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ABSTRACT

Data-driven methods—such as the estimation of primaries by sparse inversion—
suffer from the ’curse of dimensionality’ that leads to disproportional growth
in computational and storage demands when moving to realistic 3D field data.
To remove this fundamental impediment, we propose a dimensionality-reduction
technique where the ’data matrix’ is approximated adaptively by a randomized
low-rank factorization. Compared to conventional methods, which need for each
iteration passage through all data possibly requiring on-the-fly interpolation, our
randomized approach has the advantage that the total number of passes is re-
duced to only one to three. In addition, the low-rank matrix factorization leads
to considerable reductions in storage and computational costs of the matrix mul-
tiplies required by the sparse inversion. Application of the proposed method to
synthetic and real data shows that significant performance improvements in speed
and memory use are achievable at a low computational up-fron cost required by
the low-rank factorization.

INTRODUCTION

Demand for oil and gas is increasing rapidly while new discoveries are more difficult
to make because most of the relatively easy to find reservoirs are being depleted.
This development combined with high oil prices and the decline of conventional oil
reserves are the driving forces behind continued efforts of the oil and gas industry
towards unconventional and more difficult to find and produce reservoirs. In order
to achieve this ambition, state-of-the-art technologies, such as high-density, wide-
azimuth seismic recording and imaging, are now being utilized to generate higher
resolution images of the earth’s subsurface.

Unfortunately, these new technologies generate enormous volumes of 3D data that
require massive amounts of computational resources to store, manage, and processes.
For example, it is nowadays not unusual to conduct seismic surveys that gather one
million traces per square mile, which is a significant increase compared the 10,000
traces that were collected traditionally for this area. This development not only
makes the acquisition costly but it also makes processing these massive data volumes
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extremely challenging. These challenges become particularly apparent in the case
of data-driven seismic methods, e.g. Surface-Related Multiple Elimination (SRME,
Berkhout and Verschuur, 1997) and Estimation of Primaries by Sparse Inversion
(EPSI, van Groenestijn and Verschuur, 2009; Lin and Herrmann, 2011, 2012). These
methods are known to be compute intensive because they rely on multi-dimensional
convolutions that translate into massive dense matrix-vector multiplies, and therefore,
suffer from the “curse of dimensionality”, where the size of the data volume increases
exponentially with the and survey area and desired resolution. For example, in 3D a
data set with of 1000 sources and receivers results in multiplications for each frequency
of dense matrices of size 10006 × 10006. Needless to say these matrices can not be
stored, are expensive to apply, and often require on-the-fly interpolation because
acquired data is nearly always incomplete.

Working with massive data volumes also creates communication bottlenecks that
form a major impediment for iterative methods that require multiple passes through
all data. For this reason, current-day seismic data processing centers spend approxi-
mately the same amount of time on running SRME as on migration and this explains
the slow adaption of EPSI by industry this technique requires more passes through
the data.

We present a dimensionality-reduction technique that is aimed at limiting the
number of passes over the data (including on-the-fly-interpolation) to one to three
while reducing the memory imprint, accelerating the matrix multiplications, and
leveraging parallel capabilities of modern computer architectures. A low-rank ma-
trix factorization with the randomized singular-value decomposition (SVD, Halko
et al., 2011) lies at the heart of our method. We use this factorization to approximate
the action of monochromatic ’data matrices’, whose columns are given by seismic
shot records. For early application of SVDs to data matrices, we refer to Minato
et al. (2011). By selecting the rank of each monochromatic data matrix adaptively,
we are able to approximate matrix multiplies with a controllable error. Because the
randomized SVD only requires the action of the data matrix on some set of random
vectors, our algorithm can work with existing code bases for SRME.

A key step in the randomized SVD is formed by matrix probing (Halko et al.,
2011; Chiu and Demanet, 2012; Demanet et al., 2012), where information on the
range of a matrix is obtained by applying the matrix on a small set of random test
vectors. The number of these vectors depends on the rank of the matrix, which in turn
determines the degree of dimensional reduction and speedup yielded by the low-rank
approximation. While standard SVDs are of limited value to large-scale problems,
the proposed randomized SVD is well suited to computer architectures that can do
fast matrix multiplies but that have difficulties moving large amounts of data in and
out of memory.

The paper is organized as follows. First, we briefly introduce EPSI by recasting
Berkhout’s data matrix into a vectorized form, which makes it conducive to curvelet-
domain sparsity promotion. Next, we identify that the matrix multiplies are the
dominant cost and we show that these costs can be reduced by replacing the data
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matrix for each frequency by a low-rank factorization with SVDs. To get better
accuracy, we propose an adaptive scheme that selects the appropriate ranks for each
data matrix depending on their spectral norm. Next, we introduce the randomized
SVD based on matrix probing. This technique allows us to carry out the SVD on large
systems. Because data often has missing shots, we also discuss how matrix probing
can be extended so that it no longer relies on full sampling or on-the-fly interpolation
but instead can work with data with missing shots directly. We show for either case
that matrix probing leads to a significant reduction in the number passes through data
not only for the calculation of the factorizations but also for the iterative solution
of EPSI. To address the increase in rank with frequency, we introduce Hierarchically
Semi-Separable Matrix Representation (HSS, Lin et al., 2011) matrices. Finally, we
conclude by performing tests of our method on synthetic and real seismic lines.

