
Efficient least-squares imaging with sparsity

promotion and compressive sensing

Felix J. Herrmann1 and Xiang Li1

ABSTRACT

Seismic imaging is a linearized inversion problem relying on the minimization
of a least-squares misfit functional as a function of the medium perturbation.
The success of this procedure hinges on our ability to handle large systems of
equations—whose size grows exponentially with the demand for higher reso-
lution images in more and more complicated areas—and our ability to invert
these systems given a limited amount of computational resources. To overcome
this “curse of dimensionality” in problem size and computational complexity, we
propose a combination of randomized dimensionality-reduction and divide-and-
conquer techniques. This approach allows us to take advantage of sophisticated
sparsity-promoting solvers that work on a series of smaller subproblems each in-
volving a small randomized subset of data. These subsets correspond to artificial
simultaneous-source experiments made of random superpositions of sequential-
source experiments. By changing these subsets after each subproblem is solved,
we are able to attain an inversion quality that is competitive while requiring fewer
computational, and possibly, fewer acquisition resources. Application of this con-
cept to a controlled series of experiments showed the validity of our approach and
the relationship between its efficiency—by reducing the number of sources and
hence the number of wave-equation solves—and the image quality. Application
of our dimensionality-reduction methodology with sparsity promotion to a com-
plicated synthetic with well-constrained structure also yields excellent results
underlining the importance of sparsity promotion.

INTRODUCTION

Modern-day seismic imaging technology depends increasingly on computationally and
data-intensive “wave-equation” migration, which relies on full acquisition and high-
fidelity wavefield simulations (see e.g. Rickett, 2003; Guitton, 2004; Plessix and Mul-
der, 2004). These challenges are compounded by a lack of available direct solvers for
the time-harmonic Helmholtz equation in 3D. This is problematic because each source
requires a separate PDE solve for indirect methods and this leads to simulation costs
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that increase linearly with the number of source experiments. This explains current-
day interest in dimensionality-reduction techniques that aim to reduce exponentially
growing data volumes acquired with exceedingly many sources.

Motivated by early work of Morton and Ober (1998); Romero et al. (2000) and
more recently by Ayeni (2010); Fei et al. (2010), we overcome the challenge of the
“curse of dimensionality”by decreasing the number of source experiments. As a result,
we lower the computational burden of imaging significantly. To accomplish this goal,
we extend the randomized dimensionality-reduction ideas presented by (Herrmann
et al., 2009b; Neelamani et al., 2010) to the imaging problem.

Seismic imaging entails the inversion of an extremely large, but in the absence
of noise, consistent “overdetermined” systems of equations. Even though there are
generally more equations than unknowns, imaging is plagued by finite aperture and
shadow zones, which make this system ill conditioned (Symes, 2008). Ill conditioning,
in conjunction with extreme high costs of applying imaging operators, challenge iter-
ative solution methods for least-squares imaging problems. To address this issue, we
combine ideas from stochastic optimization (Bertsekas and Tsitsiklis, 1996; Shapiro
et al., 2009; Nemirovski et al., 2009; Haber et al., 2010) and compressive sensing
(CS—in short throughout this paper, Candès et al., 2006; Donoho, 2006; Mallat,
2009), yielding a formulation where we invert the large linearized system by solving a
sequence of much smaller subproblems that act on source-encoded “supershots” (LI
and Herrmann, 2010).

The presented approach differs from deterministic approaches, which include pre-
conditioning, based on approximations of the wave-equation Hessian; data-dependent
source syntheses, based on singular-value decompositions of the data matrix (Habashy
et al., 2010); or the replacement of the Frobenius-norm (`2) by the matrix norm on
the data residue (Symes, 2010). Instead, our method proposes to reduce the problem
size. But contrary to (Sirgue and Pratt, 2004; Mulder and Plessix, 2004), who select
deterministic subsets of angular frequencies in their imaging, we are motivated by
recent ideas from Krebs et al. (2009); Haber et al. (2010) who utilize source-encoding
to reduce the dimensionality of full-waveform inversion.

