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Wave-equation based inversions, such as full-waveform inversion, are challenging because of their

computational costs, memory requirements, and reliance on accurate initial models. To confront these

issues, we propose a novel formulation of full-waveform inversion based on a penalty method. In this

formulation, the objective function consists of a data-misfit term and a penalty term which measures

how accurately the wavefields satisfy the wave-equation. Because we carry out the inversion over a

larger search space, including both the model and synthetic wavefields, our approach suffers less from

local minima. Our main contribution is the development of an efficient optimization scheme that avoids

having to store and update the wavefields by explicit elimination. Compared to existing optimization

strategies for full-waveform inversion, our method differers in two main aspects; i) The wavefields

are solved from an augmented wave-equation, where the solution is forced to solve the wave-equation

and fit the observed data, ii) no adjoint wavefields are required to update the model, which leads to

significant computational savings. We demonstrate the validity of our approach by carefully selected

examples and discuss possible extensions and future research.

1 INTRODUCTION

Detailed estimates of subsurface properties can be obtained from seismic data by solving a data-fitting

procedure constrained by the wave-equation. The overal optimization problem consists of finding

a subsurface model and wavefields (one for each source experiment) that minimize the data-misfit

and solve the wave-equation for all the sources. Unfortunately, such a full-space approach that op-

timizes over both model and wavefields is not feasible for large-scale seismic problems because it

requires storing and updating the wavefields for all sources. Instead, the conventional approach to full-

waveform inversion (FWI) is based on a reduced-space approach, whose basic workflow consists of

four steps (Tarantola & Valette 1982); i) solve the wave-equations for all sources to predict the data,
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ii) calculate the misfit between observed and predicted data, iii) solve the adjoint wave-equations using

the data-residual as source-term and iv) correlate the two wavefields for each source and stack over the

sources in order to obtain a model update. We may view this approach as a special solution technique

of the optimization problem where the constraint (the wave-equation) is satisfied at every iteration.

Because steps i) to ii) can be done independently in parallel, this leads to an efficient implementation.

However, it also makes the misfit depend on the model parameters in a very non-linear way. It is this

non-linearity that causes problems in the form of local minima. Research aimed at mitigating these

local minima mainly focusses on continuation from low to high frequencies (Bunks 1995; Sirgue &

Pratt 2004), near to far offsets (Virieux & Operto 2009) or small to large Laplace damping parameters

(Shin & Cha 2009) and different misfit functionals (Cara & Lévêque 1987; Luo 1991; van Leeuwen &

Mulder 2010; Bozda et al. 2011; Moghaddam & Mulder 2012). We refer to Virieux & Operto (2009)

for an extensive overview of current approaches to FWI in exploration seismology. Other approaches

are based on advanced approaches to migration velocity analysis and typically entail a significant in-

crease in computational costs (de Hoop et al. 2006; Shen & Symes 2008; Weibull et al. 2012). The

goal of these approaches is to provide a suitable initial model for FWI that prevents loop-skipping. See

Symes (2008) for an extensive overview of state-of-the art approaches to migration velocity analysis

and their relation to FWI.

In this paper, we propose an alternative to the conventional FWI formulation that exploits a larger

search-space by optimizing over both the wavefields and the model. With this enlarged search space

there is more freedom for the optimization to find a solution, which may alleviate problems related

to local minima. Our main contribution is an efficient algorithm that explores the full search space

without the need of having to store and update the wavefields for all the sources.

We base our method on the observation that the wave equation A(m)u = q defines a relation be-

tween the medium parameter m, the wavefield u, and the source q. While this relation is typically used

to solve for a wavefield given the medium parameters and the source, we could alternatively calculate

the medium parameters if we were given the source and the true wavefield everywhere. Of course,

we usually do not measure this wavefield everywhere. The question then is, can we reconstruct this

wavefield from its measurements at receiver locations and subsequently use this reconstructed wave-

field to estimate the medium parameters? If we exploit the fact that we know the observed wavefield

at the receiver locations, we can formulate a constrained wave-equation that forces the wavefield to

obey the wave equation for the current model and fit the observed data. Given the solution of the

data-constrained wave equation, we update the model parameters and use these updated parameters to

repeat this process in an alternating fashion.