THEORY

Estimation of Primaries by Sparse Inversion (EPSI) proposed by van Groenestijn
and Verschuur (2009) is an important new development in the mitigation of surface-
related multiples. As opposed to conventional multiple removal, where multiples are
predicted and subtracted after matching, the surface-related multiples are mapped
to the surface-free Green’s function by carrying out a sparse inversion. During this
inversion, the upgoing wavefield is inverted with respect to the downgoing wavefield.
In describing EPSI, we make use of Berkhout’s (Berkhout and Pao, 1982) detail-
hiding monochromatic matrix notation (see Figure 1), where each monochromatic
wavefield is arranged into a matrix with columns and rows representing common-
shot/common-receiver gathers, respectively. Throughout the paper, we reserve the
hat symbol to represent monochromatic quantities, and upper-case variables denote
matrices or linear operators. In this notation, multiplication of hatted quantities
corresponds to convolution in the physical domain.

Data-matrix formulation and its vectorized form

EPSI describes the relation between the total up-going wavefield P̂, the surface-free

Green’s function Ĝ, and the downgoing wavefield
(
Q̂− P̂

)
. The latter depends on

the source signature Q̂ and assumes perfect reflection at the surface. Mathemat-
ically, the EPSI formulation derives from the following expression van Groenestijn
and Verschuur (2009):

P̂ = Ĝ
(
Q̂− P̂

)
. (1)

As in Lin and Herrmann (2011), we cast the above relationship into vectorized form—
i.e., Ax = b, where b represents the upgoing wavefield and x the unknown surface-
free Green’s function in some transformed domain. In this formulation, the matrix
A represents the modeling operator that maps primaries to surface-related multiples
given the source function, which we assume to be known.

The University of British Columbia Technical Report. TR-2012-01, February 15, 2012



Jumah and Herrmann 4 dimensionality-reduced EPSI

To arrive at this formulation, which includes Fourier and sparsiying transforms, we
use the relation vec (AXB) =

(
BT ⊗A

)
vec (X), which holds for arbitrary matrices

– of compatible sizes – A,X, and B. In this expression, the symbol ⊗ refers to the
Kronecker product and vec stacks the columns of a matrix into a long concatenated
vector (matlab’s colon operator). Equation 1, can now be rewritten as(

(Q̂− P̂)Ti ⊗ I
)

vec
(
Ĝi

)
= vec

(
P̂i

)
, i = 1 · · ·nf , (2)

where I is the identity matrix. After inclusion of the temporal Fourier transform
(Ft = (I ⊗ I ⊗Ft) with Ft the temporal Fourier transform), we arrive at the following
block-diagonal system:

F∗t


(

(Q̂− P̂)T1 ⊗ I
)

. . . (
(Q̂− P̂)Tnf

⊗ I
)
Ft

︸ ︷︷ ︸
U

 vec (G1)
...

vec (Gnt)


︸ ︷︷ ︸

g

=

 vec (P1)
...

vec (Pnt)


︸ ︷︷ ︸

p

. (3)

In this expression, we use the symbol ∗ to denote the Hermitian transpose or adjoint.

The above vectorized equation is amenable to transform-domain sparsity promo-
tion by defining A := US∗, where g = S∗x is the transform-domain representation of
g and S the sparsifying transform. We use a combination of the 2D curvelet, along the
source-receiver coordinates, and the 1D wavelet transform along the time coordinates.
Using the Kronecker product again, we define S = C ⊗W. With these definitions,
we relate the sparsifying representation for the surface-free Green’s function to the
vectorized upgoing wavefield b = vec (P) via Ax = b. This relationship forms the
basis for our inversion.

Sparse inversion

Solving for the transform-domain representation of the surface-free Green’s function
g(t, xs, xr) with t time, xs the source and xr the receiver coordinates, corresponds
after discretization to inverting a linear system of equations where the monochro-
matic wavefields {(Q̂ − P̂)i}i=1···nf

and temporal wavefields {Pi}i=1···nt are related
—through the temporal Fourier transform—to the curvelet-wavelet representation of
the discretized wavefield vector g in the physical domain (cf. Equation 3). To control
issues related to the null-space of A, we solve this system by promoting sparsity—i.e,
we solve

x̃ = arg min
x
‖x‖1 subject to ||Ax− b||2 ≤ σ, (4)

where σ is the error between the predicted and recorded data.

