
Recently introduced, curvelets are among
the latest members of a growing family
of multiscale—and now multidirec-
tional—data expansions.1,2 The primary

aim of these expansions is to find a sparse represen-
tation for data. A signal representation is sparse
when it can capture a signal as a superposition of a
small number of components—in fact, the sparser
and more generic the transformation, the more suc-
cessful its use for signal denoising and separation.

So what makes curvelet decomposition an ap-
propriate transform for seismic data processing,
and why generalize this transform to nonuniformly
sampled data? To answer these questions, we must
first understand seismic data itself. Seismic data
volumes are recordings of the amplitudes of tran-
sient waves—either human-made or from naturally
occurring earthquakes—at the Earth’s surface.
Each source and receiver pair generates a trace,
which is a function of time. A seismic data set is the
collection of these traces; all the traces together
provide a spatio-temporal sampling of the reflected
wave field, which contains different arrivals that cor-

respond to different interactions of the incident
wave field with inhomogeneities in the Earth’s sub-
surface. A common denominator among these ar-
rivals is that they represent wave fronts, the main
characteristic of which is their relative smoothness
in the direction along the front and their relative
oscillatory behavior in the “normal” direction.

By virtue of their anisotropic shape, curvelets are
well adapted to detect wave fronts because aligned
curvelets correlate well with them locally. In this
sense, curvelets act as multiscale surfboards riding
incoming waves. However, limitations on data ac-
quisition due to the positions of sources and re-
ceivers put restrictions on the spatial sampling of
seismic wave fields—in seismic exploration on land,
for example, there are obstacles such as buildings or
lakes, whereas in passive seismology, the seismolo-
gist has no control over source position (earthquakes
occur irregularly along major plate boundaries).

The current implementations of the fast discrete
curvelet transform (FDCT) assume a regular sam-
pling along all axes. If we ignore the nonuniformity
of spatial sampling, we can no longer expect to de-
tect wave fronts because of a lack of continuity.
We’ve addressed this issue by extending the FDCT
to nonuniformly sampled data. Through this ex-
tension, we can detect wave fronts in noise as well
as bring the data to a regular grid provided there is
at least one datum per grid point. The example in
Figure 1 clearly illustrates how continuity along
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wave fronts is destroyed when casting nonuni-
formly sampled data to a regular grid, but restored
when dealing with the data appropriately. Our de-
noising and binning algorithm exploits the sparsity
of seismic data in the curvelet domain via a nonlin-
ear thresholding on curvelet coefficients. (The
term binning refers to interpolation toward a regu-
lar grid when the number of irregular samples ex-
ceeds the regular grid’s size.)

In this article, we discuss curvelets and demon-
strate their sparseness on seismic data. We also de-
scribe our extension to the curvelet transform via
the nonequally sampled fast Fourier transform

(NFFT).3 Our extension restores the transform’s
performance for nonuniformly sampled data.

The Curvelet Transform
Since their introduction, curvelet transforms2 have
received increasing interest in the seismic research
community, primarily because curvelets can detect
wave fronts. Here, we examine their main proper-
ties and investigate curvelets’ approximation error
on seismic data.

Main Properties
It comes as no surprise that their original construc-
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Figure 1. Synthetic seismic data. In examining (a) uniformly (grayscale plot) and nonuniformly sampled (wiggle trace
plot) data, (b) windowed regular sampled data, (c) windowed irregular sampled data cast to a regular grid, and (d)
windowed data on the nonuniformly sampled grid, we can see continuity along the arriving wave fronts in (b) and (d).
Recasting irregular data onto a regular grid destroys this continuity in (c). Here, we’ve exaggerated the nonuniformly
sampled grid’s irregularity.
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tion, through the so-called second dyadic parti-
tioning, came from the field of harmonic analysis,4