It turns out that we can formalize this approach by reformulating the original full-space approach,
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which defines the optimization problem over both model parameters and wavefields. This novel formu-

lation of full-waveform inversion includes the wave-equation constraint as an additive regularization

term. We introduce a trade-off parameter to control the trade-off between fitting the observed data and

solving the wave-equation. This makes sense because it is not necessarily useful to solve the wave

equation accurately for the wrong model parameters. As such, we arrive at an efficient two-step op-

timization scheme where i) for each source the data-constrained wave equation is solved for a given

trade-off parameter, followed by ii) the computation of a model update from the resulting wavefields

and their corresponding sources.

Compared to traditional methods, our alternating approach has two major advantages. First, there

is no need introduce adjoint or reverse-time wavefields. Second, each step is linear or only mildly

nonlinear in the unknowns. This latter property, in conjunction with the large search space for the

optimization, may lead to a formulation that is less prone to local minima.

The outline of the paper is as follows. First, we review the basic formulation of waveform inver-

sion as a constrained optimization problem (section 2). Next, we introduce the penalty formulation

(section 3) and derive the efficient optimization strategy in detail. Finally, we present a few insightful

examples (section 4) to illustrate the new approach and conclude the paper with a discussion (sec-

tion 5) on future work. Throughout the paper we formulate the inversion in the frequency-demain,

as this greatly simplifies the derivation. A discussion on how to extend these ideas to a time-domain

formulation is given the last section.

2 PDE-CONSTRAINED OPTIMIZATION

Full-waveform inversion in the frequency domain can be formulated as the following PDE-constrained

optimization problem:

min
m,u

M∑
i=1

1
2‖Piui − di‖

2
2 s.t. Ai(m)ui = qi, (1)

where m is a vector with gridded medium parameters; i is the experiment index, running over sources

and frequencies; di are the observed data; Ai(m) = ω2
i diag(m)+L is the descretized Helmholtz operator

with ωi the angular frequency of the ith experiment and L the discretized Laplacian; qi represents the

sources; u = [u1; u2; . . .] are the correpsonding wavefields; and Pi is the detection operator extracting

data at the receivers associated with the ith experiment.

An elegant way to solve these constrained optimization problems is via the following Lagrangian

(Haber et al. 2000):

min
m,u,v
L(m,u, v) =

M∑
i=1

1
2‖Piui − di‖

2
2 + v∗i (Ai(m)ui − qi) , (2)
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where v = [v1; v2; . . .] are the Lagrange multipliers and the symbol ∗ refers to the adjoint. For FWI,

these multipliers can be identified as the adjoint wavefields. Iterative solution techniques of this opti-

mization problem update the model and solve the forward and adjoint wave-equations simultaneously,

thus eliminating the need to explicitly solve the wave-equation at each iteration of the optimization.

Moreover, the objective L(m,u, v) is linear in any one of its variables if the other two are fixed. The

only non-linearity stems from the inner product v∗i (Ai(m)ui − qi), which is fairly benign because it

does not involve the solution of the wave equation A−1
i . Because the constrained optimization explores

a much larger search space, we argue that derivative-driven optimizations of the constrained formu-

lation are less likely to be affected by local minima. Despite this clear advantage, the constrained

formulation is unfortunately not widely adapted because it is unfeasible to store and update all 2M

wavefields as part of an iterative procedure (Epanomeritakis et al. 2008).

