
Model-Parallel Fourier Neural Operators as Learned Surrogates for

Large-Scale Parametric PDEs

Thomas J. Grady II1

tgrady@gatech.edu

Rishi Khan2

rishi@extreme-scale.com

Mathias Louboutin1

mlouboutin3@gatech.edu

Ziyi Yin1

ziyi.yin@gatech.edu

Philipp A. Witte3

pwitte@microsoft.com

Ranveer Chandra3

ranveer@microsoft.com

Russell J. Hewett3,∗

rhewett@microsoft.com

Felix J. Herrmann1

felix.herrmann@gatech.edu

Abstract

Fourier neural operators (FNOs) are a recently introduced neural network architecture for
learning solution operators of partial differential equations (PDEs), which have been shown to
perform significantly better than comparable deep learning approaches. Once trained, FNOs
can achieve speed-ups of multiple orders of magnitude over conventional numerical PDE solvers.
However, due to the high dimensionality of their input data and network weights, FNOs have so
far only been applied to two-dimensional or small three-dimensional problems. To remove this
limited problem-size barrier, we propose a model-parallel version of FNOs based on domain-
decomposition of both the input data and network weights. We demonstrate that our model-
parallel FNO is able to predict time-varying PDE solutions of over 2.6 billion variables on
Perlmutter using up to 512 A100 GPUs and show an example of training a distributed FNO on
the Azure cloud for simulating multiphase CO2 dynamics in the Earth’s subsurface.

1 Introduction

1.1 Motivation

Numerical simulators play an important role in many scientific fields and industries such as weather
forecasting, aerodynamical design, medical, and seismic imaging or reservoir simulations (Gokhberg
and Fichtner, 2016; Schulthess, Bauer, Wedi, Fuhrer, Hoefler and Schär, 2018; Louboutin, Lange,
Luporini, Kukreja, Witte, Herrmann, Velesko and Gorman, 2019; Su, Mayer and MacQuarrie,
2021). Traditional approaches to numerical simulators based on finite differences, volumes, or
elements are designed to be highly accurate, meaning that errors of numerical approximations
are quantifiable and numerical solutions are consistent with the original (continuous) problem
formulation (LeVeque, 2007; Hughes, 2012). In addition, traditional numerical methods are also
generic, meaning that a discretized PDE can be solved for any set of initial/boundary conditions
and input parameters, as long as the stability criteria of the respective discretization are met.
However, these characteristics of numerical simulators come at a price, as they involve strict sets
of conditions of how problems are discretized in space and time, which often leads to large, stiff
systems of linear and non-linear equations that need to be solved repeatedly via expensive iterative

1Georgia Institute of Technology, 2Extreme Scale Solutions, 3Microsoft, ∗Research performed at Virginia Tech.
Current affiliation Microsoft.

1



inversion procedures (Burden, Faires and Burden, 2015). The runtime of the forward model of
many simulations for real-world applications such as weather forecasting or reservoir simulations
can easily lie in the range of a few hours to multiple days, which limits their applicability for
problems that require a large number of simulations, such as uncertainty quantification, inverse
problems, or numerical optimization.

AI-driven approaches to numerical simulations promise the possibility to train fast surrogate
models for approximating solutions of partial differential equations (PDEs), which can be eval-
uated on the order of seconds rather than hours (Sirignano and Spiliopoulos, 2018; Lu, Jin and
Karniadakis, 2019; Karniadakis, Kevrekidis, Lu, Perdikaris, Wang and Yang, 2021). In contrast
to conventional numerical solvers, which have a fixed evaluation cost, AI-driven approaches effec-
tively front-load the computational burden to the training time (offline, including the simulation of
training data), whereas at inference (online) time, trained models can be evaluated several orders
of magnitude faster than the corresponding simulator. This approach is therefore beneficial for
applications that require a large number of simulations, where the cost of data generation and
training itself will be offset at inference time in practical situations where large numbers of sim-
ulations are required. One example for such a scenario is well location optimization in reservoir
simulations, in which operators want to identify the optimal number and locations of wells for oil
and gas production (Nasrabadi, Morales and Zhu, 2012). This combinatorial optimization problem
is conventionally approached with genetic optimization algorithms or more recently reinforcement
learning (RL), but both approaches still require on the order of thousands of simulations and are
therefore not feasible for large-scale problems (Onwunalu and Durlofsky, 2010; Bukhamsin, Farshi
and Aziz, 2010). Deep learning-based surrogate models on the other hand, can be trained at a
fixed upfront cost and evaluated at a fraction of the runtime of a numerical simulator, thus making
it possible to use the surrogate model during optimization (Wang, Chang, Zhang, Xue and Chen,
2022; Salehian, Sefat and Muradov, 2022). In the context of well location optimization, recent
empirical results suggest the break even point (i.e. where the cost of directly running the simulator
for each evaluation of the forward operator exceeds that of generating data and training a surrogate
model) is on the order of a few thousand forward operator evaluations. This value is well within
the number of simulations typically required when solving such a complex nonlinear optimization
program, or performing statistical techniques such as Markov chain Monte Carlo sampling.

In addition to very fast simulation times during inference, deep learning-based approaches offer
the possibility to compute gradients/sensitivities of PDEs using automatic differentiation (AD),
thus making it possible to solve inverse problems without requiring users to manually differentiate
the (forward) solver and implement the corresponding gradients of the simulator with respect to
the input. Here, we highlight this opportunity with a recent example on subsurface CO2 flow
and seismic imaging (figure from (Yin et al., 2022)). The goal of this example is to estimate
subsurface medium parameters such as permeability from seismic data, which is an example of
a coupled multi-physics problem. Contrary to solving fluid-flow PDEs in the forward problem,
the authors employ a learned Fourier neural operator (FNO; Li, Kovachki, Azizzadenesheli, Liu,
Bhattacharya, Stuart and Anandkumar (2020a)) trained to predict the CO2 concentration history
in the subsurface from a given permeability field, which is then converted to a model of the acoustic
wavespeed. The changes in wave speed induced by the expanding CO2 plume can then be indirectly
observed through seismic data. In the corresponding inverse problem, we are given seismic data
at different points in time (i.e. during the expansion of the CO2 plume), and are attempting to
estimate the unknown permeability from this data (figure 1). This task is not (easily) possible
if conventional simulators such as Open Porous Media (OPM) (Rasmussen, Sandve, Bao, Lauser,
Hove, Skaflestad, Klöfkorn, Blatt, Rustad, Sævareid et al., 2021) or GEOSX (Gross and Mazuyer,
2021) are used for the CO2 flow simulation, as neither framework offers sensitivities of the simulated

2



Figure 1: Coupled multi-physics inversion to estimate the subsurface permeability of a porous
medium from seismic data measurements. To invert for the permeability, the authors in (Yin et al.,
2022) first train an FNO that maps a permeability field to the CO2 concentration history, which in
turn is converted to the acoustic wave speed and used for simulating the seismic response. In the
inverse problem, changes in the seismic data are first mapped to changes in the wave speed and
the corresponding perturbations of the CO2 concentration. Using the trained FNO, perturbations
in the permeability can then be directly computed from changes in the CO2 concentration via
algorithmic differentiation and used to solve an inverse problem for estimating the permeability
from seismic measurements. Adapted from (Yin et al., 2022).