Solving these optimization problems requires multiple iterations. Each of these
iterations are challenging for real applications in 3D because (i) the matrices are
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dense and extremely large, e.g. for each frequency the data matrix becomes easily
106 × 106 for ns = nr = 1000 (with ns the number of sources and nr the number of
receivers). This means that these optimizations require lots of storage and computa-
tional resources to carry-out the multiplications; (ii) The collected data volumes are
incomplete, which makes it necessary to carry out ’on-the-fly’ interpolations that are
costly but that have the advantage that the data matrix does not need to be stored
and formed explicitly; and (iii) the solvers require multiple evaluations of A, A∗, and
possibly A∗A. Remember, each of these matrix-vector operations include a Fourier,
curvelet, and wavelet transforms, and the application of the data matrix. While the
transforms can be carried out relatively quickly, the application of the data matrix re-
quires a complete pass over all data during which data needs to be transferred in and
out of main memory. In practice, this leads to processing times that are of the same
order of migration for a single iteration. To reduce these storage and multiplication
costs, we replace the data matrix by a low-rank approximation using Singular-Value
Decomposition (SVD).

Figure 1: Extraction of monochromatic wavefield matrices, by transforming the data
from the time domain into the frequency domain via the Fourier transform. Then,
for each frequency component a data matrix P̂ ∈ Cnr×ns is extracted (adapted from
Dedem (2002)).

Dimensionality reduction via singular-value decomposition

To limit the storage and multiplication costs, we approximately factorize the data
matrix into

P̂nr×ns ≈ L̂nr×kR̂
∗
k×ns

, (5)

where the symbol ≈ refers to an approximation with a controllable error. In this
formulation, a data matrix with nr receivers and ns sources is factorized into much
smaller tall and fat matrices that reduce the computational and memory costs of
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applying the data matrix. The approximation is low rank if the error is small for
k << min(nr, ns).

A special case of a low-rank matrix factorization is the Singular Value Decompo-
sition (SVD) where the data matrix P̂ is decomposed into three factors, namely

P̂nr×ns ≈ Ûnr×kŜk×kV̂
∗
k×ns

, (6)

with the matrices Û ∈ Cnr×k and V̂ ∈ Ck×ns representing the left and right singular
vectors of P̂. The diagonal matrix Ŝ ∈ Ck×k carries the non-negative singular values
on its diagonal. Refer to Figure 2 for an example using of this factorization to a
monochromatic data matrix with at 40 Hz and with ns = nr = 150 and k = 20.
Applying this type of dimensionality reduction to EPSI requires low-rank approxi-
mations for data matrices for all frequencies. Since we can not expect the ranks of
these matrices to be same for each frequency, we introduce an adaptive scheme to
select the proper rank. In Table 1, we summarize the advantages of SVD in relation
to multiplication and storage cost for data matrices with n = ns = nr. If we ignore
the cost of computing the SVD factorizations, we see that we can achieve significant
reductions in these costs when k is relatively small.

Figure 2: Matrix factorization by SVD for a frequency slice P̂ ∈ Cnr×ns on the left,
and its SVD decompositions on the right. The matrix Ûnr×k and V̂∗k×ns

contain the

left and right singular vectors of P̂, respectively. The diagonal matrix Ŝk×k contains
the singular values of P̂ on its diagonal.

SVD approximation Regular method

Matrix-matrix multiplication O(kn(2n+ k)) O(n3)

Storage O(k(2n+ 1)) O(n2)

Table 1: Advantages of using low-rank approximations via SVD in terms of matrix-
matrix multiplications and storage requirements.
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Adaptive low-rank approximation

To successfully apply our dimensionally-reduction technique, we need to know the
behavior of the singular values as a function of the frequency so we can strike a balance
between the rank for the approximation and the quality of the approximation. For
data matrices, with singular values that do not vanish the quality of approximation
improves for increasing k. Moreover, we would expect singular values concentrate in
the seismic band and to be relatively small outside this band. As we can see from
Figure 3 this is indeed the case and we also observe that the singular values decay
relatively quickly facilitating an accurate approximation as long as we select the rank
for the approximation adaptively.

Since the monochromatic wavefields in the data matrices are applied as linear
operators (cf. Equation 3) in the EPSI modeling operator, it is natural to use the
spectral norm to quantify the error. This norm relates the energy of a vector that
is the result of a matrix-vector product to the energy of an arbitrary input vector
x—i.e., we define spectral norm for an arbitrary matrix A as

‖A‖S = max
x 6=0

‖Ax‖2
‖x‖2

. (7)

In this expression, ‖x‖2 =
√∑n

k=1 |xk|2 defines the `2-norm. The spectral norm
corresponds to the largest (the first) singular value of A.

