per wavelength. Each
shot record contains between 127 and 241 receivers 50m apart, yielding a maximum offset of 6km. The data
is modeled with a 8Hz Ricker wavelet and 3sec recording.

For reference, we first conduct conventional FWI given the smooth starting model depicted in Figure 3
top middle. We compare this conventional FWI result plotted in Figure 3 top tight with results yielded by
approximate gradient calculations where the memory footprint is kept the same experiment by experiment—
i.e., r = 16, 32, r = 64 for randomized-trace estimation with orthogonalized probing vectors, and 8, 16, 32 for
probing with randomly selected Fourier modes. Results of these experiments are included in the second and
third row of Figure 3. In all cases, FWI results are computed with 20 iterations of the Spectral Projected
Gradient method (SPG, Schmidt et al. [2009]), which imposes box and total-variation (TV) constraints on
the inverted velocity model. Computational costs are limited by working with subsets of 8 randomly selected
(without replacement) shots [Aravkin et al., 2012]. From the approximations plotted in Figure 3, we can
make the following observations. First, compared to results obtained with 16 Fourier modes our result for
the same number of probing vectors contains fewer coherent steeply dipping artifacts especially at deeper
areas of the inverted velocity model. Second, when memory use is kept constant, e.g. by choosing r = 32
orthogonalized probing vector and 16 complex-valued DFT modes, our method produces results that are
more accurate and less noisy. This observation is consistent with results presented in Figure 1.

7 2D extended TTI imaging
To illustrate our ability to handle more realistic physics, we show that it is possible to create high-fidelity
subsurface-offset image gathers with the proposed randomized-trace estimation technique. For this purpose,
shot data provided with 2007 BP TTI model is migrated using our randomized approximation. The resulting
image—i.e., the zero offset/angle section, is shown in Figure 4 and shows accurate location and continuity of
reflectors compared to the existing literature [Sun et al., 2016, Louboutin et al., 2018a]. We also computed
subsurface image gathers using the approximation given in Equation 10. We show the computed subsurface-
offset image gather in Figures 4a and corresponding subsurface-angle gathers in Figure 4b. Even though
only a limited number of probing vectors (r = 64≪ nt) were used, the resulting image gathers are properly
focused and nearly noise-free thanks to the relatively high fold. Each image volume, of size nx × ny × noffsets,
consists of 81 offsets between −500 and 500m sampled at 12.5m. Remark that formation of these image
volumes requires more memory, namely 81 model-size arrays, than carrying out the probing itself, which
involves only 64 model-size probed wavefields for u, v). This highlights how memory frugal our proposed
randomized-trace estimation method really is.

8 3D full-waveform inversion
Finally, to demonstrate scalability we run 3D FWI on the overthrust model. The computational resources
needed for this inversion exceeds available memory on Azure’s Standard_NC6 instances whose NVIDIA K80
GPUs are limited to 8Gb each, rendering FWI implementations without checkpointing/offloading/streaming
impractical. Because our method only requires a fraction of memory, we are actually able to run 3D FWI
with randomized-trace estimation (for r = 64≪ nt) on 50 instances.

Specifically, we consider a narrow azimuth towed streamer acquisition on a 20km X 2km X 5km (inline
X crossline X depth) subsection of the Overthrust model. The acquisition consists of 1902 sources (50m
inline spacing and 200m crossline spacing) with six 8km long cables 100m apart with a receiver spacing of
12.5m per. We simulate the shot data with a 12.5Hz Ricker wavelet. To avoid unrealistic low frequencies,
frequencies below 3Hz are removed with a high-pass filter. Given these simulations, 20 iterations of FWI
are performed using r = 32 orthogonalized probing vectors and 400 sources per iteration. As before, FWI is
carried out with projected quasi-Newton (PQN, Schmidt et al. [2009]) imposing both box and TV constraints
[Peters et al., 2018, Peters and Herrmann, 2019]. The box constraints guarantee physical velocities while the

10



Figure 3: Comparison of FWI on the 2D overthrust model between our proposed probed method with 16, 32,
and 64 orthogonalized probing vectors and results obtained with on-the-fly DFTs with an equivalent memory
imprint, which corresponds to 8, 16, and 32 Fourier modes.

(a) (b)

Figure 4: Subsurface offset (a) and angle b) gathers with −500m to 500m horizontal subsurface offset and
−.5rad to .5rad subsurface angles.
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TV constraint removes noisy artifacts due to the randomized-trace estimation. The inverted velocity model is
included in Figure 5.

From this experiment, we see that we recover an accurate velocity model that contains most of the main
features of the true model and recovered most of the fine layers at depth. This result shows that the proposed
method scales to realistic 3D model without the need for additional probing vectors to compensate for the
additional dimension (compared to the 2D FWI result).

8.1 Code availability
Our implementation and examples are available as open-source software at TimeProbeSeismic.jl, which
extends our Julia inversion framework JUDI.jl[Witte et al., 2019b, Louboutin et al., 2022]. Our code is also
designed to generalize to 3D and more complicated physics as supported by Devito[Louboutin et al., 2019,
Luporini et al., 2020, 2022].

9 Discussion and conclusions
By approximating the gradient of wave-based inversion with randomized trace estimation, we were able to
drastically reduce the memory footprint of time-domain full-waveform inversion and reverse-time migration
with the adjoint-state method. Through careful design of data-adaptive probing vectors, memory reductions
between 20× and 100× were achieved without tangible loss in accuracy. These attained memory reductions,
in turn, facilitate accelerator-native software implementations for the time-domain adjoint-state method,
which benefit maximally from graphics processing units with limited computational overhead. To achieve
these results, we controlled the approximation errors due to randomized-trace estimation by increasing the
number of probing vectors, the fold, and by imposing additional constraints, e.g. the total-variation norm,
during inversion. Because of its relatively simplicity, the proposed method can be extended readily to more
complicated wave physics, including vector-valued wavefields in transversely isotropic media. By virtue of
the memory footprint reduction, the proposed method is also capable of efficient calculation of extended
(subsurface-offset) image volumes with computational gains that are proportional to the reductions in memory
usage. In future work, we plan to expand this work to include extended Born least-squares migration and
extended full-waveform inversion.
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