CO2 concentration with respect to the permeability. However, for an FNO implemented in deep
learning frameworks like PyTorch (Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin,
Gimelshein, Antiga et al., 2019) or Tensorflow (Abadi, Barham, Chen, Chen, Davis, Dean, Devin,
Ghemawat, Irving, Isard et al., 2016), these sensitivities are readily available through AD, thus
making it possible to implement a coupled inversion framework that enables us to directly invert
for permeability from seismic data (figure 1).

1.2 Challenges

One of the main challenges of adopting AI-driven solvers for real-world simulation use cases is to
scale deep surrogate models such as FNOs to relevant problem sizes beyond small-scale 2D or 3D
time-varying scenarios (i.e. two or three spatial dimensions plus the time dimension). Current
applications of CNNs and FNOs in the literature are based on data parallelism, where each worker
gets a subset of the data and a copy of the entire model, and as such are limited to problem
sizes that are supported by the amount of available memory on a single GPU (Yan, Chen, Harp
and Pawar, 2021; Pathak, Subramanian, Harrington, Raja, Chattopadhyay, Mardani, Kurth, Hall,
Li, Azizzadenesheli et al., 2022). I.e., with data parallelism we have to be able to store at least
one full data sample (of batch size one) on a single GPU, as well as the full network and the

3



corresponding weights, activations (hidden states) and weight gradients. For moderate 3D problem
sizes beyond 643 grid points, even modern GPU architectures such as the NVIDIA Ampere GPU
do not provide sufficient memory to process a single training sample. To train networks for large-
scale 2D and 3D time-varying problems, we are therefore required to partition the network across
multiple GPUs with distributed memory. In addition to data parallelism, popular deep learning
frameworks like PyTorch.Distributed (Paszke et al., 2019), TensorFlow (Abadi et al., 2016) or
Jax (Frostig, Johnson and Leary, 2018) also support a model partitioning technique called pipeline
parallelism, in which the layers of a neural networks are distributed across multiple GPUs. However,
pipeline parallelism does not allow for arbitrary scaling, as each worker must still be able to hold
the entire data and weight tensors for a single layer in memory. Other ongoing research on model
parallelism has mainly focused on models for natural language processing (NLP) and especially
transformer architectures, which currently represent the largest models in terms of number of
parameters, such as Megatron (Shoeybi, Patwary, Puri, LeGresley, Casper and Catanzaro, 2019)
GPT3 (Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Sastry, Askell
et al., 2020) or the Megatron-Turing Natural Language Generation model (NLG) (Smith, Patwary,
Norick, LeGresley, Rajbhandari, Casper, Liu, Prabhumoye, Zerveas, Korthikanti et al., 2022). The
latter is implemented with DeepSpeed (Rasley, Rajbhandari, Ruwase and He, 2020), a distributed
programming framework that supports a combination of data parallelism with model/parameter
parallelism (called zero-redundancy optimizer), as well as a technique that combines all of data-
pipeline- and model parallelism (3D parallelism). While DeepSpeed’s 3D parallelism enables users
to distribute models across multiple GPUs, it does not provide users with fine-grained control over
how individual tensors are partitioned (i.e. both data or weight tensors), thus making it difficult
to adopt DeepSpeed for architectures such as FNOs that are distinctly different from transformers
for NLP.

1.3 Contribution

In this work, we propose the adoption of domain decomposition for implementing model parallelism
in the context of learning PDE solvers. By model parallelism via domain decomposition, we mean
that we partition all tensors of our neural network, including the input and output tensors, weight
tensors, and gradient tensors along one or more of the feature dimensions (i.e. space and time). This
stands in contrast to data parallelism, where tensors are only partitioned along the batch dimension
(which is conventionally the first tensor dimension). Note that neural network weights do not have
a batch dimension so, in data parallelism, each worker maintains a full copy of the network at
all times, which becomes problematic as soon as the network does not fit onto a single GPU. In
contrast, domain decomposition in principle enables us to scale to arbitrary network and data sizes,
as not only the input data, but also weights and hidden states are partitioned across workers, so no
single worker ever needs to store the full network. In contrast to DeepSpeed’s 3D parallelism for
NLP transformers, we introduce a new distinct tensor partitioning strategy for the aforementioned
Fourier neural operators (FNOs) (Li et al., 2020a), which use spectral convolutions whose weights
are elementwise operators and are thus naturally model-parallel, but also require distributed multi-
dimensional Fourier transforms as part of their architecture. We base our FNO implementation on
DistDL (Hewett, Grady and Merizian, 2021), a Python package that provides domain decomposition
support for PyTorch by integrating communication primitives as linear operators into PyTorch’s
default AD tool autograd (Hewett and Grady II, 2020). Like Mesh Tensorflow (Shazeer, Cheng,
Parmar, Tran, Vaswani, Koanantakool, Hawkins, Lee, Hong, Young, Sepassi and Hechtman (2018);
an extension to the Tensorflow machine learning library that adds domain decomposition to layers),
DistDL also allows users to introduce domain decomposition to base layers (e.g. convolution, matrix

4



multiplication, etc.) of its underlying neural network framework (i.e. PyTorch). However, DistDL
also enables the use of data and weight tensors of arbitrary dimensionality and fine grain control of
tensor partitions, both of which are critical for model parallelism in FNOs. Furthermore, DistDL
also exposes its underlying parallel primitives as PyTorch Modules, allowing for easier development
of custom domain-decomposed network layers and architectures.