in which they were used as expansions for asymp-
totic solutions of wave equations. FDCT develop-
ers2 have also recognized this connection, which has
resulted in important contributions to the com-
pression of Green’s functions5 as well as to nonlin-
ear approximations of functions with intermittent
regularity.1 These functions are assumed to be
piece-wise smooth with singularities (regions in
which the derivative diverges) on piece-wise smooth
curves. Within the Earth’s crust, these singularities
correspond to geologic unconformities at which
waves reflect; in seismic data, these singularities cor-
respond to wave fronts. Geologic boundaries as well
as wave fronts contain points of intermittent regu-
larity, such as faults along sedimentary layers or
caustics in wave fronts. A caustic is a region where
rays concentrate and is typically observed when an
incident wave field reflects at curved reflectors.

Our purpose isn’t to compress operators—rather,
we’re interested in separating different seismic data
components, which, except for possible incoherent
measurement noise, consist of components that are
the solution of a wave equation. For this purpose,
we employ the curvelet transform as a vehicle that

• is rich enough to account for the multiscale and
multidirectional properties of seismic data with
intermittent regularity;

• is local in phase space (the space spanned by
space and spatial frequency);

• exploits smoothness along (and oscillatory be-
havior across) arriving wave fronts;

• differentiates among different signal components
on the basis of location, angle, and frequency
content;

• obtains fast decay of nonlinear approximation er-
rors for seismic data; and

• permits a fast (O(KlogK) operations, where K is
the data size) multidimensional (2D or 3D) im-
plementation.

As we can see in Figures 2 and 3, curvelets are lo-
cal in both space and spatial frequency; they corre-
spond to a partitioning of the 2D Fourier plane by
highly anisotropic elements (for the high frequen-
cies) that obey the paramount parabolic scaling
principle:4 width � length2. As opposed to discrete
wavelets, which are designed to provide sparse rep-
resentations of functions with point singularities,
curvelets provide sparse representations for func-
tions with singularities on curves. Moreover,
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Figure 2. Spatial (left) and frequency (right) viewpoints of six real curvelets at different scales and angles. As opposed to
complex curvelets, real curvelets live in two angular wedges symmetric about the origin. Comparing the curvelets in the
two domains also shows their microlocal correspondence,6 relating the orientation of curvelets in both domains. Because
of their rapid decay in the physical space and compact support in the Fourier space, curvelets localize in phase space.
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whereas multiscale wavelets consist of collections
of location- and scale-indexed basis functions,
curvelets represent a family of functions formed
from translations, rotations, and parabolic scalings.
As such, curvelets form a frame with moderate re-
dundancy. The elements in this transform, which
we call prototype waveforms, are

• multiscale, with frequency support on dyadic
coronae in the 2D Fourier plane;

• multidirectional, with angles that correspond to
the centers of the wedges (for every other reso-
lution doubling, the number of angles doubles);

• anisotropic, obeying the scaling law width �
length2; and

• local, allowing for thresholding, which locally
adapts to the nonstationary signal.

Frames differ from orthonormal bases. Orthonor-
mal transforms (or matrices) compose an arbitrary
finite-energy discretized signal vector f � �K of
length K (f is a discretization of the multivariate
function f(s, t): �2 � �, with s and t the spatial and
temporal coordinates, respectively) according to

, (1)

with BH denoting the matrix adjoint of the decom-
position matrix B, and the brackets � � � �  � denot-
ing the standard discrete inner product �f, �m� =
fH�m of f with the mth column vector of BH. Be-
cause B is an orthonormal basis, its adjoint matrix
corresponds to its inverse (the inverse transform).
The summation in Equation 1 runs over the index
set M of size M = K. As opposed to an orthonormal
transform, a redundant frame expansion decom-
poses a K-length signal into a frame expansion with
M > K elements. Consequently, the composition
matrix is rectangular, with the number of columns
exceeding the number of rows.

