
ARCHITECTURE AND PERFORMANCE OF DEVITO, A SYSTEM1

FOR AUTOMATED STENCIL COMPUTATION ∗2

FABIO LUPORINI† , MICHAEL LANGE‡ , MATHIAS LOUBOUTIN§ , NAVJOT KUKREJA† ,3

JAN HÜCKELHEIM† , CHARLES YOUNT¶, PHILIPP WITTE‖, PAUL H. J. KELLY#,4

GERARD J. GORMAN† , AND FELIX J. HERRMANN§5

Abstract. Stencil computations are a key part of many high-performance computing applica-6
tions, such as image processing, convolutional neural networks, and finite-difference solvers for partial7
differential equations. Devito is a framework capable of generating highly-optimized code given sym-8
bolic equations expressed in Python, specialized in, but not limited to, affine (stencil) codes. The9
lowering process – from mathematical equations down to C++ code – is performed by the Devito10
compiler through a series of intermediate representations. Several performance optimizations are in-11
troduced, including advanced common sub-expressions elimination, tiling and parallelization. Some12
of these are obtained through well-established stencil optimizers, integrated in the back-end of the13
Devito compiler. The architecture of the Devito compiler, as well as the performance optimiza-14
tions that are applied when generating code, are presented. The effectiveness of such performance15
optimizations is demonstrated using operators drawn from seismic imaging applications.16

Key words. Stencil, finite difference method, symbolic processing, structured grid, compiler,17
performance optimization18

AMS subject classifications. 65N06, 68N2019

1. Introduction. Developing software for high-performance computing requires20

a considerable interdisciplinary effort, as it often involves domain knowledge from nu-21

merous fields such as physics, numerical analysis, software engineering and low-level22

performance optimization. The result is typically a monolithic application where23

hardware-specific optimizations, numerical methods, and physical approximations are24

interwoven and dispersed throughout a large number of loops, functions, files and mod-25

ules. This frequently leads to slow innovation, high maintenance costs, and code that26

is hard to debug and port onto new computer architectures. A powerful approach to27

alleviate this problem is to introduce a separation of concerns and to raise the level of28

abstraction by using domain-specific languages (DSLs). DSLs can be used to express29

numerical methods using a syntax that closely mirrors how they are expressed math-30

ematically, while a stack of compilers and libraries is responsible for automatically31

∗Submitted to SIAM Journal on Scientific Computing on July 9, 2018.
Funding: This work was supported by the Engineering and Physical Sciences Research Council

through grants EP/I00677X/1, EP/L000407/1, EP/I012036/1], by the Imperial College London
Department of Computing, by the Imperial College London Intel Parallel Computing Centre (IPCC),
and by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing
Research, Applied Mathematics and Computer Science programs under contract number DE-AC02-
06CH11357.
†Department of Earth Science and Engineering, Imperial College London, London,

UK, (f.luporini12@imperial.ac.uk, n.kukreja@imperial.ac.uk, j.hueckelheim@imperial.ac.uk,
g.gorman@imperial.ac.uk)
‡European Centre for Medium-Range Weather Forecasts, Reading, UK,

(michael.lange@ecmwf.int)
§Georgia Institute of Technology, School of Computational Science and Engineering, Atlanta GA,

USA, (mlouboutin3@gatech.edu, felix.herrmann@gatech.edu)
¶Intel Corporation, (chuck.yount@intel.com)
‖Seismic Laboratory for Imaging and Modeling (SLIM), The University of British Columbia,

Vancouver BC, CANADA, (pwitte.slim@gmail.com)
#Department of Computing, Imperial College London, London, SW7 2AZ, UK,

(p.kelly@imperial.ac.uk)

1

This manuscript is for review purposes only.