To distribute a given total rank budget—i.e., the sum of selected ranks for each
frequency—across all data matrices we compute the spectral norms as a function of
the frequency. Given a user defined subsampling ratio δ = K ′/K withK = ns×nf and
K ′ � K the total rank budget, we select the ranks for each frequency proportional to
the spectral norms. We included Figure 4 to illustrate the importance of this adaptive
strategy by comparing the action of the EPSI prediction operator on the surface-free
Green’s function for the compete data matrix, and low-rank factorizations with and
without adaptation for δ = 1/12. These results clearly show that selecting the ranks
adaptively leads to visually improved results (juxtapose Figures 4(b) and 4(c)). This
improvement can be attributed to the fact that the energy of the upgoing wavefield
in concentrated in the seismic frequency band. Table 2 confirms the relation between
the spectral norms and the SNR for the predicted multiples as a function of the
subsampling ratio δ for a synthetic dataset. (See the results section at the end of the
paper for a description of this data set.) The relative spectral norms in this table are

given the sum of the relative spectral norms defined by ‖A−Ak‖S
‖A‖S

with Ak the k-rank
approximation of A.

With the low-rank SVD approximation, we are able to approximate the action of
the multiple prediction operator with reasonable accuracy for substantial subsampling
ratios. This leads to a corresponding reduction in computational and storage costs,
which becomes important when scaling EPSI to 3D. However, our approach comes
with an additional pre-processing step to perform the SVD. While efficient imple-
mentations of the SVD exist, they typically require at least k passes through al data,
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Figure 3: Singular values for data matrices as a function of the frequency. As ex-
pected, the largest singular values are concentrated within the seismic band.

which becomes prohibitively expensive for large data sets (Halko et al. (2011)). To
meet this challenge, we adapt randomization techniques that are specifically designed
to leverage current computer architectures that are good in applying multiplications
in parallel but bad in moving data in and out of memory.

RANDOMIZED SINGULAR-VALUE DECOMPOSITION

To overcome shortcomings related to memory handling and parallelism of modern
computing architectures, we employ recent developments in randomized dimensional-
ity reduction as proposed by Halko et al. (2011). These approaches have the advantage
that they require fewer passes over all the data while also being suitable for parallel
implementation. First, we briefly discuss the main steps that are part of this new
procedure, followed by what to do when the singular values decay slowly and how to
handle cases where sources are missing.

General framework

The randomized SVD algorithm (Halko et al., 2011) is composed of two stages, namely
matrix probing capturing the matrix action on a small number of random vectors,
followed by an orthogonalization, and a SVD on the reduced system.
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Figure 4: Adaptive versus non-adaptive rank selection. (a) prediction of multiples
with the full data matrix,(b) prediction with the low-rank factorization for δ = 1/12,
and (c) the prediction with adaptive rank selection.
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Sampling ratio δ 1/2 1/5 1/8 1/12

Multiplication speed-up factor 1.4 2.2 4.7 6.5

Memory-reduction factor 1/3 1/2 3/4 6/7

SNR dB 29 26 19 11

Relative spectral norm (×10−4) 4 12 25 63

Table 2: Quality of multiple prediction as a function of the subsampling ratio for
a synthetic data set with ns = nr = 150, and nt = 512. The results confirm the
relationship between the spectral norm and SNR for the multiple prediction.

Stage A: matrix probing. During this stage, we randomly sample the action of
the data matrix by applying this matrix, possibly in parallel, to a small number of
random vectors—i.e.,

Y = P̂Ŵ. (8)

Here, Ŵnr×(p+k) is a tall random zero-mean Gaussian matrix. The number of columns

of this matrix is given by the rank k of the input data matrix P̂ plus an oversampling
by p, typically set to 5−10. This operation is illustrated in Figure 5 and corresponds
to forming p+ k amplitude encoded supershots by summing over all sequential shots
with random Gaussian weights (see e.g. van Leeuwen et al., 2011).

As long as the data matrix has a rank k or smaller this procedure obtains sufficient
information to compute the SVD within a prescribed accuracy. To be more specific,
the action on the random vectors gives us access to the range of the data matrix,
which is spanned by the left vectors Q ∈ Cns×(k+p) of the QR factorization of Y.
With these vectors, we form

Bns×(k+p) = Qns×(k+p)P̂nr×ns , (9)

which is input to stage B, where we carry out the SVD on this reduced system. The
operations that form stage A are summarized in Algorithm 1.

Algorithm 1 Randomized SVD

Input: P̂nr×ns , a target rank k and the over-sampling parameter p

Output Orthonormal matrix Q whose range approximates the range of P̂

1. Draw a random Gaussian matrix Ŵns×(k+p).

2. Form Ynr×(k+p) = P̂Ŵ.

3. Construct the orthonormal matrix Qm×(k+p) by computing QR factorization of
Y.
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Figure 5: Supershots created by randomized superposition of sequential shots.