The regularly sampled FDCT is a frame repre-
sented by the matrix C. Applying this matrix to a
vector f creates a multi-index coefficient vector x =
Cf with x := {xm}m�M; the multi-index m runs over
all the locations, orientations, and scales (details
about the FDCT’s discrete constructions appear
elsewhere2). We chose the numerically tight
FDCT via wrapping as our curvelet transform. For
this transform, the pseudo-inverse (denoted by the
symbol †) equals the adjoint, and we have f = C†x =
CHx, which implies CHC = I.

Nonlinear Approximation Rates
The nonlinear approximation rate expresses the as-

ymptotic decay of the �2-difference between the
original data and the partial reconstruction from
the largest L coefficients. In dimension two,
Fourier attains an asymptotic decay rate of only
O(L–1/2) for data consisting of twice-differentiable
functions with singularities on piece-wise twice-dif-
ferentiable curves, whereas curvelets asymptotically
obtain the optimal rate O(L–2), ignoring log-like
factors.1 Although wavelets improve on Fourier,
their approximation rate of O(L–1) is suboptimal.

By virtue of their multiscale and multidirectional
construction, curvelets sparsely represent seismic
data. Not only do individual curvelets capture the
main characteristics of wave fronts locally—they
look like little waves—but they also jointly capture
the seismic energy effectively. We can see this per-
formance in Figure 4, which shows the nonlinear
approximation rates for representative seismic syn-
thetic data. We computed the rates for each of the
following cases:

• curvelets and wavelets on regularly sampled data,
• curvelets on nonuniformly sampled data (treated

as uniformly sampled data), and
• our extension of the curvelet transform on

nonuniformly sampled data.

For uniformly sampled data, the nonlinear ap-
proximation rate of curvelets outperforms
Daubechies 6 wavelets by a wide margin. The fig-
ure also shows the importance of treating nonuni-
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Figure 3. Discrete curvelet partitioning of the 2D Fourier plane into
second dyadic coronae and subpartitioning of the coronae into
angular wedges. As frequency increases, the wedges become more
anisotropic, yielding needle-like curvelets that align better and
better with curved wave fronts.
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formly sampled data correctly in the curvelet
transform—treating it as uniformly sampled data
seriously deteriorates performance.

To address the nonuniformly sampled data issue,
the geophysicist commonly uses binning to bring
nonuniformly sampled data to the regular grid. To
compare the reconstructions, we use space-domain
linear interpolation for wavelets and include
NFFT binning as our extension to the FDCT.
Figure 5 shows reconstructions for nonuniformly
sampled data with binning for 1 percent of the co-
efficients. The partial reconstruction with the
nonuniformly sampled curvelet transform per-
forms nearly as well as the uniformly sampled
transform and outperforms the result obtained
with wavelets. Table 1 lists detailed performance

measures. Notice that even for this bad signal-to-
noise ratio (SNR), we lost only 1 dB between
noise-free NFFT binning and noisy NFFT bin-
ning combined with denoising.

The NFDCT: A Curvelet 
Frame for Seismic Processing
As Figure 4 illustrates, treating nonuniformly sam-
pled data as regular data can seriously deteriorate
the performance of curvelet approximations and,
hence, signal denoising and separation. Because
seismic data is usually acquired irregularly, failure
to account for nonuniformly sampled data can
adversely affect seismic imaging. Our work’s main
contribution is to extend the FDCT toward
nonuniformly sampled grids. The FDCT C on an
arbitrary uniformly sampled vector f factors as TF,
with F the orthonormal Fourier transform and T
the curvelet tiling matrix (that is, Cf := TFf). Later,
we’ll replace the ordinary Fourier transform with
its nonuniformly sampled counterpart, which is a
natural choice because the curvelet construction is
defined in the Fourier domain.

From this point on, we denote nonuniformly
sampled N-vectors f � �N with an underbar, and
f := {f(xp)}p=1,…,N at the nodes xp � X, where X := {xp
= (sp, tp) � � � �: –1/2 	 sp < 1/2  and 0 	 tp <
Nt}p=1,…N, with N representing the total number of
nodes and Nt the number of regular time samples.
Here, we consider the number of source and re-
ceiver positions larger than the size of the corre-
sponding regular spatial grid.