For this reason, one usually eliminates the constraints in Equation (1), yielding the following

reduced-space formulation:

min
m

φreduced(m) =
M∑

i=1

1
2‖PiAi(m)−1qi − di‖

2
2. (3)

The gradient of the reduced objective is given by

∇mφreduced =

M∑
i=1

ω2
i diag(ui)∗vi. (4)

To compute this gradient, we need explicit solves of both the forward Ai(m)ui = qi and adjoint wave

equation Ai(m)∗vi = P∗i (Piui − di) for all M experiments at each iteration of the optimization. To

make matters worse, the action of the Hessian requires another three wave-equation solves for each

experiment (Pratt et al. 1998). However, compared to the constrained method, the wavefields, gradient,

and Hessian can be computed in parallel without the need to store all 2M wavefields at any time. While

this reduced formulation eliminates the need to store and update the wavefields, its objective is very

non-linear as a function of m because its dependency involves the solution of a wave equation. So the

question arises: can we come up with a formulation that combines advantages of both formulations?

3 THE PENALTY METHOD

To arrive at a method that has the best of both worlds, we cast the constrained formulation (cf. Equation

(1) ) into the following form:

min
m,u

φλ(m,u) =
M∑

i=1

1
2‖Piui − di‖

2
2 +

λ2

2 ‖Ai(m)ui − qi‖
2
2. (5)
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The solution of this problem coindices with that of the constrained problem when λ ↑ ∞ (Bertsekas

1996). We propose an alternating optimization method that solves this optimization problem while

avoiding storage of the wavefields. For this purpose, we first minimize φλ with respect to u by solving

∇uφλ = 0. This gives rise to the following overdetermined sparse linear system for each source, which

we call the augmented wave-equation λAi(m)

Pi

ui =

λqi

di

 . (6)

This augmented system can be interpreted as a regularized version of the original wave-equation where

the solution is forced to not only adhere to the wave equation, but also to fit the observed data, which is

related to the solution through the restriction operator. As with the Helmholtz equation, we can solve

this system efficiently in 2D via factorization techniques or in 3D using a (preconditioned) iterative

solver. Given the wavefields that solve the augmented wave-equation (Equation (6)), we compute the

new model by minimizing φλ with respect to m. This can be done by solving ∇mφλ = 0, where

∇mφλ(m,u) =
M∑

i=1

ω2
i diag(ui)∗ (Ai(m)ui − qi) . (7)

Note that the expression for this gradient is very similar to that of the reduced objective (cf. Equation

(4)), except that is does not require an adjoint wavevield. The system of equations ∇mφλ = 0 can be

re-written as:
M∑

i=1

ω2
i diag(ui)∗diag(ui)m =

M∑
i=1

diag(ui)∗ (qi − Lui) , (8)

By assembling the terms in a running sum, we can form this system of equations without storing all

the wavefields. Aside from this important feature, which allows us to compute and accumulate the

wavefields independently, the above system is strictly diagonal so it is trivial to calculate the new

model from Equation (8). Moreover, the above expression corresponds to a Newton step where the

diagonal matrix on the left can be considered as the Hessian of φλ with respect to m.

In summary, our approach combines advantages of both the Lagrangian and reduced approaches

by exploiting the full search space while avoiding storage of all the wavefields. In addition, the method

explicitly relaxes the constraint by adding a data-misfit regularization to the wave equation. Next, we

consider some illustrative examples.

4 EXAMPLES

These examples serve as a proof of concept of our penalty method and are based on a relatively

simple 5-point discretization of the 2D acoustic constant-density Helmholtz equation. To allow people



6 Tristan van Leeuwen and Felix J. Herrmann

to evaluate the novel aspects of the proposed method, we have made the code available at https:

//github.com/slimgroup/PenaltyMethodGJI to reproduce the examples below.

4.1 Example 1

To illustrate the information in the solution of the data-augmented wave-equation, we consider a square

perturbation embedded in constant background velocity model (2000 m/s), see Figure 1 (a). To mimic

a transmission cross-well experiment, we place 51 sources and receivers at either side of the model.