Stage B: computation of the low-rank factorization. The output of stage A
corresponds to a randomized dimensionality reduction capturing the action of the
data matrix from which we can now calculate the SVD with the advantage that we
are working with a much smaller system. Following Halko et al. (2011), we compute

Bnr×k = Ũk×kŜk×kV̂
∗
k×ns

, (10)

from which we subsequently calculate the left singular vectors using the following
expression

Ûnr×k = Qnr×kŨk×k. (11)

Figure 6, describes how the left singular vectors Û of a data matrix P̂ are computed
using the orthonormal matrix Q.

During this second stage, we factored the data matrix by carrying out the SVD on
the dimensionality reduced system. The advantage in this approach is that the full
data matrix only needs to be accessed two times namely once for the action on the
random vectors to compute Y and once to form B. This is a significant improvement
compared to the k passes over the data required by the conventional SVD (see Halko
et al., 2011). However, the proposed Algorithm 1 is only appropriate for matrices
that have low rank or rapidly decaying singular values. Unfortunately, the algorithm
will perform poorly when approximating matrices that exhibit slow decay for their
singular values (Halko et al., 2011). In that case, singular vectors associated with the
small singular values are known to interfere with the approximation and this leads to
poor quality of the approximation. To reduce these interferences, the decay for the
singular singular values can be improved by using the power method (Halko et al.,
2011), which replaces Equation 8 by

B = (P̂P̂∗)
q
P̂Ŵ, (12)

with q the order of the power. As a result of raising the matrix to the qth power,
the singular values decay faster as illustrated in Figure 7. While this procedure
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reduces the interference, it comes at a cost of (q+ 1) additional passes over the data.
Fortunately, experience has shown that setting q = 1, 2 is usually sufficient. Because
the cost of probing with Gaussian vectors may become expensive, we replace the
Gaussian matrix Ŵ by fast Fourier-based phase-encoding. For more detail on the
power method and phase encoding, we refer to Halko et al. (2011); Herrmann et al.
(2009).

Figure 6: Approximation of the left singular vectors Û of a data matrix P̂ using the
orthonormal matrix Q.

Incomplete data

Whilst the proposed method entails a significant reduction of the problem size and
reliance on prohibitively large computer resources, our randomized approach requires
full sampling, which excludes acquisition with missing sources. Since data is nearly
always sampled incompletely this may not be an issue because current 3D implemen-
tations of surface-related multiple elimination (SRME) interpolate data on the fly.
However, these interpolations are expensive and require extensive storage.

To overcome this problem, we propose to change the matrix probing with Gaussian
vectors (cf. Equation 8) by a probing with randomly selected columns from the Dirac
basis. This corresponds to applying the randomized SVD on data with randomly
selected shots and negates the need to interpolate the data during the matrix probing.
Remember, that the compute B (cf. Equation 9) requires one full pass over the data
including interpolation.

Matrix probing relies on the fact that Gaussian matrices capture the range of
a matrix. This can be understood because Gaussian vectors are incoherent with
vectors of any arbitrary orthogonal basis, including bases spanned by singular vectors.
Following the theory of compressive sensing (Candès et al., 2006; Donoho, 2006), we
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Figure 7: Effect of the power iteration on the decay of singular values for a frequency
slice P150×150. Remember, Algorithm 1 is equivalent to q = 0.

introduce the mutual coherence between the columns of bases U and R as

µ(U,R) = max
1<i,j<n

< ui, rj >

‖ui‖2‖rj‖2
. (13)

In this expression, ui, rj correspond to the jth and ith columns of U and R, respec-
tively. As we have seen in related work on full-waveform inversion (Li et al., 2011),
Gaussian test vectors can be replaced by other vectors as long as the mutual coherence
remains low. For this purpose, we compute the mutual coherence as a function of
frequency between the singular vectors and randomly selected columns of the Fourier
and Dirac bases. The results of this exercise are summarized in Figure 8 and show
that the Gaussian vectors have as expected the lowest mutual coherence followed by
the Dirac and Fourier bases. From these results, we conclude that we can work with
randomly missing shots instead of randomly superimposed simultaneous shots that
require full acquisition. Working with Fourier is not an option because the coherence
is too high.

Examples

To test the performance of our randomized SVD, we consider two examples, namely a
data matrices with fast and slow decaying singular values. Physically, this corresponds
to matrices with a low frequency (5 Hz) or a high frequency (100 Hz). Following, Halko
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Figure 8: Coherence of the singular vectors of the data matrix with Fourier, Dirac, and
Gaussian bases for all frequencies.

et al. (2011) we compute the error for the k-rank approximation via

e
k

= ‖(I−QQ∗)P̂‖S. (14)

Fast decay: In this example, we apply the randomized SVD on a frequency slice at
5 Hz from our synthetic dataset. Figure 9(a) contains the estimated singular values
by matrix probing with Gaussian vectors for q = 0, 1, 2, and with k = 50. From
this plot, we observe that the singular values are estimated correctly for each q. We
also observe from Figure 9(b) that the error given by the above equation is reduced
significantly if we make at least one additional pass over the data—i.e., q > 0.