The outline of our paper is as follows. First, we motivate how stochastic optimiza-
tion and CS are related to dimensionality reduction by randomized phase encoding
in seismic imaging. Next, we introduce mini batches as collections of supershots,
obtained by randomized sampling along the source and frequency axes. Inspired by
stochastic optimization, we propose a solution to large-scale imaging problems via
sequences of smaller dimensionality-reduced least-squares subproblems with or with-
out sparsity constraints. Next, we identify these constrained subproblems as relaxed
sparsity-promoting problems employed by large-scale one-norm solvers. We show that
this leads to an efficient algorithm, which we subsequently analyze by performing a
series of controlled imaging experiments. We conclude by applying the proposed
method to a seismic imaging problem with well-constrained complexity.
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MOTIVATION

After discretization, seismic imaging involves inversion of the linearized (time-harmonic)
acoustic Born-scattering matrix linking data, collected in the vector b ∈ CNf NrNs with
Nf , Nr, and Ns the number of angular frequencies, receiver, and source positions, to
perturbations in the medium parameters, collected in the vector x ∈ RM , with M
the number of gridpoints of the model. Without loss of generality, we will keep the
density of mass fixed.

Because angular frequencies and sequential sources can be treated independently,
the linearized inversion has the following separable form:

minimize
x

1

2K
‖b−Ax‖22 =

1

2K

K∑
i=1

‖bi −Aix‖22, (1)

with K = NfNs the batch size, given by the total number of monochromatic sources.
The vectors bi ∈ CNr represent the corresponding vectorized monochromatic pre-
processed (free of surface-multiples and direct waves) shot records. The matrix Ai

represents the monochromatic linearized scattering matrix for the ith source.

Unfortunately, solving this problem is problematic because each iteration requires
4K PDE solves: two to compute the action of Ai and two for the action of its adjoint
AH

i . Both actions involve solutions of the forward source and reverse-time residual
wavefields (Plessix and Mulder, 2004). Thus, the inversion costs grow linearly with the
number of monochromatic experiments, multiplied by the number of matrix-vector
multiplies required by the solver. (Because of the size of the problem, the matrices
Ai, i = 1 · · ·K can not be formed explicitly and we have to rely on iterative methods
to solve equation 1.)

While preconditioning techniques improve convergence of Lanczos methods (Herr-
mann et al., 2009a), these iterative techniques require multiple evaluations of the
scattering operator and its adjoint. Unfortunately, these multiple passes through the
complete data are computationally intractable. To overcome this difficulty, we use a
dimensionality-reduction approach where sequential sources are replaced by a reduced
number of simultaneous sources made of randomized superpositions. In this way, we
not only explore linearity of the wave equation with respect to the sources but we also
exploit the fact that randomized sources have a richer wavenumber content, which
improves the image quality albeit the resulting image can be extremely noisy. Jux-
tapose Figure 1(a), obtained with a single sequential shot, with Figure 1(b) obtained
from a single simultaneous shot. The key contribution of this paper is to mitigate
this noisy source cross talk while still benefiting from computational gains related to
the reduction of the number of required PDE solves. Before we outline the details
of our randomized imaging algorithm, let us first briefly discuss recent developments
in optimization and theoretical signal analysis that provide insights and justifications
for our method.
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(a)

(b)

Figure 1: Migration of a single spike positioned in the target zone of the Marmousi
model with a single sequential or simultaneous source. (a) Migrated spike for one
sequential shot. (b) The same but now one single simultaneous shot. Notice the im-
proved image of the randomized simultaneous source due to the increased wavenumber
diversity.
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Stochastic optimization

In machine learning, separable optimization problems (cf. Equation 1) can be solved
efficiently by either the stochastic-average approximation (SAA) or by the stochastic
approximation (SA, Bertsekas and Tsitsiklis, 1996; Nemirovski et al., 2009; Haber
et al., 2010). With SAA, Equation 1 is approximated by selecting subsets of fre-
quencies and shots (possibly simultaneous shots), yielding K ′ = nfns � K for the
reduced batch size with nf � Nf and ns � Ns. For our imaging problem, this ap-
proach corresponds to carrying out least-squares migration with a randomized subset
of shots. As shown by van Leeuwen et al. (2010b), the resulting error in the migrated
image decay only slowly with increasing batchsize K ′. This can be understood be-
cause SAA is essentially a Monte-Carlo sampling method, where errors decays only
slowly (O(

√
K ′)) with increasing batch size. Despite this disadvantage, SAA is pop-

ular because of its relative simplicity that offers flexibility with respect to the choice
of solvers for the separable optimization in Equation 1. This flexibility allows us to
use generic solvers such as LSQR (Paige and Saunders, 1982).