At the heart of nonequally sampled Fourier
transforms of bandwidth-limited functions lies the
fast evaluation of the following sum:3,7

(2)

This expression corresponds to the discrete in-
verse Fourier transform from a uniformly sampled
grid K := {kj = (kj

s, kj
t) � �2: –Ks,t/2 	 ks,t

j <
Ks,t/2}j=1,…,K in the Fourier domain—denoted by
the hat symbol ˆ and consisting of K = Ks � Kt
samples with Kt = Nt—toward the nonuniformly
sampled grid X. In matrix-vector notation, this
expression becomes

. (3)

The NFFT is an implementation that approxi-
mately evaluates the sum of Equation 2 with a fast
algorithm based on a previous study.7 By replacing
the regular FFT in the FDCT’s implementation
with the NFFT’s pseudo-inverse, we arrive at a
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Figure 4. Decays of the nonlinear approximation error. Curvelets on
the regular grid (orange dashed line) clearly outperform discrete
wavelets (pink line). Our extension of the curvelet transform for
nonuniformly sampled data (blue line) retains the performance of
the regularly sampled curvelet transform on uniformly sampled
data, as opposed to the inferior performance obtained when
irregular data is treated as regular (green line with dots).

Operations performed Signal-to-noise ratio (dB)

Linear binning –1.96
Nonequally sampled fast Fourier 9.04
transform (NFFT) binning
Denoising 13.35
NFFT binning and denoising 8

* SNR is defined as 10log10 ||f||22/||f – f
~

||2
2, where f is the original func-

tion and 
~
f its estimate after binning and/or denoising.

Table 1. Binning and denoising errors measured by signal-to-noise

ratio.* The SNR is 0 dB for the initial (nonuniformly) noisy data.
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transform that takes irregularly sampled data to the
regularly sampled Fourier domain.

By limiting the maximum distance between the
nodes to Ks

–1 and using more irregular than regu-
lar samples (N > K), the pseudo-inverse of A is well
conditioned when including an additional diagonal
weighting W, which is proportional to the number
of sources and receivers per unit on the interval.3

The NFDCT is thus defined as 

x = Cf := TA†f, (4)

where A† := (AHWA)–1AHW. Under the previously
described irregular sampling conditions, the
NFDCT produces curvelet coefficients that per-
tain to a regular Fourier grid. Hence, applying the
regular inverse curvelet transform to these curvelet
coefficients yields data on the regular grid. This
process corresponds to NFFT-based binning.

Signal Estimation and
Separation by Thresholding
Successful denoising and signal separation depend
largely on a transform’s ability to sparsely repre-
sent a particular type of image. Discrete wavelet
transforms and curvelets accomplish (near) opti-
mal nonlinear approximation rates for certain
classes of images.8 As we argued earlier, for exam-
ple, curvelets appear to be the appropriate choice
for seismic data. Let’s review some estimation
techniques for orthonormal wavelets and over-
complete curvelets.

Denoising by Shrinkage
Thresholding on an expansion’s coefficients with
respect to a collection of prototype waveforms is a
key component in solving denoising problems.8,9

The signal model is

d = m + n, (5)

where m is the unknown deterministic signal com-
ponent and n is zero-centered white Gaussian noise
with standard deviation �. The Gaussian assump-
tion is fundamental in this work, but whiteness isn’t
a prerequisite.

Soft thresholding8,9 on each element of the noisy
data coefficient vector solves for the model m
through

~m = S†Sw(Sd). (6)

In this expression, S stands for an arbitrary sparse
signal expansion and Sw for soft thresholding, de-
fined element-wise as

, (7)

where w 
 0—a real-valued threshold. The vector
w contains the thresholds for each coefficient, and
this shrinkage operation via thresholding forms the
basis for our denoising and signal separation. Fig-
ure 6 illustrates the estimation by shrinkage as de-
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Figure 5. Partial reconstruction using 1 percent of the wavelet and curvelet coefficients for nonuniformly sampled data.
In examining (a) linear binning and reconstruction with 1 percent of the wavelet coefficients, and (b) curvelet binning
and reconstruction with 1 percent of the curvelet coefficients, we can see a drastic improvement using curvelets rather
than wavelets for partial reconstruction.
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scribed in Equation 6.