Slow decay: In this example, we apply the randomized SVD on the same data
set but at a high frequency of 100 Hz. In this case, we need an additional pass
over the data to get the accurate estimates for the singular values (see Figure 10(a).
Unfortunately, Figure 10(b)) shows that the errors given by Equation 14 continue to
decay slowly for increasing q. However, there is significant improvement compared to
standard probing (q = 0).

Different samplings: Finally, we compare the errors given by Equation 14 for
matrix probing with Dirac, encoding with the subsampled Fourier transform (SRFT,
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Halko et al., 2011)), and Gaussian. The results are summarized in Figures 11(a)–
11(b), and indicate that changing the sampling method between Gaussian, fast en-
coding, and Dirac has limited effect especially for q = 2.

Unfortunately, in most cases we are only able to get satisfactory approximations
when we allow ourselves to make additional passes over the data. This is a conse-
quence of the fact that the underlying matrices are essentially not low rank in partic-
ular for higher frequencies where the energy tend to be located along the diagonal of
the matrix. By a multiscale decomposition, we try to overcome this shortcoming.
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Figure 9: Decay of the singular values for a single frequency slice at 5 Hz for nr = ns =
150. (a) Approximation of the singular values and (b) the behavior of the spectral
approximation error for different q.
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Figure 10: Decay of the singular values for a single frequency at 100 Hz for nr = ns =
150. (a) Approximation of the singular values, and (b) the behavior of the spectral
approximation error.
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Figure 11: Errors of the randomized SVD for different sampling methods (Gaussian,
phase-encoded Fourier (SRFT), and Dirac (randomly-selected sequential shots), (a)
approximation error using q = 0, and (b) approximation error for q = 2.
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HIERARCHICALLY SEMI-SEPARABLE MATRIX
REPRESENTATION

As we have seen in the previous section, data matrices become higher rank at higher
frequencies because the number of oscillations increase while the energy tends to fo-
cus more around the diagonal. The latter property has to do with the increased
curvature of seismic events as the frequency increases. While some recent theoretical
work has been done to address this issue by including directionality in the formulation
(Engquist and Ying, 2010), we rely on the Hierarchically Semi-Separable Matrix Rep-
resentation (HSS, Chandrasekaran et al., 2006) in combination with the randomized
SVD along the lines of recent developments by Lin et al. (2011).

HSS matrices provide a way to represent high-rank structured dense matrices in
terms of low-rank submatrices with the aim of reducing the cost of linear algebraic
operations, e.g. reducing the cost of matrix-vector products from O(n2) to O(n). As
part of the HSS representation, matrices are recursively repartitioned into high-rank
diagonal and low-rank off-diagonal matrixes. SVDs are carried on the off diagonal
submatrices while the high-rank diagonal submatrices are recursively partitioned to
some user defined level, which depends on the desirable compression and accuracy.
With this decomposition, HSS is able to carry out fast matrix operations (Chan-
drasekaran et al., 2006).

A 2× 2 block partitioning of an input matrix A is given by

A =

(
A1;1,1 A1;1,2

A1;2,1 A1;2,2

)
,

where the subscripts represent: the partition level, the row number, and the column
number, respectively. For each recursion, the-off diagonal submatrices are decom-
posed into their low-rank approximations by using the randomized SVD with power
iterations. After the first iteration, we can write,

A =

(
D1;1,1 (USV∗)1;1,2

(USV∗)1;2,1 D1;2,2

)
,

with the first subscript denoting the subdivision level and the second pair of sub-
scripts indicating the subblock. The matrices D are the diagonal submatrices and
the factorization USV∗ correspond to the singular value decompositions of the off-
diagonal submatrices. At the next iteration, this nested partitioning again divides
the two high-rank diagonals into 2× 2 blocks yielding

A =


(

D2;1,1 (USV∗)2;1,2
(USV∗)2;2,1 D2;2,2

)
(USV∗)1;1,2

(USV∗)1;2,1

(
D2;1,1 (USV∗)2;1,2

(USV∗)2;2,1 D2;2,2

)
 .

For further details on HSS, we refer the reader to Chandrasekaran et al. (2006).
Because HSS handles the high-rank parts of the matrix by the recursive partitioning,
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we end up with an algorithm that only requires a few passes over the data. We achieve
this by carrying out the matrix probing on each low-rank submatrix separately while
leaving the high-rank diagonal matrices at the fines level alone. This approach has the
advantage of increasing the decay of the singular for the low-rank submatrices, which
is beneficial to the matrix probing. In addition, the algorithm does not need to store
the singular vectors for the coarse low-rank decompositions. Instead, the algorithm
computes the singular vectors at the lower level of the decomposition recursively from
the singular vectors at the finer level Chandrasekaran et al. (2006). To determine the
proper rank for the matrix probing, we use Algorithm 4.2 from Halko et al. (2011).