To address the relative slow convergence of SAA, SA directly intervenes in first-
order optimization by computing gradients on randomized subsets of data. This
turns deterministic gradient descent into stochastic-gradient descent (Bertsekas and
Tsitsiklis, 1996; Nemirovski et al., 2009; Haber et al., 2010), which in our problem
corresponds to randomly selecting a different monochromatic source—e.g., a different
Ai with i ⊂ [1 · · ·K]—for each gradient update pertaining to Equation 1. For linear
problems, this approach is reminiscent of randomized “block Kaczmarz” (Strohmer
and Vershynin, 2009), which was used successfully in the deterministic case by Nat-
terer (2001) in tomography. Like SAA, SA extends to nonlinear inversion problems
(see e.g., Nemirovski et al., 2009), and was recently introduced by Haber et al. (2010)
in the context of parameter-estimation problems with PDE’s. SA also justifies recent
work by Krebs et al. (2009) and provides a theoretical explanation for observed lack
of convergence— SA only converges with O(1/k) with k the number of iterations
(Nemirovski et al., 2009)—and instabilities with respect to noise (van Leeuwen et al.,
2010a).

Compressive sensing

Randomized-dimensionality reduction also underlies recent advances in sampling the-
ory for signals that exhibit structure, which translates into transform-domain sparsity.
As opposed to stochastic optimization, where randomization is used to reduce vari-
ance (see e.g., Hutchinson, 1990; Avron and Toledo, 2010), compressive sensing uses
randomization to turn coherent subsampling-related interferences—such as aliasing
and shot “cross talk”—into relatively “harmless” Gaussian noise. According to CS,
the noise level depends on the degree of subsampling and transform-domain sparsity.
Consequently, sampling is no longer fully determined by Nyquist, but by transform-
domain sparsity (see e.g., Herrmann, 2010, for an overview of the application of CS
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in exploration seismology). Neelamani et al. (2010) and Herrmann et al. (2009b)
both took advantage of this finding in wavefield simulations with time stepping or by
inverting the time-harmonic Helmholtz system. In both cases, fully-sampled wave-
fields are recovered with curvelet-domain sparsity promotion from small subsets of
(monochromatic) simultaneous-source experiments. This procedure leads to efficient
simulations because the computational overhead of the recovery is small compared to
computational gain from subsampling.

However, solving Equation 1 differs fundamentally from standard CS because the
system in Equation 1 is “overdetermined”; there are more equations then unknowns.
In addition, the scattering matrix is ill conditioned due to limitations in aperture
that may lead to shadow zones. However, for reflectors that are in the range of the
scattering operator the wave-equation Hessian AHA is near unitary, and curvelets
are nearly invariant under the action of the Hessian (Herrmann et al., 2008). This
property—in conjunction with the optimality of curvelets on images with reflectors
that may include conflicting dips—motivates us to use curvelet-domain sparse recov-
ery to mitigate the source crosstalk caused by the dimensionality reduction.

METHODOLOGY

To solve Equation 1 efficiently, we combine recent ideas from stochastic optimization
and compressive sensing. For this purpose, let us first mathematically define seismic
mini batches consisting of “supershots”. Next, we present a pragmatic optimization
strategy where we cast the original imaging problem into a series of much smaller
subproblems that work on different subsets of random source-encoded supershots. For
linearized inversion (Herrmann and Li, 2011), this approach corresponds to drawing
a collection of supershots, followed by imaging, and using this image as a warm
start for a new linearized inversion with a new independently drawn collection of
supershots. We compare the performance of least-squares on these subproblems with
and without sparsity constraints. Depending on these two choices, the formulation
leads either to a Monte-Carlo type of algorithm, which relies on averaging to reduce
the subsampling errors, or to a compressive-sensing type of algorithm, which relies on
sparsity promotion to remove the source cross talk. In both cases, the error depends
on the subsampling ratio K/K ′.

The seismic mini batch: a collection of supershots

We base our algorithm on forming compressive seismic experiments—or to use the
language of online machine learning mini batches—that consist of collections of small
numbers of supershots. These supershots are made of randomized superpositions of
sequential sources.

Mathematically, imaging experiments for mini batches with K ′ � K monochro-
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matic supershots, require the solution of the reduced system

P`2(RM) : minimize
x

{
1

2
‖RM (b−Ax) ‖22 =

1

2
‖b−Ax‖22

}
, (2)

In this expression, we dimensionality reduced Equation 1 with the subsampling ma-
trix RM. This subsampling matrix reduces the tall expensive to compute system

A ∈ C(KNr)×M to A
def
= RMA ∈ C(K′Nr)×M and the data to b

def
= RMb. The

dimensionality-reduction matrix itself is factored into a restriction and mixing matrix.