1.4 Background — Fourier Neural Operators

Neural operators (NOs; Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, Stuart and Anandku-
mar (2020b)) are a recently introduced neural network architecture that learn mappings between
infinite-dimensional function spaces, in contrast to traditional neural networks wherein mappings
are learned between large (but ultimately finite) dimensional vector spaces. To do this, neural op-
erators often employ architectural techniques to ensure that their output does not significantly vary
with changes to the discretization of the corresponding input. In the context of learning solution
operators to families of elliptic PDEs, NOs attempt to learn the mapping

Gθ : A → U (1)

where θ ∈ Θ describes the parameterization of the PDE, A is a function space containing the
initial conditions of the PDE, and U is a function space containing the solution of the PDE (Li
et al., 2020a) (Li et al., 2020b). To learn this mapping, NOs employ an iterative architecture,
constructing a sequence of functions ν1, . . . , νK in a lifted space. ”Lifted” here means that the
input function a : Rda → R is transformed to the first function in the sequence ν1 : Rd → R, d > da
via some pointwise transformation at each point x ∈ Rda (e.g. in the discrete case, an affine
transformation and pointwise nonlinearity along the channel dimension of the input tensor). The
last value in this sequence νK is then projected down to an output u : Rdu → R via a similar
pointwise transformation, with the training objective that u matches the solution of the PDE in a
given norm (e.g. L2, Sobolev). The iterative update between elements of this sequence is given by

νk+1(x) = σ (Wνk(x) + (K(ϕ)νk) (x)) (2)

where σ is a nonlinear pointwise function, W a learned linear transformation along the channel
dimension, and K(ϕ) a kernel integral operator with learned parameterization ϕ. Fourier neural
operators (FNOs) choose this kernel operator to be

(K(ϕ)νk) (x) = F−1 (Rϕ · (Fνk)) (x), (3)

where F is the Fourier transform, and Rϕ is a restriction operator, which contains a low-pass filter
and learned pointwise weight multiplication parameterized by ϕ (Li et al., 2020a). This operator
is referred to as a spectral convolution. The cutoff of the low pass filter in Rϕ will depend on a
user-defined parameter describing how many Fourier-modes to keep in each dimension.

When learning solutions to time-dependent PDEs, FNOs are most often trained on discretized
pairs of input data (X,Y), where X is a multidimensional tensor containing a discretization of
the initial state a(x) ∈ A and Y is a discretization of the time-evolving solution to the PDE,
u(x, t) ∈ U .

5



2 Parallel Implementation

2.1 Background - Abstraction of Parallelism

In order to successfully implement complex parallel algorithms acting on high-dimensional tensors
within the context of an automatic differentiation framework (e.g. PyTorch autograd (Paszke,
Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga and Lerer, 2017)), it is important
to have a clear and expressive abstraction for high-dimensional parallel programming primitives
and their adjoints (Utke, Hascoet, Heimbach, Hill, Hovland and Naumann, 2009). Specifically,
in the context of neural networks, domain decomposition of data and network weights poses a
complex engineering challenge. Unlike in traditional PDE solvers where the domain of interest
is of fixed size and decomposed over a fixed worker topology from one timestep to the next (e.g.
Devito (Louboutin et al., 2019)), neural networks often deal with a sequence of transformations
where the shape, dimensionality, and decomposition of the data and weight tensors may vary from
layer to layer. Thusly, they have challenges more akin to those of domain-decomposed PDE solvers
with adaptive mesh refinement (e.g. PARAMESH (MacNeice, Olson, Mobarry, De Fainchtein and
Packer, 2000)). To deal with this complexity, we follow the approach of Hewett and Grady II
(2020), describing parallel primitives in terms of linear operators acting on domain-decomposed
tensors. In Hewett and Grady II (2020), the authors derive a rigorous definition of these primitives
on distributed memory supercomputers from only very basic memory operations such as clearing,
copying, and moving data. Here, we avoid a full re-derivation and focus only on the background
information and operators necessary to implement a distributed FNO. We denote the distribution
of a tensor across a Cartesian topology of parallel workers as a partition. Note that this abstraction
makes no assumptions about the underlying device, data type, or other properties of the algorithm,
and describes only the pattern of communication between parallel workers.

To implement a distributed FNO, two core parallel primitives are required. The first of these
primitives is broadcast, which copies subtensors of a tensor partitioned on one set of workers to
another. As described in Hewett and Grady II (2020), the broadcast operation on tensors extends
beyond the classical parallel broadcast primitive. While it can trivially represent the classical
operation, i.e., copying data from one worker to many, it can also represent an extension of this
operation to tensor partitions. As long as the input and output partitions satisfy the DistDL
broadcasting rules (a subset of the NumPy broadcasing rules (Harris, Millman, Van Der Walt,
Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith et al., 2020)), the action of this
operator between two partitions Px and Py, B{Px}→{Py}, will copy an input tensor x along the
appropriate dimensions as seen in figure 2. Following the definition of the adjoint, a broadcast in
the forward evaluation will induce a sum-reduction in the gradient calculation.

The second of these primitives is repartition, a high-dimensional generalization of all-to-all. The
action of this operator, T{P}→{Q}, changes the distribution of the data from one partition P to
another partition Q, as demonstrated in figure 3. While P and Q are not required to have the same
number of workers, they are required to have the same number of dimensions as the input tensor.
In higher dimensions, an implementation of this primitive is not trivial as any worker may need
to send or receive subtensors to or from any or all other workers (i.e., a many-to-many operation).
Repartition is in some sense the most “general” possible communication primitive for tensors and
its adjoint is also a repartitioning, namely from Q to P .

Ultimately, this linear algebraic formulation of parallel primitives for manipulating domain-
decomposed tensors allows for nontrivial parallel operations to be cleanly expressed within the
mathematical formulation of FNOs, and the usage of DistDL allows for easy integration of these
primitives within PyTorch network architectures.

6



Figure 2: Broadcast of a tensor distributed over a 1× 1× 3 partition Px to a 4× 4× 3 partition Py.
Note that following DistDL broadcasting rules, the global tensor maintains the same size in the
third dimension, as Px and Py are of equal shape in that dimension. Figure from (Hewett et al.,
2021).

Figure 3: Repartition operator changing the partition of a tensor from a partition Px of shape
3× 3× 2 to a partition Py of shape 1× 2× 3. Figure from (Hewett et al., 2021).