mailto:f.luporini12@imperial.ac.uk
mailto:n.kukreja@imperial.ac.uk
mailto:j.hueckelheim@imperial.ac.uk
mailto:g.gorman@imperial.ac.uk
mailto:michael.lange@ecmwf.int
mailto:mlouboutin3@gatech.edu
mailto:felix.herrmann@gatech.edu
mailto:chuck.yount@intel.com
mailto:pwitte.slim@gmail.com
mailto:p.kelly@imperial.ac.uk

creating the optimized low-level implementation in a general purpose programming32

language such as C++. While the focus of this paper is on finite-difference (FD) based33

codes, the DSL approach has already had remarkable success in other numerical meth-34

ods such as the finite-element (FE) and finite-volume (FV) method, as documented35

in Section 2.36

This work describes the architecture of Devito, a system for automated stencil37

computations from a high-level mathematical syntax. Devito was developed with an38

emphasis on FD methods on structured grids. For this reason, Devito’s underlying39

DSL has many features to simplify the specification of FD methods, as discussed40

in Section 3. The original motivation was to solve large-scale partial differential41

equations (PDEs) in the context of seismic inverse problems, where FD solvers are42

commonly used for solving wave equations as part of complex workflows (e.g., data43

inversion using adjoint-state methods and backpropogation). Devito is equally useful44

as a framework for other stencil computations in general; for example, computations45

where all array indices are affine functions of loop variables. The Devito compiler46

is also capable of generating arbitrarily nested, possibly irregular, loops. This key47

feature is needed to support many complex algorithms that are used in engineering and48

scientific practice, including applications from image processing, cellular automata,49

and machine-learning.50

One of the design goals of Devito was to enable high-productivity, so it is fully51

written in Python, with easy access to solvers, optimizers, input and output, and the52

wide range of other libraries in the Python ecosystem. At the same time, Devito53

transforms high-level symbolic input into optimized C++ code, resulting in a perfor-54

mance that is competitive with hand-optimized implementations. While the examples55

presented in this paper focus on using Devito from a Python application, exploiting56

the full potential of on-the-fly code generation and just-in-time (JIT) compilation,57

a practical advantage of generating C++ as an intermediate step is that it can be58

also used to generate libraries for legacy software, thus enabling incremental code59

modernisation.60

Compared to other DSL frameworks that are used in practice, Devito uses com-61

piler technology, including several layers of intermediate representations, to perform62

optimizations in multiple passes. This allows Devito to perform more complex op-63

timizations, and to better optimize the code for individual target platforms. The64

fact that these optimisations are performed programmatically facilitates performance65

portability across different computer architectures [28]. This is important, as indus-66

trial codes are often used on a variety of platforms, including clusters with multi-core67

CPUs, GPUs, and many-core chips spread across several compute nodes as well as68

various cloud platforms. Devito also performs high-level transformations for floating-69

point operation (FLOP) reduction based on symbolic manipulation, as well as loop-70

level optimizations as implemented in Devito’s own optimizer, or using a third-party71

stencil compiler such as YASK [40]. The Devito compiler is presented in detail in72

Sections 4, 5 and 6.73

After the presentation of the Devito compiler, we show test cases in Section 774

that are inspired by real-world seismic-imaging problems. The paper finishes with75

directions for future work and conclusions in Sections 8 and 9.76

2. Related work. The objective of maximizing productivity and performance77

through frameworks based upon DSLs has long been pursued. In addition to well-78

known systems such as MathematicaR© and MatlabR©, which span broad mathematical79

areas, there are a number of tools specialized in numerical methods for PDEs, some80

2

This manuscript is for review purposes only.

dating back to the 1970s [6, 34, 7, 35].81

2.1. DSL-based frameworks for partial differential equations. One note-82

worthy contemporary framework centered on DSLs is FEniCS [22], which allows83

the specification of weak variational forms, via UFL [2], and finite-element meth-84

ods, through a high-level syntax. Firedrake [30] implements the same languages as85

FEniCS, although it differs from it in a number of features and architectural choices.86