The restriction matrix R is defined by the Kronecker product: R
def
= RΣ ⊗ I⊗RΩ ∈

R(K′Nr)×(KNr) with RΣ ∈ Rn′
s×ns selecting n′s � ns rows uniform randomly amongst

[1 · · ·ns] and RΩ ∈ Rn′
f×nf selecting n′f � nf frequencies from the seismic fre-

quency band. The matrix I represents the identity matrix. The mixing matrix

M ∈ R(KNr)×(KNr) is given by the Kronecker product M
def
= MΣ ⊗ I ⊗ I. As in

Lin and Herrmann (2007), we follow Romberg (2009) to phase encode sequential
shots via

MΣ def
= sign(η)� FH

Σ diag
(
ejθ

)
FΣ, (3)

with θ = Uniform([0, 2π]) a random phase rotation, and FΣ the Fourier transform
along the source coordinate. The vector η ∈ N(0, 1) is used to define a random-sign
pattern by which the phase-encoded vector is premultiplied (the symbol � represents
element-wise product). This definition for the matrix MΣ is fast (O(ns log ns)) and
mimics the action of a matrix with Gaussian i.i.d. entries.

Using linearity of randomized subsampling by RM, in combination with linearity
with respect to monochromatic sources and the separability of the imaging problem
(cf. Equation 1), it is easy to show that the number of PDE solves required for each
iteration of the solution of Equation 2 is slimmed down by a factor of K ′/K (see also
Herrmann et al., 2009b, for details). Essentially, the action of RM “commutes”. Note
that recent work by Haber et al. (2010) uses the same principle. Unfortunately, speed
ups by randomized source supersposition and subsampling go typically at the expense
of leaking energy from imaged reflectors to incoherent artifacts. Hence, the key ques-
tion is to find a solver that mitigates these artifacts and restores the amplitudes at
an overhead small compared to the speed up.

Stochastic-average approximations with warm starts

To address the slow decay of the error of SAA and the delicacy of the SA, we combine
ideas underlining these methods by casting the original imaging problem into a series
of much smaller subproblems that work on different independent subsets of random
source-encoded supershots (Herrmann and Li, 2011). For linearized inversion, this
approach corresponds to drawing a collection of supershots, followed by least-squares
imaging, and using these images as warm starts for a new linearized inversion with
a new independently drawn collection of supershots. This process is repeated until
no longer progress is made towards the solution. In Algorithm 1, we outline this
procedure for a generic subproblem solver P(RM;x0) that uses warm starts x0.
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Two subproblem solvers

Because algorithm 1 gives us flexibility regarding the subproblem solver, we propose
to compare two solvers, namely P`2(RM)—solved by a limited number of iterations
of LSQR (Paige and Saunders, 1982)—and

P`1(RM, τ) : minimize
x

1

2
‖b−Ax‖22 subject to ‖x‖1 ≤ τ. (4)

We solve the latter problem, known as the Least Absolute Shrinkage and Selection Op-
erator (LASSO Tibshirani, 1997) problem, by a spectral-projected gradient method
(see e.g., Berg and Friedlander, 2008, for details).

With the LSQR solver, we regularize the inverse of the wave-equation Hessian
by limiting the number of iterations of LSQR (Hansen, 1997). This is necessary
because otherwise we may create imaging artifacts related to the null space of the
(dimensionality-reduced) Hessian. The total number of PDE solves required by LSQR
is proportional to N`2K

′, with N`2 the number of iterations required by the `2-norm
solver. Conversely, we control the null space with LASSO by sparsity promotion. To
take full advantage of sparsity promotion as a regularization, we include the curvelet
synthesis matrix (Candès et al., 2006) in the definition of the dimensionality-reduced
Born scattering operator A. The migrated image is then calculated by applying
curvelet synthesis on the x that solves Equation 4. The total number of PDE solves
required by this algorithm is proporional to N`1K

′ with N`1 the number of iterations
required by the `1-norm solver. In these computations, the computational overhead
of the curvelet transform is negligible compared to the cost of solving PDE’s and is
therefore ignored.