2.2 Pointwise Affine Transformations

One of the two core components of FNOs that must be adapted for a distributed setting are the
affine transformations along particular dimensions

y = Wx+ b, (4)

where the action of W on x can be thought of as a tensor contraction along a given dimension
of x. In our implementation, we make the assumption that all pointwise affine transformations
act only along dimensions of x which are not distributed (i.e. the shape of the partition of x in
that dimension is 1). In the context of FNOs, this is a safe assumption to make, as there are
no extremely large weight matrices used in these transforms which would necessitate a distributed
matrix-tensor contraction. Assuming W and b are stored on a size 1 partition Pr, we can apply the
broadcast operator from Pr to a partition Pd of size 1 in dimension d to both W and b. Following
the broadcasting rules described in section 2.1, W and b will be identical on all workers, meaning
each worker can compute Wx+ b along dimension d locally. This gives the operator

y = (B{Pr}→{Pd}W)x+B{Pr}→{Pd}b. (5)

As opposed to each worker having its own independent weight and bias tensors, the inclusion
of a broadcast of the weight and bias terms ensures no solution discontinuities occur at worker
boundaries as seen in the center of the output in figure 4. As an example, consider a tensor x of
shape 10× 20× 64× 64 which is distributed over a partition Px of shape 1× 2× 2× 2. To apply
a 20 × 20 weight matrix W along the channel (2nd) dimension of x, we first apply a repartition
operator T{Px}→{Pc} to x where Pc is of shape 1 × 1 × 4 × 2 (ensuring each worker’s subtensor of

7



Figure 4: Artifacting at parallel worker boundaries and solution inaccuracies on the validation
dataset of a fluid flow problem caused by training a distributed FNO over a 2×2 partition without
broadcasting the weight matrices and bias vectors before applying pointwise transformations.

x has size 20 in the channel dimension). We then broadcast W from a 1 × 1 × 1 × 1 partition Pr

to Pc using the broadcast operator B{Pr}→{Pc}, and locally compute Wx on each worker.

2.3 Distributed Fourier Transform

Performing fast discrete Fourier transforms (FFTs) on domain-decomposed tensors is a well-studied
problem. Current state-of-the-art approaches (Dalcin, Mortensen and Keyes, 2019; Pippig, 2013)
use an iterative procedure, wherein a chain of repartition operators and sequential FFTs are used
to compute the entire FFT over distributed data without ever having to compute a parallel FFT
along any dimension. Note that this works only because the Fourier transform is separable. From a
linear algebra viewpoint, the distributed fast Fourier transform (DFFT) Fdist of an n-dimensional
tensor x distributed over a partition P can then be written1

Fdistx = FIkT{PIk−1
}→{PIk}

. . .FI1T{P}→{PI1}x (6)

where
k⋃

j=1

Ij = {1, 2, . . . , n}, Ij1 ∩ Ij2 = ∅ ∀ j1 ̸= j2. (7)

Each Ij describes an index set of dimensions over which to apply the sequential multidimensional
Fourier transform FIj , and denotes which dimensions of x are present in their entirety on each
worker (i.e. the shape of PIj is 1 in those dimensions). Combining this formulation with PyTorch’s
native multidimensional FFT yields a clean and powerful implementation of a distributed, differen-
tiable n-dimensional FFT, which can also be further generalized to other combinations of separable
transforms. Choosing this selection of index sets is generally problem specific, but a good rule of
thumb is to select them such that the number of repartition operators (and thus generalized all-
to-all communications) is minimized while still being able to fit all subtensors within the memory
constraints of their corresponding parallel workers at all steps of the DFFT. In our implementation,
we find it necessary to only apply a single repartition operator between sequential transforms. I.e.
For an n-dimensional input first taking an FFT over the first n

2 dimensions, repartitioning, and then
taking an FFT over the last n

2 dimensions. We can then take this DFFT and simply replace the

1Optionally, there is an additional repartition operator T{PIk
}→{Q} to change the partition of the data to some

output partition Q, but due to the structure of FNOs, this step is not performed.

8



standard FFT in the spectral convolution to get the a mathematical representation of distributed
spectral convolution operator

(Sdistνk) (x) =
(
F⊤
dist(Rϕ · (Fdistνk))

)
(x). (8)

Practical considerations require that only workers containing nonzero values in the Fourier
domain after the application of the low-pass filter within Rϕ perform any work. To achieve this,
each worker uses information about the underlying partition of the data and the location of its
corresponding local subtensor in the global distributed tensor x to compute whether it will contain
a nonzero value after application of Rϕ. If so, it applies the restriction and pointwise weight
multiplication, otherwise the value is multiplied by zero. Note that all of this is happening on the
output partition PIk of the forward DFFT Fdist, as to remove the need for an unnecessary all-to-all
communication to get the data back to the original partition before applying Rϕ. See figure 5 for
an illustration of an application of Rϕ in a simple 2D case.

Figure 5: Sequential versus distributed application of Rϕ on 2D data distributed over a 3 × 3
partition.

2.4 Full Network

Combining the broadcast operator, repartition operator, and DFFT, we are now able to describe the
distributed FNO (DFNO) in its entirety. Recall that the objective of an FNO acting as a surrogate
to a PDE solver is to map a parameterized input function a(x; θ) to a time-varying solution u(x, t).
FNOs traditionally consist of the following sequence of transformations. First, the input function
is projected to the correct number of output timesteps and lifted to a higher-dimensional space via
two affine transformations along the time and channel dimensions

a1(x, t) = (Wta+ bt)(x, t) (9)

ν1(x, t) = (Wca1 + bc)(x, t) (10)

respectively. For clarity here we omit the parameter θ and assume a has a time dimension of size
1 along which Wt can be applied. To distribute these two transformations, we apply repartition
operators before each to ensure the dimensions on which they act are present entirely on each
worker as in section 2.2. These partitions are denoted Pt and Pc respectively.

9



Figure 6: Distributed FNO block acting on a 2D time-varying input tensor (i.e. a 3D volume with
two spatial and a time dimension), illustrating the iterative update in equation 19. In this example,
a tensor of shape c×nx×ny ×nt is initially distributed over a partition Pxyt of shape 1×2×2×2,
indicating that it is partitioned over 8 workers in the x, y, and t dimensions. Here, c is the channel
dimension and is illustrated via stacked planes, and nx, ny, and nt are the size of the input tensor
in the x, y, and t dimensions respectively. To apply the distributed spectral convolution operator
Sdist from equation 8, a repartition operator is used to take the data to a partition of only the x and
y dimensions, denoted Pxy. After this, a DFFT is performed by first taking an FFT along time,
followed by a repartition to a partition of only the time dimension (denoted Pt), followed by a 2D
FFT along the x and y dimensions. The parameterized (learned) weight/restriction tensor Rϕ is
then multiplied with the FFT output. This value is then passed through the adjoint sequence of
transformations, where F⊤ denotes an adjoint (inverse) DFFT. As in the original implementation
by Li et al. (2020a), Rϕ is sparse, containing nonzero elements only in the low-frequency modes.
Below Sdist, the weight tensor W (broadcasted over Pxyt) is multiplied along the channel dimension
of the input. The result of this weight multiplication and the output of Sdist are then added together
elementwise and passed through an elementwise nonlinear activation function σ.