Devito is heavily influenced by these two successful projects, in particular by their87

philosophy and design. Since solving a PDE is often a small step of a larger workflow,88

the choice of Python to implement these software provides access to a wide ecosystem89

of scientific packages. Firedrake also follows the principle of graceful degradation, by90

providing a very simple lower-level API to escape the abstraction when non-standard91

calculations (i.e., unrelated to the finite-element formulation) are required. Likewise,92

Devito allows injecting arbitrary expressions into the finite-difference specification;93

this feature has been used in real-life cases, for example for interpolation in seismic94

imaging operators. On the other hand, a major difference is that Devito lacks a for-95

mal specification language such us UFL in FEniCS/Firedrake. This is partly because96

there is no systematic foundation underpinning FD, as opposed to FE which relies97

upon the theory of Hilbert spaces [5]. Yet another distinction is that, for performance98

reasons, Devito takes control of the time-stepping loop. Other examples of embedded99

DSLs are provided by the OpenFOAM project, with a language for FV [13], and by100

PyFR, which targets flux reconstruction methods [36].101

2.2. High-level approaches to finite differences. Due to its simplicity, the102

FD method has been the subject of multiple research projects, chiefly targeting the103

design of effective software abstraction and/or the generation of high performance code104

[14, 3, 16, 21]. Devito distinguishes itself from previous work in a number of ways105

including: support for the principle of graceful degradation for when the DSL does not106

cover a feature required by an application; incorporation of a symbolic mathematics107

engine; using actual compiler technology rather than template-based code generation;108

adoption of a native Python interface that naturally allows composition into complex109

workflows such as optimisation and machine-learning frameworks.110

At a lower level of abstraction there are a number of tools targeting “stencil”111

computation (FD codes belong to this class), whose major objective is the generation112

of efficient code. Some of them provide a DSL [40, 31, 43, 29], whereas others are113

compilers or user-driven code generation systems, often based upon a polyhedral114

model, such as [4, 18]. From the Devito standpoint, the aim is to harness these115

tools – for example by integrating them, to maximize performance portability. As a116

proof of concept, we shall discuss the integration of one such tool, namely YASK [40],117

with Devito.118

2.3. Devito and seismic imaging. Devito is a general purpose system, not119

restricted to specific PDEs, so it can be used for any form of the wave equation.120

Thus, unlike software specialized in seismic exploration, like IWAVE [32] and Mada-121

gascar [12], it suffers neither from the restriction to a small set of wave equations and122

discretizations, nor from the lack of portability and composability typical of a pure123

C/Fortran environment.124

2.4. Performance optimizations. The Devito compiler can introduce three125

types of performance optimizations: FLOPs reduction, data locality, and parallelism.126

Typical FLOPs reduction transformations are common sub-expressions elimination,127

factorization, and code motion. A thorough review is provided in [11]. To different128

3

This manuscript is for review purposes only.

Symbolic Equation

Data

Symbolic Functions

Operator

JIT-compiled .so

Python

u = TimeFunction(name=‘u’, grid=grid)
m = Function(name=‘m’, grid=grid)

eqn = m*u.dt2 - u.laplace

op = Operator(eqn)

Grid grid = Grid(shape=(…))
Overarching
application

PDE
solver

…

…

Python/…

Fig. 1: The typical usage of Devito within a larger application.

extent, Devito applies all of these techniques (see Section 5.1). Particularly relevant129

for stencil computation is the search for redundancies across consecutive loop iter-130

ations [9, 10, 20]. This is at the core of the strategy described in Section 6, which131

essentially extends these ideas with optimizations for data locality. Typical loop trans-132

formations for parallelism and data locality [17] are also automatically introduced by133

the Devito compiler (e.g., loop blocking, vectorization); more details will be provided134

in Sections 5.2 and 5.3.135

3. Specification of a finite-difference method with Devito. The Devito136

DSL allows concise expression of FD and general stencil operations using a mathe-137

matical notation. It uses SymPy [27] for the specification and manipulation of stencil138

expressions. In this section, we describe the use of Devito’s DSL to build PDE solvers.139