Leveraging the Pareto curve

In the noise-free case, sparsity-promoting imaging involves the solution of the follow-
ing optimization problem:

minimize
x

‖x‖1 subject to b = Ax. (5)

Efficient `1 solvers for this problem are typically based on solutions of a series of
relaxed subproblems, where components are allowed to enter into the solutions con-
trollably. It is widely known that these approaches lead to a reduction in the number
of iterations to reach the solution. The spectral projected-gradient algorithm (SPG`1

Berg and Friedlander, 2008) uses this principle by solving a series of LASSO problems
where the τ ’s are increased intelligently. In this method, the Pareto boundary—the
trade-off curve delineating feasible and infeasible solutions as a function the `2-norm
of the data misfit and the model’s `1-norm—is exploited to compute the relaxations by
root finding that uses convexity and smoothness of the Pareto curve. See Figures 2(a)
and 2(b), which illustrate this principle, and the corresponding solution path. As we
can see this approach uses a limited number of matrix-vector multiplies. Because
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the cost of the solver is determined by this number of multiplies, this approach is
particularly suitable for large-scale geophysical problems (Hennenfent et al., 2008).

Unfortunately, the degree of randomized dimensionality reduction determines the
amount of cross-talk that results from the inversion, and hence we can not reduce
the problem size too much. Therefore, we improve convergence by drawing new mini
batches whenever a LASSO subproblem is solved. Because the solution is maximally
sparse at that point, it is natural to select the new set of supershots and continue with
a warm start of the algorithm for the next subproblem. We calculate the τ ’s with
SPG`1’s root finding. This principle is illustrated in Figure 2(b) where the system
of equations now changes after solving each subproblem. Of course, this approach is
only justified as long as K ′ is not too small such that Pareto curves remain similar
for different realization of the RM’s. To verify the assumption of similarity amongst
different Pareto curves, we plotted four realizations of these curves for K ′ = 12 (four
simultaneous shots and three frequencies) in Figure 2(c). These curves clearly make
the case that we should be able to continue using SPG`1’s root finding.

EMPIRICAL PERFORMANCE STUDY

To compare the proposed algorithm, we conduct a series of synthetic imaging exper-
iments based on the smoothed Marmousi model (Bourgeois et al., 1991) plotted in
Figure 3(a). This model, which also defines the medium perturbation (Figure 3(b)),
is used as the background-velocity model for migration. With this model, we gen-
erate time-harmonic input data by subtracting solutions of the Helmholtz equation
for the true and smoothed velocity. We use a nine-point stencil (Jo et al., 1996) and
absorbing boundary conditions on a 143×384 grid with a grid size of 24 m. To mimic
real applications, we solve the Helmholtz systems on the fly during the inversion. The
length of the time record is 2.4 s and we use 192 shot locations, with a shot spacing
of 48 m, and 384 receiver positions sampled with a receiver spacing of 24 m.

To establish a baseline for comparison, we first compute a least-squares reference
image by solving Equation 1 for all 192 shots and 10 randomly selected frequencies and
10 iterations of LSQR. This baseline image corresponds to a batchsize of K = 1920.
The result of this exercise is included in Figure 4 for a Ricker wavelet with a central
frequency of 12 Hz.

We also solve a series of dimensionality reduced subproblems with 8 supershots
and 3 frequencies (K ′ = 24) for 10 subproblems with LSQR (P`2(RM)) and SPG`1

(P`1(RM)) each with and without independent renewals of RM. The results of these
experiments are summarized in Figure 5. From these experiments, we can make the
following observations. First, redrawing the supershots after solving each subprob-
lem improves the performance of both solvers. This can be understood because these
renewals remove possible correlations between RM and the current estimate for the
(curvelet-domain) velocity perturbation. Second, the images obtained by sparsity
promotion are clearly superior in quality compared to the least-squares results. This
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Projected gradient. Our application of the SPG algorithm to solve (LSτ ) follows
Birgin, Mart́ınez, and Raydan [5] closely for the minimization of general nonlinear
functions over arbitrary convex sets. The method they propose combines projected-
gradient search directions with the spectral step length that was introduced by Barzilai
and Borwein [1]. A nonmonotone line search is used to accept or reject steps. The
key ingredient of Birgin, Mart́ınez, and Raydan’s algorithm is the projection of the
gradient direction onto a convex set, which in our case is defined by the constraint
in (LSτ ). In their recent report, Figueiredo, Nowak, and Wright [27] describe the
remarkable efficiency of an SPG method specialized to (QPλ). Their approach builds
on the earlier report by Dai and Fletcher [18] on the efficiency of a specialized SPG
method for general bound-constrained quadratic programs (QPs).