10



We then apply the broadcasted affine operator as in equation 5. Assuming that each weight
tensor and bias vector is stored on the same size 1 root partition Pr, this is written as the sequence
of transformations

Wbc
t = B{Pr}→{Pt}Wt (11)

Wbc
c = B{Pr}→{Pc}Wc (12)

bbc
t = B{Pr}→{Pt}bt (13)

bbc
c = B{Pr}→{Pc}bc (14)

a1 = (Wbc
t T{Px}→{Pt}a+ bbc

t )(x, t) (15)

ν0 = (Wbc
c T{Pt}→{Pc}a1 + bbc

c )(x, t), (16)

where Wt, bt and Wc, bc are the weights and biases for each affine transformation respectively.
The FNO architecture then calls for a sequence of K blocks consisting of a linear transformation
along the channel dimension added with a spectral convolution and passed through a pointwise
nonlinearity. A single iterative update in this sequence reads

νk+1(x, t) = σ (Wνk + Sνk) (x, t), (17)

where k = 1, . . . ,K and σ is a pointwise nonlinear activation function. Applying the same proce-
dure as in equation 5 for distributing pointwise linear transformations then gives the sequence of
transformations for the DFNO block

Wbc = B{Pr}→{Px}W (18)

νk+1(x, t) = σ
(
Wbc

c νk + Sdistνk

)
(x, t), (19)

where x is the distributed tensor and Sdist is the distributed spectral convolution operator derived
in equation 8. Equation 19 constitutes the most important component of the distributed FNO, and
as such an illustration is provided in figure 6.

Finally, a linear operator is used to project the output to the correct number of channels. Using
a similar derivation to equation 16, the distributed variant is

u(x, t) =
(
Wbc

c T{Px}→{Pc}νK

)
(x, t), (20)

where u(x, t) is the approximate solution of the PDE given by the operator learned by the dis-
tributed FNO, and is distributed over the partition Pc.

3 Experimental Results

3.1 Training

The ability to scale FNOs with domain decomposition to large problem sizes opens up the possibility
to apply them to real-world simulation use cases. To showcase the value of being able to train model-
parallel networks for solving large-scale PDEs, we train a distributed FNO to simulate subsurface
CO2 flow by solving the 3D time-varying two-phase flow equations (Rasmussen et al., 2021; Gross
and Mazuyer, 2021). Simulating CO2 flow in porous media plays an important role in carbon
capture and storage (CCS), where simulations are required to optimize the CO2 injection location
and verify that CO2 does not leak from the storage site (Gibbins and Chalmers, 2008; Ringrose,

11



2020). A variety of deep-learning based approaches, including FNOs, have been proposed for
simulating subsurface CO2 flow, but so far current examples in the literature are limited to either
2D or small to medium-scale 3D time-varying problems (Wen, Li, Azizzadenesheli, Anandkumar
and Benson, 2021; Yan et al., 2021; Tang, Ju and Durlofsky, 2021). On the other hand, our model-
parallel FNO can scale to realistic 3D problem sizes using domain decomposition across multiple
GPUs, including those commonly found on cloud computing services such as the 16GB variant of
the NVIDIA V100.

We train an FNO to predict the evolution of a 3D subsurface CO2 plume over a given number
of time steps nt. The input to the network K(x) is a tensor containing both the permeability and
topography (i.e. column-wise vertical displacement) at each 3D spatial position x. In contrast to the
original FNO from Li et al. (2020a), our input does not include the first 10 time steps of the predicted
saturation history, which is zero almost everywhere. We train our model on the CO2 simulation
dataset from Witte, Konuk, Skjetne and Chandra (2022), which was derived from a subregion of the
Sleipner benchmark (Santi, Furre, Nair, Ringrose and Zweigel), a reservoir simulation model from
the world’s first industrial-scale CO2 injection site off the coast of Norway (Andrew, Haszeldine
and Nazarian, 2015; Furre, Eiken, Alnes, Vevatne and Kiær, 2017). The training dataset consists
of 1000 permeability models that were randomly generated in analogy to the original benchmark.
Open Porous Media (OPM; Rasmussen et al. (2021)) was then used to simulate the corresponding
saturation histories for each sample. OPM solves a large set of partial differential equations with
complex boundary conditions to accurately predict the time-evolution of subsurface CO2. Each
individual input sample to the network has a shape of batch × 2 × 60 × 60 × 64 × 1 (NCXYZT),
where permeability and (geographical) topography are provided as the two input channels. The
output has a shape of batch × 1 × 60 × 60 × 64 × nt. As in Pathak et al. (2022) each training
sample is centered in a volume large enough that the CO2 saturation never reaches the boundary
of the simulation domain. The architecture of our network is identical to the original proposed by
Li et al. (2020a), consisting of a total of 4 spectral convolution blocks, and a lifted space dimension
of 20. The network is trained for 30 epochs using 800 training data points and 100 validation data
points with a batch size of 1. When training our network, we use the Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 10−3. As in the original FNO paper, we measure the data
misfit using the relative Lp loss with p = 2 (Li et al., 2020a):

L(y, ŷ) =
∥y − ŷ∥p
∥ŷ∥p

.

We train our model on a Standard NC24 virtual machine on the Azure cloud, which has 4 Nvidia
Volta V100 GPUs with 16 GB memory each. We therefore create a worker partition of shape
1× 1× 1× 4× 1× 1, which results in an input shape per worker of batch× 2× 60× 15× 64× nt.
It should be noted that this training setup does not fit within the memory of a single V100 GPU
and thus constitutes true model-parallel training with domain decomposition. While our FNO
implementation is in principle able to handle much larger data sizes, there are currently no larger
public datasets for training multiphase flow simulators available. The training dataset in our
experiment is stored in Azure’s object store (Blob storage) in the Zarr format, whose corresponding
Python packages provides an API for storing chunked n-dimensional tensors on both file systems
and object stores (Miles, jakirkham, Bussonnier, Moore, Fulton, Bourbeau, Onalan, Hamman,
Patel, Rocklin, Lee, Bennett, de Andrade, Abernathey, Durant, Schut, raphael dussin, Barnes,
Williams, Mohar, Noyes, shikharsg, Nunez-Iglesias, Jelenak, Banihirwe, Baddeley, Younkin, Sakkis
and Hunt-Isaak, 2021). During training, each MPI rank reads its corresponding domain of the
input data directly from the object store, so no single GPU has to fit the full input (or output)
data into its memory at any given time.

12



Figure 7: Training and validation loss curves for running distributed FNO training experiment.
Validation loss plateaus around a value of 0.4, so the network training was halted after 30 epochs.