The corresponding scattered wavefield (i.e., the difference between the wavefield for the perturbed

medium and the background medium) at 10 Hz for a single source located at x = 10m, z = 500m

is plotted in Figure 1 (b). The goal of solving the augmented wave-equation (6) is to reconstruct this

wavefield from observations at receivers along x = 990m, given the same background velocity model.

The resulting wavefield is plotted in figure 2 (a). Because we included the data-constraint in the wave

equation, we are able to partly reconstruct the imprint of the perturbation observed in of the original

scattered wavefield. We use this information subsequently to calculate a new estimate for the model

by solving Equation (8). The result of this exercise is plotted in Figure 2 (b). Repeating this procedure

leads to a better reconstruction of the scattered wavefield, which is also observed in the corresponding

model estimate as can be seen in Figure 4. For these last examples the region around the receivers was

windowed out to suppress artifacts in the model.

4.2 Example 2

To support our claim that the enlarged search space of the penalty method may alleviate problems

related to local minima, we conduct an experiment where the unknown 1D velocity profile v(z) =

v0 + αz is parameterized by only two parameters. We plot the objective functions corresponding to

the reduced (cf. Equation (3)) and penalty approaches (cf. Equation (5)) as a function of v0, α for

various values of λ. As we can see from Figures 4.2 (a,b), the objective functions for a small λ exhibit

no local minima. Moreover, we observe that (i) the global minima for the reduced and the penalty

formulation for different values of the control parameters coincide and (ii) that the behavior of the

objective function for the penalty method converges to the one of the reduced method as λ increases.

Effectiveily, the parameter λ controls the width of the basic of attraction of the penalty objective.

4.3 Example 3

To demonstrate convergence behavior of the penalty method compared to the reduced method, we in-

vert single source, single frequency data for a 1D gridded velocity profile v(z) = v0+αz+δv exp(−β2(z−

https://github.com/slimgroup/PenaltyMethodGJI
https://github.com/slimgroup/PenaltyMethodGJI
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z0)2) for values v0 = 2000 m/s, α = 0.7 1/s, δv = 200 m/s ,z0 = 2000 m and β = 10−3. We use a max-

imum offset of 3000 m, a frequency of 5 Hz and a gridspacing of 50 m. The initial model is a linear

gradient with v0 = 2000 m/s and α = 0.7 1/s. To compare both methods on equal footing, we use

a steepest-descent method with a fixed step length. Convergence plots for the value of the objective

function and the two-norm of the gradient are included in Figure 5. These results show that the residue

of the penalty method decays faster and that the reduced method stalls after about 30 iterations. A

comparison of the forward modeled data for the inversion results for both methods is included in Fig-

ure 6 (a). This suggests that the reduced method stalled because of a loopskip around receiver 201.

Conversely, the penalty method is not loop skipped and explains the data perfectly. While the data-fit

may suggest that the reduced method also yields a reasonable result, the corresponding estimate for

the velocity is completely wrong as can be seen in Figure 7. These results indicate that the penalty

method suffers less from local minima and performs well for an initial model that is too inaccurate

for the conventional formulation. Remember, we used a relatively simple optimization method, which

explains the large number of iterations. In practice, we would use a more efficient optimization method

to speed up the convergence.

4.4 Example 4

To show that the penalty formulation can also be used to image reflected data, we consider a medium

with a constant background velocity and three perturbations as depicted in Figure 8. We use this

model to generate data for 101 equi-spaced sources and receivers located at the top of the model

and frequencies 1, 2, . . . , 10 Hz. A so-called reverse-time migration can be obtained by computing

the gradient of the reduced objective Lailly (1983), requiring the computation of both forward and

adjoint wavefields, followed by a correlation. The resulting image is shown in Figure 8 (b). Likewise,

the gradient of the penalty objective (Equation (7)) can be used to obtain an image. However, this

does not require the computation of an adjoint wavefield. Moreover, we can easily compenstate for

amplitude effects by solving Equation (8) instead of using just the gradient. This requires almost no

additional computations as it entails only a scaling with the norm of the wavefield. The resulting image

is shown in Figure 8 (c). Aside from requiring only half of the number of wave-equation solves, the

image derived from the penalty method is better resolved. The fact that Equation (8) corresponds to a