Denoising with Orthonormal Bases
For arbitrary orthonormal transforms S := B, we
have S† = B–1, and Equation 6 solves the minimiza-
tion problem

, (8)

where {y, x} := {Bd, Bm} are the transformed coef-
ficients, and ||x||1,w is a weighted �1-penalty func-
tional given by

. (9)

Given that the noise is zero-centered white Gauss-
ian with standard deviation �, its maximum am-
plitude has a high probability of being below
�(2loge m)1/2. This bound is rather conservative.9

By setting each weight to wm = 3 �, Equation 6
yields a satisfactory estimate for m. During this es-
timation, the quadratic mismatch between the data
and model is minimized jointly with the weighted
�1-penalty functional; the quadratic term is known
as the log-likelihood. We assume the model is a su-
perposition of prototype waveforms, with coeffi-
cients drawn independently from a probability
function Pr{xm} � exp(–Const � wm|xm|) that cor-
responds to the Laplace distribution, which en-
hances sparsity.10,11

Denoising with Tight Frames
The FDCT with wrapping is a tight frame with a
synthesis matrix C† = CH that has more columns
than rows. The coefficient vector exceeds the data
size by a factor of roughly eight. In this case, CCH

� I, and Equation 6 is no longer equivalent to the
minimization problem in Equation 8. However, for

a tight frame with an �2-norm for the columns of
the synthesis matrix close to unity, shrinkage still
provides a good approximation11 to minimization
problem’s solution of Equation 8.

Denoising and Binning with the NFDCT
By combining the nonuniformly sampled curvelet
transform with shrinkage (see Equation 7), we ar-
rive at our main result:

~m = C†Sw(Cd), (10)

which accomplishes the joint task of binning and 
(in-) coherent signal separation on nonuniformly
sampled data d. In this expression, the nonuniform
data vector d is curvelet-transformed with the
NFDCT, followed by a thresholding and the regu-
lar inverse curvelet transform (FDCT). Under the
assumptions we stated earlier about the signal’s
bandwidth limitation and unequal sampling, we can
stably compute the pseudo-inverse used to Fourier-
transform the unequally sampled points. As such, we
can safely assume that the regular sampled Fourier
data is still close to the Fourier transform of the cor-
responding uniformly sampled data. We proceed as
if we were dealing with the uniformly sampled case,
by thresholding and applying the uniformly sampled
inverse curvelet transform (IFDCT). The result of
this operation is a combined denoising and binning,
in which irregular bandwidth-limited noisy data is
denoised and mapped to a regular grid. Figures 7
and 8 demonstrate this technique.

Coherent Signal Separation
Although thresholding estimators are used primary
to separate incoherent noise from deterministic
signal components, our work extends thresholding
estimators to the separation of coherent signal
components (for example, primary-multiple sepa-
ration in seismic exploration12).

In this case, the signal model becomes slightly
more complicated:

s = s1 + s2 + n, (11)

where s1, s2 are the two coherent signal components.
Given a prediction for the second component, we
can estimate the first component via Equation 6,
where the weighting is defined as

, (12)

with . This weighting corresponds to a
varying threshold defined in terms of the curvelet
transform for the predicted signal component. The

� �x Cs2 2:=
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Figure 6. Three-step estimation by shrinkage on transformed
domain coefficients. We first bring the noisy data dd to a
transformed domain, where we apply soft thresholding on the
coefficients. Finally, we obtain a denoised estimate ~mm by applying
the corresponding inverse transform to the thresholded
coefficients.
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� expresses confidence in the prediction. The esti-
mator of Equation 6 using weights as defined in
Equation 12 again corresponds to a maximum a
posteriori (MAP) estimator that minimizes the log-
likelihood function with coefficients selected from
a cross-correlation-weighted probability function
Pr{xm} � exp(–Const � wm|xm|) for m � M. This
function is weighted by the prediction for the sec-
ond signal component.