Figure 7 shows the history of the training and validation loss as a function of the training
epoch. It is noticeable that the validation loss stalls around a value of 0.4, while the training
loss decreases until the final epoch. Nevertheless, the trained network performs reasonably well on
unseen test samples, as shown in figure 8 by a comparison of the predicted CO2 saturation with the
corresponding simulated data samples. The network performs well enough that its output could be
used by an industry professional to make decisions about, for example, CO2 storage site location,
or to solve very large multi-physics inverse problems as in (Yin et al., 2022). A three-dimensional
plot of a test samples that correctly visualizes the varying grid topography is shown in figure 9.

(a) Horizontal (x, y) slices (b) Vertical (x, z) slices

Figure 8: Predicted outputs of our 4D (3D time-varying) FNO on 3 validation examples. Images
shown are slices of the output 3D volume at the final timestep t = 30, but the network is trained
on and produces an output of all timesteps simultaneously. The network shows good generalization
results and produces error small enough to be useful for practical applications.

13



Figure 9: Input permeability/topography map and output CO2 plume at the final timestep for a
validation sample run through our trained 4D two-phase flow FNO.

3.2 Inference

After paying the large upfront cost of training a distributed FNO, practitioners can then take
the network and utilize its accelerated inference capabilities to solve novel and difficult problems.
FNOs in particular have shown much promise in this area, reporting speedups of several orders of
magnitude at inference time versus traditional numerical simulators (Li et al., 2020a). To perform
a comparison to standard two-phase flow simulators, we benchmark our distributed network versus
OPM (Rasmussen et al., 2021) on two different problem sizes. The first of these problems is of
size 60 × 60 × 64 in the spatial dimensions with 30 timesteps, the same setup as the dataset of
Witte et al. (2022) and the subsequent training example in section 3.1. The second is a problem
of size 68× 118× 263 with 16 timesteps. This is the size of the Sleipner benchmark model (Santi
et al.), which represents one of the smallest industry-scale models of interest to CCS practitioners.
Because OPM does not currently support GPU acceleration, both it and the distributed FNO were
run on a CPU node, namely an HB120rs v2 node on Azure. This node has 120 AMD EPYC 7742
CPUs with 4GB of memory per CPU. Both the simulator and FNO used 30 MPI workers with 4
OpenMP threads per worker. Table 1 shows the timing comparison.

Problem Size OPM Time (s) FNO Time (s) Speedup

60× 60× 64× 30 312 1.15 271x

68× 118× 263× 16 8291 5.98 1386x

Table 1: Timing comparison of OPM simulator and distributed FNO at inference time. The
problem size is shown as nx × ny × nz × nt, and the speedup reported for the FNO is that versus
OPM run on the same problem size with the same MPI configuration.

We note that our network greatly outperforms the simulator in both cases, with the speedup
growing as a function of the size of the problem and reaching a maximum value of 1386x faster
than OPM on the Sleipner benchmark model. Furthermore, as the problem size grows (4.9x), the
FNO time grows roughly linearly with problem size (5.2x) wheres the OPM simulation time grows
much faster (26.6x).

14



3.3 Scaling

While training and inference using FNOs on large 3D time-varying datasets is novel in its own
right, the ultimate aim of surrogate modeling for CCS or other large scientific modeling problems
is to quickly be able to perform simulations that are accurate enough to be useful for previously
intractable problems such as large-scale Bayesian inference, ideally using data and models too
large to fit on a single computational node. Here we demonstrate the unique ability of our domain-
decomposition approach to model parallelism in FNOs to achieve this through a weak scaling study
and show, to our knowledge, the largest inference and gradient computations done using an FNO
to date, achieving a maximum problem size2 of 512×512×512×20 (x×y×z× t) when scaling the
spatial dimensions of the input, and a maximum problem size of 64×64×64×10240 (x×y×z× t)
when scaling the number of output timesteps. All of our scaling experiments were performed on
the Perlmutter system at the National Energy Research Scientific Computing center (NERSC).
Perlmutter is a flagship supercomputer, being ranked 7th in the world in terms of performance
on the LINPACK benchmark as of June 2022 (TOP500, 2022). Perlmutter consists of 1,536 GPU
compute nodes, each of which contains an AMD EPYC 7763 CPU, 4x40GB A100 NVIDIA Ampere
GPUs, and 256 GB of random access memory. The system utilizes a three-hop dragonfly network
with Slingshot 11 interconnect fabric, allowing for data transfer up to 100 GB/s between nodes
(NERSC, 2022).

We conducted a weak scaling study (i.e. the problem size grows in tandem with the amount of
computational resources) measuring the time taken to apply the domain-decomposed FNO forward
without saving gradients (inference), forward with saving gradients (training), and to perform
backpropagation (training). The network used is identical in structure to the original proposed by
Li et al. (2020a), having 4 spectral convolution blocks and an embedding dimension of 20. A full
table of run configurations can be found in appendix A.

Figure 10: Weak scaling experiment results. Dashed lines indicate forward passes run with saving
gradients (training scenario), and solid lines indicate forward passes run without saving gradients
(inference scenario). Each run was performed using CUDA-aware MPI. We observe slightly imper-
fect scaling due to the nature of FNOs (i.e. all-to-all programs), but overall good performance.

2Due to limitations on system resource usage we were unable to scale past this size, but our model should have
no issue scaling to larger problems.

15



4 Conclusion

In this work, we have presented a domain-decomposition based implementation of model-parallel
Fourier neural operators for data of arbitrary size and dimensionality. Using a linear-algebraic
formulation of parallelism, we derive mathematically all requisite components of distributed FNOs
and provide an implementation of our distributed network in PyTorch using DistDL. We show
an example of training a model-parallel 4D FNO via domain decomposition to learn solutions to
the two-phase flow equations for predicting the time-evolution of subsurface CO2 plumes. We
demonstrate our network’s weak scaling capabilities on Perlmutter on problem sizes up to 512 ×
512×512×20. To our knowledge, this is the first implementation of an FNO to scale beyond 643 in
the spatial dimensions. Our work provides a critical first step in the ability to solve coupled inverse
and statistical problems on realistically-sized volumetric data by rapidly accelerating inference and
gradient calculations on large volumetric problems via distributed operator learning.

Acknowledgments

This research was carried out with the support of Georgia Research Alliance and partners of the
ML4Seismic Center. The authors acknowledge Erik Skjetne (Equinor) and Tugrul Konuk (formerly
Colorado School of Mines and Microsoft Research intern) for their contributions to the generation
of the Sleipner CO2 training dataset. Portions of this work were completed while Russell J. Hewett
was with Virginia Tech and was funded by Department of Energy, Office of Science, Early Career
Research Program award DE-SC0022041. This work is supported by the Department of Energy
under Grant No. DE-SC0021515. This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User Facility supported under Contract
DE-AC05-00OR22725. This research used resources of the National Energy Research Scientific
Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located
at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231
using NERSC award ASCR-ERCAP0022541.