Example

To demonstrate the effectiveness of the HSS representation, we consider a monochro-
matic frequency slice at 100 Hz, which we approximate with a three-level HSS rep-
resentation in combination with our randomized SVD with adaptive rank selection.
Before applying this algorithm, we first verify the anticipated behavior of the HSS
blocks in Figure 12, which shows that the rank of the off-diagonal subblocks is indeed
lower than the rank of the diagonal subblocks. This justifies the use of HSS on high-
frequency data matrices. As we can see from Figure 13, the HSS-based factorization
attains a better approximation, which is reflected in the spectral norms shown in the
grey-scale plots.

APPLICATION TO SYNTHETIC AND REAL DATA

To establish the performance of our method, we compare the output of EPSI (Lin
and Herrmann, 2011) with the output of EPSI using low-rank approximations for
the data matrix. Depending on the ratio between the largest singular value of a
particular data matrix and the largest singular amongst all data matrices, we either
proceed by applying the randomized SVD or we first apply the HSS partitioning prior
to the computation of the randomized SVDs on the off diagonals. We conduct two
experiments and we fix the subsampling ratios to δ = [1/2, 1/5, 1/8, 1/12].

Synthetic data

In this example, we use data modeled from a velocity model that consists of a high-
velocity layer, which represents salt, surrounded by sedimentary layers and a water
bottom that is not completely flat (see Herrmann et al., 2007). Using an acoustic
finite-difference modeling algorithm, 150 shots with 150 receivers are simulated on a
fixed receiver spread. A shot record for the first 2 s with surface-related multiples is
plotted in Figure 14. For a plot of the singular values of this synthetic data sets, refer
to Figure 3.
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Figure 12: HSS partitioning of a frequency slice at 100 Hz. The grey scales correspond
to the rank of the sub matrix (white is high-rank and black is low-rank) (a) First level
of HSS partitioning; (b) second level; (c) third level.
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Figure 13: Low-rank factorization of a frequency slice at frequency of 100 Hz and
ns = nr = 150. (a) HSS approximation (relative spectral norm = 0.22), (b) the
difference between the HSS approximation and the original data matrix, (c) SVD
approximation of the same frequency slice (relative spectral norm = 0.43) and (d)
the difference of the SVD approximation with the original data matrix.
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Results of our adaptive rank selection on this data set are plotted in Figure 15
and show that most of the available rank budget is assigned to data matrices with
frequencies that lie in the seismic band. For the low subsampling ratios, we distributed
part of the rank budget amongst all frequencies equally. With these ranks, we compute
the low-rank factorizations with randomized SVD for q = 2 and δ = 1/12. We use
HSS representations for the matrices that have the highest spectral norm. Given the
low-rank factorization, we solve the EPSI problem (cf. Equation 4) and the results are
plotted in Figure 16. Comparison between the EPSI result with the full data matrix
and its low-rank approximation shows that our method is capable of estimating the
surface-free Green’s function. Despite the fact that we reduced the size of the system
significantly, we are to get a satisfactory result, which is confirmed by the difference
plot in Figure. 16(c) that contains relatively little energy. Also remember that we
only need three passes over all data. The EPSI itself no longer involves passes through
the data by virtue of the low-rank approximation.

For completeness, we also include table 3 with SNRs for dimensionality-reduced
EPSI experiments carried out for δ = [1/2, 1/5, 1/8, 1/12]. As expected, the SNRs
computed with respect to the output of EPSI carried out with the full data matrix,
show a decrease in SNR for decreasing subsampling ratios.

Gulf of Suez data

To test the viability of our method on real data, we carried out a series of similar
experiments for q = 2 on a Gulf of Suez dataset for the same subsampling ratio. A
shot record for the first 2 s of this data set is plotted in Figure 17. The singular
values and assigned ranks are included in Figure 18. Because this dataset is more
broad band, the ranks are assigned over a wider range of frequencies. As before,
we carry out EPSI for the complete and low-rank approximated data matrices. The
results are shown in Figure 19. While both results are comparable, the difference plots
contain some energy loss for regions in the shot record that have high curvature. This
is expected because high-curvature events lead to high ranks. Because real data is
more complex, the SNRs listed in table 4 are not as high as for the synthetic example.

Subsample 1/2 1/5 1/8 1/12
ratio δ

Recovery error (dB) 44 30 18 13

Speed up (×) 2 5 8 12

Table 3: Results of estimating the surface-free Green’s function using the different
subsampling ratios (synthetic dataset).
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Figure 14: Shot gather from synthetic dataset including surface-related multiples.
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Figure 15: Approximation rank for varying rank budgets in the synthetic case. The
minimum rank is user defined.
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Figure 16: EPSI results from the synthetic dataset. (a) Estimated Green’s function
using the full dataset, (b) estimated Green’s function with low-rank approximation
for δ = 1/12, and (c) difference plot.
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Subsample 1/2 1/5 1/8 1/12
ratio δ

Recovery error (dB) 30 27 17 12

Speed up (×) 1.6 2 3.5 5.7

Table 4: Summarizing results of estimating the surface-free Green’s function using
the different sub-sampling ratios.
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Figure 17: Shot gather from the Gulf of Suez dataset including surface-related mul-
tiples.