2. The Pareto curve. The function φ defined by (1.1) yields the optimal value
of the constrained problem (LSτ ) for each value of the regularization parameter τ .
Its graph traces the optimal trade-off between the one-norm of the solution x and
the two-norm of the residual r, which defines the Pareto curve. Figure 2.1 shows the
graph of φ for a typical problem.

The Newton-based root-finding procedure that we propose for locating specific
points on the Pareto curve—e.g., finding roots of (1.2)—relies on several important
properties of the function φ. As we show in this section, φ is a convex and differentiable
function of τ . The differentiability of φ is perhaps unintuitive, given that the one-
norm constraint in (LSτ ) is not differentiable. To deal with the nonsmoothness of
the one-norm constraint, we appeal to Lagrange duality theory. This approach yields
significant insight into the properties of the trade-off curve. We discuss the most
important properties below.

2.1. The dual subproblem. The dual of the Lasso problem (LSτ ) plays a
prominent role in understanding the Pareto curve. In order to derive the dual of
(LSτ ), we first recast (LSτ ) as the equivalent problem

(2.1) minimize
r,x

‖r‖2 subject to Ax + r = b, ‖x‖1 ≤ τ.
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Fig. 2.1. A typical Pareto curve (solid line) showing two iterations of Newton’s method. The
first iteration is available at no cost.
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

min
x
�A1x− b1�2 s.t �x�1 ≤ τ1

min
x
�A2x− b2�2 s.t �x�1 ≤ τ2

min
x
�A3x− b3�2 s.t �x�1 ≤ τ3

(b)
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(c)

Figure 2: SPG`1 and batching. (a) Newton root finding using the convexity and
smoothness of the Pareto curve (adapted from Berg and Friedlander (2008)). (b) Se-
ries of LASSO subproblems with renewals for the collections of supershots (adapted
from Berg and Friedlander (2008)). (c) Pareto curves for different independent real-
izations of the dimensionality-reduction (K ′ = 12) operator RM.
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can be explained by CS. Third, the sparsifying result with renewals, albeit noisy, com-
pares favorably to the baseline image in certain areas; e.g. it has higher resolution and
better resolved amplitudes at depth. In summary, we obtained a remarkably good re-
sult with a significantly reduced computational cost. We attribute this performance to
curvelet-domain compressibility, which serves as a strong prior that mitigates source
crosstalk and regularizes the inversion.

(a)

(b)

Figure 3: The Marmousi model. (a) Smoothed background-velocity model. (b)
Velocity perturbation, defined by the difference between the true and smoothed
background-velocity models.

Convergence as a function of the number of PDE solves

The possible gains in computation speed of our solvers hinges on the interplay between
the mini batch size and the number of matrix-vector multiplies required by the solver
to bring down both the data residue and to recover the artifact-free image. The
product of these two factors determines the number of PDE solves. To measure the
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Figure 4: Baseline image calculated for all data (192 sources and 10 frequencies)
with 10 iterations of LSQR.

(a)

(b)

Figure 5: Stochastic-average approximation with LSQR. (a) Image obtained by Al-
gorithm 1 with P`2(RM) with 10 independent redraws for RM. (b) The same but
with the same RM.
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(a)

(b)

Figure 6: Stochastic-average approximation with SPG`1. (a) Image obtained by
Algorithm 1 with P`1(RM) for approximately the same number of PDE solves.(b)
The same but with the same RM.
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performance of the proposed curvelet-based stochastic-average approximation with
warm starts, we plot this number versus the model-error energy for a fixed ratio
of K/K ′ = 80 and n′s/n

′
f = 8/3. The results of this exercise with and without

redraws are plotted in Figure 7. This plot clearly demonstrates a more rapid decay
for the model-space error (difference between true and estimated model) in case of
independent redraws of the RM’s. Compared to the baseline problem with “all” data,
we obtain approximately a fourfold speedup if we factor in the number of iterations
required by the solver. On first glance, this speedup may not be significant. However,
we expect a larger uplift in 3D where there are many more sources. In addition, with
our dimensionality reduction we are able to approximately solve the BP problem
(cf. Equation 5). Without the dimensionality reduction this would not have been
possible because of the number of iterations required by one-norm solvers.
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Figure 7: Two-norm error between the true and recovered medium perturbation as a
function of the number of PDE solves (for P`1(RM)). Convergence is clearly improved
by drawing new randomized collections of supershots after each subproblem is solved.