Code Availability

Library name: dfno
Primary Developer: Thomas Grady (SLIM Group, Georgia Tech)
Contact: tgrady@gatech.edu
Hardware Requirements: Multi-core or multi-GPU system
Software Requirements: MPI, CUDA (optional), Python libraries (listed at repository)
Programming Language: Python
Program Size: N/A (scripting language)
Source code: https://zenodo.org/record/6463857

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving,
G., Isard, M., et al., 2016. {TensorFlow}: A system for {Large-Scale} machine learning, in: 12th
USENIX symposium on operating systems design and implementation (OSDI 16), pp. 265–283.

16



Andrew, J.C., Haszeldine, R.S., Nazarian, B., 2015. The sleipner co2 storage site: using a basin
model to understand reservoir simulations of plume dynamics. First Break 33.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al., 2020. Language models are few-shot learners. Advances in neural
information processing systems 33, 1877–1901.

Bukhamsin, A.Y., Farshi, M.M., Aziz, K., 2010. Optimization of multilateral well design and
location in a real field using a continuous genetic algorithm, in: SPE/DGS Saudi Arabia Section
Technical Symposium and Exhibition, OnePetro.

Burden, R.L., Faires, J.D., Burden, A.M., 2015. Numerical analysis. Cengage learning.

Dalcin, L., Mortensen, M., Keyes, D.E., 2019. Fast parallel multidimensional fft using advanced
mpi. Journal of Parallel and Distributed Computing 128, 137–150.

Frostig, R., Johnson, M.J., Leary, C., 2018. Compiling machine learning programs via high-level
tracing. Systems for Machine Learning , 23–24.

Furre, A.K., Eiken, O., Alnes, H., Vevatne, J.N., Kiær, A.F., 2017. 20 years of monitoring co2-
injection at sleipner. Energy procedia 114, 3916–3926.

Gibbins, J., Chalmers, H., 2008. Carbon capture and storage. Energy policy 36, 4317–4322.

Gokhberg, A., Fichtner, A., 2016. Full-waveform inversion on heterogeneous hpc systems. Com-
puters & Geosciences 89, 260–268.

Gross, H., Mazuyer, A., 2021. Geosx: A multiphysics, multilevel simulator designed for exascale
computing, in: SPE Reservoir Simulation Conference, OnePetro.

Harris, C.R., Millman, K.J., Van Der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N.J., et al., 2020. Array programming with numpy.
Nature 585, 357–362.

Hewett, R.J., Grady, T., Merizian, J., 2021. distdl/distdl: Version 0.4.0 release. URL: https:
//doi.org/10.5281/zenodo.5360401, doi:10.5281/zenodo.5360401.

Hewett, R.J., Grady II, T.J., 2020. A linear algebraic approach to model parallelism in deep
learning. arXiv preprint arXiv:2006.03108 .

Hughes, T.J., 2012. The finite element method: linear static and dynamic finite element analysis.
Courier Corporation.

Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L., 2021. Physics-
informed machine learning. Nature Reviews Physics 3, 422–440.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

LeVeque, R.J., 2007. Finite difference methods for ordinary and partial differential equations:
steady-state and time-dependent problems. SIAM.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandkumar,
A., 2020a. Fourier neural operator for parametric partial differential equations. arXiv preprint
arXiv:2010.08895 .

17



Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandkumar, A.,
2020b. Neural operator: Graph kernel network for partial differential equations. arXiv preprint
arXiv:2003.03485 .

Louboutin, M., Lange, M., Luporini, F., Kukreja, N., Witte, P.A., Herrmann, F.J., Velesko, P.,
Gorman, G.J., 2019. Devito (v3. 1.0): an embedded domain-specific language for finite differences
and geophysical exploration. Geoscientific Model Development 12, 1165–1187.

Lu, L., Jin, P., Karniadakis, G.E., 2019. Deeponet: Learning nonlinear operators for identifying
differential equations based on the universal approximation theorem of operators. arXiv preprint
arXiv:1910.03193 .

MacNeice, P., Olson, K.M., Mobarry, C., De Fainchtein, R., Packer, C., 2000. Paramesh: A parallel
adaptive mesh refinement community toolkit. Computer physics communications 126, 330–354.

Miles, A., jakirkham, Bussonnier, M., Moore, J., Fulton, A., Bourbeau, J., Onalan, T., Hamman,
J., Patel, Z., Rocklin, M., Lee, G.R., Bennett, D., de Andrade, E.S., Abernathey, R., Durant,
M., Schut, V., raphael dussin, Barnes, C., Williams, B., Mohar, B., Noyes, C., shikharsg, Nunez-
Iglesias, J., Jelenak, A., Banihirwe, A., Baddeley, D., Younkin, E., Sakkis, G., Hunt-Isaak, I.,
2021. zarr-developers/zarr-python: v2.10.3. URL: https://doi.org/10.5281/zenodo.5712786,
doi:10.5281/zenodo.5712786.

Nasrabadi, H., Morales, A., Zhu, D., 2012. Well placement optimization: A survey with special
focus on application for gas/gas-condensate reservoirs. Journal of Natural Gas Science and
Engineering 5, 6–16.

NERSC, 2022. Perlmutter architecture. URL: https://docs.nersc.gov/systems/perlmutter/
architecture/.

Onwunalu, J.E., Durlofsky, L.J., 2010. Application of a particle swarm optimization algorithm for
determining optimum well location and type. Computational Geosciences 14, 183–198.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,
Antiga, L., Lerer, A., 2017. Automatic differentiation in pytorch .

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al., 2019. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems 32.

Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth,
T., Hall, D., Li, Z., Azizzadenesheli, K., et al., 2022. Fourcastnet: A global data-driven high-
resolution weather model using adaptive fourier neural operators. arXiv Preprints .

Pippig, M., 2013. Pfft: An extension of fftw to massively parallel architectures. SIAM Journal on
Scientific Computing 35, C213–C236.

Rasley, J., Rajbhandari, S., Ruwase, O., He, Y., 2020. Deepspeed: System optimizations enable
training deep learning models with over 100 billion parameters, in: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3505–3506.

Rasmussen, A.F., Sandve, T.H., Bao, K., Lauser, A., Hove, J., Skaflestad, B., Klöfkorn, R., Blatt,
M., Rustad, A.B., Sævareid, O., et al., 2021. The open porous media flow reservoir simulator.
Computers & Mathematics with Applications 81, 159–185.