Newton step explains the apparent improvement.
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5 CONCLUSIONS AND DISCUSSION

By recasting the constrained formulation of full-waveform inversion into a penalty formation, we

arrive at a novel formulation of full-waveform inversion where the misfit consists of two terms. The

first term measures the data-misfit term and the second enforces the wave equation. Both terms are

balanced by a trade-off parameter. As in the Lagrange formulation, our method explores a larger search

space by minimizing over both the model and the wavefields and this helps to mitigate some of the

problems with local minima. Moreover, the penalty objective depends on the model parameter through

discretized wave-equation itself, instead of through its inverse as is the case for the reduced objective.

Our main contribution is the introduction of a two-step approach where an augmented wave-equation

is solved, followed by solving a sparse linear system for the model. Because our method solves the

augmented wave equations independently, we avoid storage of the wavefields and are able to acculate

the gradient and Hessian. As such, our method has the best of both worlds by working in the enlarged

search space without the need to update and store the forward and adjoint wavefields for all sources.

Initial tests of our formulation confirm the validity of our approach and that it is less sensitive to

inaccurate initial models. We also successfully carried out true-amplitude “reverse-time” migration

without the need to compute adjoint wavefields.

We envisage several extensions of the proposed method. First, since the problem remains linear

in the sources randomized source subsampling techniques, where the inversions are carried out over

subsets of sources, still apply. Second, extension to 3D frequency-domain waveform inversion is trivial

as long as there exists an efficient scalable method to solve the augmented Helmholtz equation. Third,

extension to multi-parameter (elastic) inversion and multi-component measurements is straightforward

although the relationship between the wavefields and the model parameters may become nonlinear.

Finally, the proposed methodology can be extended to a time-domain formulation by incorporating

the data-constraint in a coupled system of ODEs representing a spatial discretization of the wave

equation. If an efficient time-stepping algorithm exists for such a system, this approach eliminates the

need for checkpointing since it is no longer necessary to compute solutions of the wave equation that

propagate backwards in time. As with the frequency-domain approach, the matrices needed to solve

for the model updates can be aggregated during the computations.

Future research will be aimed at establishing a formal convergence theory for the proposed method.

In particular, it is not clear how the penalty parameter λ should be chosen and what kind of contin-

uation strategy should be used. Although there are initial indications that the method is not overly

sensitive to noise more research is needed to establish this.
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Figure 1. (a) Square velocity perturbation embedded in constant background, (b) corresponding scattered wave-

field (i.e., the difference between the wavefield for the perturbed model and the wavefield for the constant back-

ground model) at 5hz for a point sources at z = 500 m, x = 10 m.
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Figure 2. (a) Scattered wavefield obtained by solving Equation (6) for a constant velocity, (b) corresponding

estimate of the model.
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Figure 3. (a) Scattered wavefield obtained after 10 iterations, (b) corresponding estimate of the model.
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Figure 4. Reduced and penalty objective functions for various values of λ as a function of (a) v0 and (b) α.
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Figure 5. Convergence histories in terms of the misfit (solid) and two-norm of the gradient (dash).
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Figure 6. Data corresponding to the reconstructed velocity profiles. The observed data is plotted with a dashed

line.
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Figure 7. Reconstructed velocity perturbations (difference between the reconstructed and initial models) after

1000 steepest-descent iterations. The true velocity profile is plotted with a dashed line.
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Figure 8. (a) True velocity perturbation, (b) traditional reverse-time migration and (c) image obtained with the

penalty method by solving Equation (8).
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