Applications to Seismic Data
Among seismic data’s most striking features is that
it contains wave fronts possibly contaminated with
bandwidth-limited Gaussian noise. As we’ve
shown, we can remove this random component by
forward transforming the (ir)regular data with the
(N)FDCT, followed by a simple shrinkage and re-
construction with the IFDCT. Figure 7 illustrates
the performance of curvelet denoising by shrink-
age. Because denoising’s performance is (aside from
the binning error) as good as regular denoising, we

show the results only for nonuniformly sampled
data in which denoising is combined with binning.
We can extend these methods to the case of coher-
ent signal removal according to the threshold de-
fined in Equation 12. To emphasize the NFDCT’s
added value, we include an example in which signal
separation is performed on irregular data cast into
a regular grid and on the irregular data itself with
the NFDCT.

The removal of ghost events related to multiple
interactions of the wave field with the surface is
paramount to the success of seismic imaging based
on linearized inverse scattering. These ghosts—
also known as multiples—violate the linearization
and create artifacts in the image. Removing these
artifacts has proven to be difficult due to position
and amplitude errors in the multiple prediction.
Researchers have developed adaptive subtraction
techniques based on matched filtering13 to counter
these prediction errors and robustly separate the
two signal components. Unfortunately, matched
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Figure 7. Incoherent noise removal through shrinkage (Equations 6 and 10). We plotted (a) noisy nonuniformly sampled
data in a regular grid and with a signal-to-noise ratio (SNR) of 0 dB, and (b) binned and denoised data (see Equation 10).
Notice the significant improvement over the SNR listed in Table 1.
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filtering can inadvertently remove primary energy
and leave an unwanted remainder of multiple en-
ergy. As a consequence, primaries can accidentally
be deteriorated and ghosts may locally remain. As
Figure 8 shows, we’ve seen some good results from
formulating this signal-separation problem as a
weighted shrinkage in the curvelet domain. We ob-
tained these results by using s~1 = C†Sw(Cs), where
the weights w are defined as in Equation 12 and 
represents predicted multiples. We set the con-
stants to � = 1.6 and � according to the noise level;
we left the predicted multiples as they were. By
virtue of the NFDCT, the result for the nonuni-
formly sampled case is almost as good as the result
for the uniformly sampled case.

Our extension makes curvelets applica-
ble in other fields where nonuniform
sampling is a concern (for example,
charge-coupled device cameras and

medical imaging). In a future article, we’ll report
on an extension of our method to the case in which
the interpolation grid’s size exceeds the number of
unequally sampled data points and on robust sam-
pling criteria for seismic data. This research aims
at answering two main questions:

• What’s the performance of seismic data recovery
given a certain acquisition geometry?

• What’s the “optimal” acquisition geometry for re-
covering seismic data to within a desired accuracy?
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Figure 8. Removal of ghost events related to multiple interactions of the wave field with the surface. We can compare (a)
synthetic nonuniformly sampled data that contains primary and multiple reflections treated as regular data, (b)
predicted multiples, (c) estimated primaries using the fast discrete curvelet transform (FDCT) on (a) and weights as
defined in Equation 12, and (d) estimated primaries using the nonuniformly sampled FDCT (NFDCT) on (a) and weights
as defined in Equation 12.
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We’re also working on other curvelet-based
techniques for seismic data separation and seismic
image amplitude recovery. As these applications in-
dicate, curvelets will change seismic data process-
ing and imaging. Promoting sparsity in the curvelet
domain as part of the seismic workflow will in-
crease image quality, allowing us to obtain more
details for deeper targets.
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