18



Ringrose, P., 2020. How to Store CO2 Underground: insights from early-mover CCS Projects.
Springer.

Salehian, M., Sefat, M.H., Muradov, K., 2022. Multi-solution well placement optimization us-
ing ensemble learning of surrogate models. Journal of Petroleum Science and Engineering 210,
110076.

Santi, A.C., Furre, A.K., Nair, K., Ringrose, P., Zweigel, P., . Sleipner 2019 benchmark model.
https://co2datashare.org/dataset/sleipner-2019-benchmark-model. Accessed: 2021-12-
20.

Schulthess, T.C., Bauer, P., Wedi, N., Fuhrer, O., Hoefler, T., Schär, C., 2018. Reflecting on the
goal and baseline for exascale computing: a roadmap based on weather and climate simulations.
Computing in Science & Engineering 21, 30–41.

Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani, A., Koanantakool, P., Hawkins, P., Lee,
H., Hong, M., Young, C., Sepassi, R., Hechtman, B., 2018. Mesh-tensorflow: Deep learning
for supercomputers. URL: https://arxiv.org/abs/1811.02084, doi:10.48550/ARXIV.1811.
02084.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., Catanzaro, B., 2019. Megatron-
lm: Training multi-billion parameter language models using model parallelism. arXiv preprint
arXiv:1909.08053 .

Sirignano, J., Spiliopoulos, K., 2018. Dgm: A deep learning algorithm for solving partial differential
equations. Journal of computational physics 375, 1339–1364.

Smith, S., Patwary, M., Norick, B., LeGresley, P., Rajbhandari, S., Casper, J., Liu, Z., Prabhumoye,
S., Zerveas, G., Korthikanti, V., et al., 2022. Using deepspeed and megatron to train megatron-
turing nlg 530b, a large-scale generative language model. arXiv preprint arXiv:2201.11990 .

Su, D., Mayer, K.U., MacQuarrie, K.T., 2021. Min3p-hpc: a high-performance unstructured grid
code for subsurface flow and reactive transport simulation. Mathematical Geosciences 53, 517–
550.

Tang, M., Ju, X., Durlofsky, L.J., 2021. Deep-learning-based coupled flow-geomechanics surrogate
model for co 2 sequestration. arXiv preprint arXiv:2105.01334 .

TOP500, 2022. June 2022. URL: https://www.top500.org/lists/top500/2022/06/.

Utke, J., Hascoet, L., Heimbach, P., Hill, C., Hovland, P., Naumann, U., 2009. Toward adjoinable
mpi, in: 2009 IEEE International Symposium on Parallel & Distributed Processing, IEEE. pp.
1–8.

Wang, N., Chang, H., Zhang, D., Xue, L., Chen, Y., 2022. Efficient well placement optimiza-
tion based on theory-guided convolutional neural network. Journal of Petroleum Science and
Engineering 208, 109545.

Wen, G., Li, Z., Azizzadenesheli, K., Anandkumar, A., Benson, S.M., 2021. U-fno–an en-
hanced fourier neural operator based-deep learning model for multiphase flow. arXiv preprint
arXiv:2109.03697 .

19



Witte, P.A., Konuk, T., Skjetne, E., Chandra, R., 2022. Fast CO2 flow simulations on large-scale
geomodels with artificial intelligence-based wavelet neural operators. SSRN Preprints .

Yan, B., Chen, B., Harp, D.R., Pawar, R.J., 2021. A robust deep learning workflow to predict
multiphase flow behavior during geological co2 sequestration injection and post-injection periods.
arXiv preprint arXiv:2107.07274 .

Yin, Z., Siahkoohi, A., Louboutin, M., Herrmann, F.J., 2022. Learned coupled in-
version for carbon sequestration monitoring and forecasting with fourier neural op-
erators, in: International Meeting for Applied Geoscience & Energy Expanded Ab-
stracts. URL: https://slim.gatech.edu/Publications/Public/Conferences/SEG/2022/

yin2022SEGlci/paper.html, doi:10.1190/image2022-3722848.1. (IMAGE, Houston).

20



A Scaling Study Configurations

Table 2 shows worker partitions and corresponding input/output sizes for spatial and temporal
scaling studies. p denotes the number of parallel workers, and “Partition Shape” denotes the
Cartesian topology of those workers. Note that the given partition shape denotes only the partition
of the input and output tensor of the network. Intermediate tensors within the network may have
different partitions (e.g. weights in the spectral convolution or data during application of the
DFFT). We note that these particular configurations were chosen in the interest of measuring our
network’s performance, and that a practical application would likely choose a partitioning scheme
that takes into account details about the shape of its corresponding data and hardware/bandwith
limitations.

Partition Information Spatial Scaling Shapes Temporal Scaling Shapes

p Partition Shape Input Shape Output Shape Input Shape Output Shape

1 (1,1,1,1,1,1) (1,1,64,64,64,1) (1,1,64,64,64,20) (1,1,64,64,64,1) (1,1,64,64,64,20)

2 (1,1,2,1,1,1) (1,1,128,64,64,1) (1,1,128,64,64,20) (1,1,64,64,64,1) (1,1,64,64,64,40)

4 (1,1,2,2,1,1) (1,1,128,128,64,1) (1,1,128,128,64,20) (1,1,64,64,64,1) (1,1,64,64,64,80)

8 (1,1,2,2,2,1) (1,1,128,128,128,1) (1,1,128,128,128,20) (1,1,64,64,64,1) (1,1,64,64,64,160)

16 (1,1,4,2,2,1) (1,1,256,128,128,1) (1,1,256,128,128,20) (1,1,64,64,64,1) (1,1,64,64,64,320)

32 (1,1,4,4,2,1) (1,1,256,256,128,1) (1,1,256,256,128,20) (1,1,64,64,64,1) (1,1,64,64,64,640)

64 (1,1,4,4,4,1) (1,1,256,256,256,1) (1,1,256,256,256,20) (1,1,64,64,64,1) (1,1,64,64,64,1280)

128 (1,1,8,4,4,1) (1,1,512,256,256,1) (1,1,512,256,256,20) (1,1,64,64,64,1) (1,1,64,64,64,2560)

256 (1,1,8,8,4,1) (1,1,512,512,256,1) (1,1,512,512,256,20) (1,1,64,64,64,1) (1,1,64,64,64,5120)

512 (1,1,8,8,8,1) (1,1,512,512,512,1) (1,1,512,512,512,20) (1,1,64,64,64,1) (1,1,64,64,64,10240)

Table 2: Scaling study run configurations for experiments performed on Perlmutter.

21