DISCUSSION AND OUTLOOK

The presented method is exciting for the following reasons. First, we reduce the
storage and multiplication costs by roughly a factor of δ at a small up-front cost
consisting of 2 − 3 passes through all data, a QR factorization, and a singular-value
decomposition on the dimensionality reduced system, all of which can be carried out
in parallel. The resulting matrix factorization has low memory imprint, leads to fast
matrix multiplies, and removes the requirement of passing through all data for each
application of the data matrix during the inversion. This feature potentially removes
one of the major challenges of extending estimation of primaries by sparse inversion
to 3D. Note, however,that this extension needs a low-rank factorization of tensors
representing wavefields in more than two dimensions (see e.g. Kolda and Bader, 2009;
Caiafa and Cichocki, 2010, for recent developments on this topic). Second, there are
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Figure 18: EPSI result for Gulf of Suez data. (a) Singular values of the gulf of
Suez dataset, (b) approximation rank budgets for varying sub-sampling ratios δ. The
minimum rank is user defined.
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Figure 19: EPSI result for the gulf of Suez dataset. (a) Estimated Green’s function
with the full data matrix, (b) estimated Green’s function for low-rank approximation
for δ = 1/12, and (c) difference plot.
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connections between matrix probing and simultaneous sourcing during acquisition
of marine data (Wason et al., 2011) or during imaging and full-waveform inversion
(Herrmann et al., 2009). This opens the possibility to further speed up our algorithms
(see e.g. Herrmann, 2010; van Leeuwen et al., 2011) or to work with simultaneously
acquired data directly. Third, because the singular vectors of the data matrix are
incoherent with the Dirac basis, we can limit the need of interpolating the data to
only once as part of the second stage during which the singular-value decomposition
is conducted. In case the locations of the missing shots are sufficiently randomly
distributed, we showed that it is no longer necessary to interpolate the data as part
of the matrix probing. Instead, we can consider data with randomly missing shots
as the result of the matrix probing. Needless to say, this could lead to significant
cost savings. Fourth, the proposed algorithm is relatively simple, requires matrix-
free application (read ’black-box’ implementations of SRME (Verschuur et al., 1992;
Berkhout and Verschuur, 1997; Weglein et al., 1997))) of the data matrix only, and
limits the number of passes through the data. This may lead to significant speedup
because the method only requires a few on-the-fly interpolations. Fifth, our low-
rank approximations of the data matrix allows us to leverage recent extensions of
compressive sensing to matrix-completion problems (Candes and Recht, 2009; Gandy
et al., 2011) where matrices or tensors are reconstructed from incomplete data (read
data with missing traces). In these formulations, data is regularized solving the
following optimization problem

X̃ = arg min
X

‖X‖∗ subject to ‖A(X)− b‖2 ≤ σ, (15)

with ‖ · ‖∗ =
∑
|λi| the nuclear norm summing the magnitudes of the singular values

(λ) of the matrix X. Here, A(·) a linear operator that samples the data matrix. It
can be shown that this program is a convex relaxation of finding the matrix X with
the smallest rank given incomplete data. Finally, low-rank approximations for tensors
were recently proposed by Oropeza and Sacchi (2010) for seismic denoising. Sixth,
the singular vectors of our low-rank approximation can also be used in imaging or
full-waveform inversion Habashy et al. (2010).

CONCLUSIONS

Data-driven methods—such as the estimation of primaries by sparse inversion—suffer
from the ’curse of dimensionality’ because these methods require repeated applica-
tions of the data matrix whose size grows exponentially with the dimension. In this
paper, we leverage recent developments in dimensionality reduction that allow us
to approximate the action of the data matrix via a low-rank matrix factorization
based on the randomized singular-value decomposition. Combination of this method
with hierarchical semi-separable matrix representations enabled us to efficiently factor
high-frequency data matrices that have relative high ranks. The resulting low-rank
factorizations of the data matrices lead to significant reductions in storage and matrix
multiplication costs. The reduction in costs for the low-rank approximations them-
selves are, by virtue of the randomization, cheap and only require a limited number
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of applications of the full data matrix to random vectors. This operation can easily
be carried out in parallel using existing code bases for surface-related multiple pre-
diction and can lead to significant speedups and reductions in memory use. Because
the singular vectors of the data matrices are incoherent with the Dirac basis, matrix
probing by Gaussian vectors that require on-the-fly interpolations can be replaced by
matrix probings consisting of data with missing shots. As a consequence, the num-
ber of interpolations is reduced to only one and this could give rise to a significant
improvement in the performance of the inversion, which typically requires several
applications of the data matrix.
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