Recovery quality as a function of batchsize

As we have seen from the previous example, computational gains can be made us-
ing the proposed stochastic-average approximation with relaxed LASSO’s. To get a
better understanding of the relationship between the recovery error and minibatch
size, we also conduct a series of experiments where we vary the subsampling ratio’s
and the ratio supershots-over-frequencies while approximately fixing the number of
PDE solves. The results of this exercise are summarized in Table 1. As expected,
the numbers in Table 1 generally confirm increasing recovery errors for increasing
subsampling ratios albeit there is not a very strong relationship between the recovery
quality and the subsampling ratio compared to results presented in the literature (LI
and Herrmann, 2010). The fact that our results were generated with renewals offers
an explanation for the weaker dependence on the subsampling ratios.
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CASE STUDY: THE BG COMPASS MODEL

To test our imaging algorithm in a more realistic setting, we consider a synthetic veloc-
ity model with a large degree of well-constrained variability. To build the background-
velocity model, we employ our modified Gauss-Newton method with sparse updates
in 10 overlapping frequency bands on the interval 2.9−22.5Hz and with initial model
plotted in Figure 8(a). (Note that this approach reported in Li et al. (2011) is based
on a similar dimensionality reduction technique as presented in this paper.) The out-
put of this procedure is plotted in Figure 8(b) and is used as the background-velocity
model for our imaging algorithm.

We parametrize the velocity perturbation on a 409× 1401 grid with a gridsize of
5 m. Again, we use the Helmholtz solver to generate data from 350 source positions
sampled at an interval of 20 m and 701 receivers sampled with an interval of 10 m.
We use 10 random frequencies in our simulations selected from the interval 20−50 Hz
and scaled by the spectrum of a 30 Hz Ricker wavelet. The input data is given by the
difference between simulations with the true and initial velocity models (Figure 8(b)).
As before, we solve 10 subproblems P`1(RM) with and without independent redraws
of RM. The result of this exercise is summarized in Figure 9 and clearly show
significant improvements from the redraws. Not only is the crosstalk removed more
efficiently but the reflectors are also better imaged in particular at the deeper parts
of the model where recovery without redraws is not able to image the events.

DISCUSSION

Efforts to speed up computational costs of linearized imaging roughly fall into two cat-
egories. First, there are methods that aim to “nearly diagonalize” Green’s functions
(Douma and de Hoop, 2007) or wave-equation Hessians (Herrmann et al., 2008) using
transform-domain techniques such as curvelets. These methods exploit the property
that curvelets remain near invariant under wave propagation, which in principle, leads
to fast algorithms. Unfortunately, the engineering of concrete and explicit implemen-
tations of these approximations is involved, and may carry a significant overhead
(Andersson et al., 2008). Conversely, randomized dimensionality reduction is simpler
because it utilizes the notion of curvelet-invariance implicitly via transform-domain
sparsity. (Propagated wavefields remain compressible in curvelet frames. See Smith,
1998; Demanet and Peyré, 2011, who rigorously prove this property.) This feature
explains the success of our proposed method, which benefits from the availability
of wave simulators and the ability of curvelets to sparsely represent seismic images.
By promoting sparsity, we are able to exploit continuity along the reflectors without
requiring a data-adaptive step that requires prior information on the dip field of the
reflectors (Guitton et al., 2010).

By considering dimensionality-reduced subproblems as CS-like sparse recovery
problems—where the originally “overdetermined” system is turned deliberately into
an underdetermined system—we remove the crosstalk artifacts and restore the ampli-
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(a)

(b)

Figure 8: Full-waveform inversion result. (a) Initial model. (b) Inverted result
starting from 2.9Hz with 7 simultaneous shots and 10 frequencies in each of the 10
frequency bands.

The University of British Columbia Technical Report. TR-2011-03, August 9, 2011



Herrmann and Li 17 compressive imaging

(a)

(b)

(c)

Figure 9: Dimensionality-reduced sparsity-promoting imaging from random subsets
of 17 simultaneous shots and 10 frequencies. We used the background velocity-model
plotted in Figure 8(b) (a) True perturbation given by the difference between the true
velocity model and the FWI result plotted in Figure 8(b). (b) Imaging result with
redraws for the supershots. (c) The same but without redraws. Notice the significant
improvement in image quality when renewing collection of supershots after solving
each LASSO subproblem.
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tudes by iterating on highly dimensionality reduced subproblems. Not withstanding
an ill-conditioned Hessian, spectral-projected gradients makes good progress towards
the solution in relatively few matrix-vector multiplies. A possible explanation for this
phenomenon and the benefit from redraws is that compressive sampling the sources
does not make the dimensionality-reduced Hessian significantly more ill conditioned.
This is after all the premise of compressive sensing where the condition number of
sampling matrices is being controlled by design. In addition, recent work by Mon-
tanari (2010) has shown that redraws help to remove possible correlations between
the solution vector and the source encoding and this increases the convergence of
solutions based on iterative soft thresholding. We can argue that we are observing
this effect empirically. Finally, our approach is also reminiscent of randomized “block
Kaczmarz” (Strohmer and Vershynin, 2009) and to recent work by Friedlander and
Schmidt (2011); Tristan van Leeuwen and Herrmann. (2011) who also propose sam-
pling strategies. However, finding the best sampling strategy itself is still an open
research problem; see, for example, Friedlander and Schmidt (2011); Tristan van
Leeuwen and Herrmann. (2011).

Because our formulation includes contributions form the wave-equation Hessian
more theoretical work will be necessary to (i) compensate for the “coloring” by this
operator, e.g. by solving weighted `1-norm problems and (ii) analyze the coherence and
restricted-isometry properties of the dimensionality reduced Hessian, using practical
techniques recently developed by Mansour et al. (2011). These latter results are
particularly exciting because they allow for

• an efficient imaging technology with a controllable error. As in CS, this error
depends on the subsampling ratio and on the compressibility of the model in
the sparsifying domain. This means that our sparse recovery algorithm returns
images that can be considered as images we would have obtained by keeping
only a small fraction of the largest transform-domain (curvelet) coefficients.
The larger the batch size, the larger this fraction, and the better the recovery
by virtue of the transform-domain compressibility. Clearly, this property differs
fundamentally from Monte-Carlo techniques where the error decays slowly with
the batch size.

• an integration of dimensionality reduction with acquisition. For instance, we
could envisage “online” acquisition during which simultaneously acquired data
is continuously inverted with a procedure reminiscent of the approach outlined
in this paper.

CONCLUSIONS

We introduced an efficient algorithm to solve the linearized imaging problem. Our
method combines recent findings from the fields of stochastic optimization and com-
pressive sensing and turns the originally “overdetermined” seismic imaging problem
into a series of underdetermined dimensionality-reduced subproblems. By considering
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these subproblems as sparse-recovery problems, we were able to create high-fidelity
images at a fraction of the computational cost. The final image can be considered as
the result of curvelet-domain sparsity-promoting migration.

We found this curvelet-domain sparsity promotion essential because it controls
the null space of the Hessian and removes source crosstalk due to the randomized
dimensionality reduction via supershots. Solvers of the reduced problems that solely
rely on least-squares are not able to accomplish this.

In summary, our approach can be seen as an instance of a new randomized
dimensionality-reduction paradigm where the costs of computations are no longer
dominated by the discretization but by transform domain sparsity of the model.
In this new paradigm of randomized inversion, dimensionality reductions allow us to
solve (linearized) inversion problems in ways, which previously, would have been com-
putationally infeasible. The examples presented in this paper support this observation
and show highly competitive results on synthetic model with realistic complexity.
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Result: Estimate for the model x̃
x0 ←− 0 ; // initial model

k ←− 0 ; // initial counter

while ‖x0 − x̃‖2 ≥ ε do
k ←− k + 1; // increase counter

x̃←− x0; // update warm start

RM←− Draw(RM); // draw new subsampler

x0 ←− Solve(P(RM); x̃); // solve the subproblem

end
Algorithm 1: Stochastic-average approximation with warm restarts

Subsample ratio 0.0006 0.0013 0.0026 0.0033

n′f/n
′
s Signal-noise ratio (dB)

2 1.60 1.63 1.86 1.95
1 1.62 1.75 1.87 1.99
0.5 1.63 1.77 1.98 2.06

Speed up (×) 1536 768 384 307

Table 1: Signal-to-noise ratios, SNR = −20 log10(
‖x−x0‖2
‖x‖2 ) for sparse curvelet-based

recovery for different subsample and frequency-to-shot ratios. The vector x is the
inverted perturbation and x0 is the true perturbation given by the difference between
the true and smooth background model.
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