Although the examples used here are for FD, the DSL can describe a large class of op-140

erations, such as convolutions or basic linear algebra operations (e.g., chained tensor141

multiplications).142

3.1. Symbolic types. The key steps to implement a numerical kernel with De-143

vito are shown in Figure 1. We describe this workflow, as well as fundamental features144

of the Devito API, using the acoustic wave equation, also known as d’Alembertian or145

Box operator. Its continuous form is given by:146

m(x, y, z)
d2u(x, y, z, t)

dt2
−∇2u(x, y, z, t) = qs,

u(x, y, z, 0) = 0,

du(x, y, z, t)

dt
|t=0 = 0,

(3.1)147

148

where the variables of this expression are defined as follows:149

• m(x, y, z) = 1
c(x,y,z)2 , is the parametrization of the subsurface with c(x, y, z) being150

the speed of sound as a function of the three space coordinates (x, y, z);151

• u(x, y, z, t), is the spatially varying acoustic wavefield, with the additional dimen-152

sion of time t;153

• qs is the source term, which is a point source in this case.154

The first step towards solving this equation is the definition of a discrete computa-155

tional grid, on which the model parameters, wavefields and source are defined. The156

computational grid is defined as a Grid(shape) object, where shape is the number157

4

This manuscript is for review purposes only.

of grid points in each spatial dimension. Optional arguments for instantiating a Grid158

are extent, which defines the extent in physical units, and origin, the origin of the159

coordinate system, with respect to which all other coordinates are defined.160

The next step is the symbolic definition of the squared slowness, wavefield and161

source. For this, we introduce some fundamental types.162

• Function represents a discrete spatially varying function, such as the velocity. A163

Function is instantiated for a defined name and a given Grid.164

• TimeFunction represents a discrete function that is both spatially varying and165

time dependent, such as wavefields. Again, a TimeFunction object is defined on166

an existing Grid and is identified by its name.167

• SparseFunction and SparseTimeFunction represent sparse functions, that is168

functions that are only defined over a subset of the grid, such as a seismic point169

source. The corresponding object is defined on a Grid, identified by a name, and170

also requires the coordinates defining the location of the sparse points.171

Apart from the grid information, these objects carry their respective FD dis-172

cretization information in space and time. They also have a data field that contains173

values of the respective function at the defined grid points. By default, data is ini-174

tialized with zeros and therefore automatically satisfies the initial conditions from175

equation 3.1. The initialization of the fields to solve the wave equation over a one-176

dimensional grid is displayed in Listing 1.177

Listing 1 Setup Functions to express and solve the acoustic wave equation.

1 >>> from devito import Grid , TimeFunction , Function , SparseTimeFunction
2 >>> g = Grid(shape =(nx ,), origin =(ox ,), extent =(sx ,))
3 >>> u = TimeFunction(name="u", grid=g, space_order =2, time_order =2) # Wavefield
4 >>> m = Function(name="m", grid=g) # Physical parameter
5 >>> q = SparseTimeFunction(name="q", grid=g, coordinates=coordinates) # Source

3.2. Discretization. With symbolic objects that represent the discrete velocity178

model, wavefields and source function, we can now define the full discretized wave179

equation. As mentioned earlier, one of the main features of Devito is the possibility180

to formulate stencil computations as concise mathematical expressions. To do so, we181

provide shortcuts to classic FD stencils, as well as the functions to define arbitrary182

stencils. The shortcuts are accessed as object properties and are supported by Time-183

Function and Function objects. For example, we can take spatial and temporal184

derivatives of the wavefield u via the shorthand expressions u.dx and u.dt (Listing 2).185

Listing 2 Example of spatial and temporal FD stencil creation.

1 >>> u.dx
2 -u(t, x - h_x)/(2* h_x) + u(t, x + h_x)/(2* h_x)
3 >>> u.dt
4 -u(t - dt, x)/(2*dt) + u(t + dt, x)/(2*dt)
5 >>> u.dt2
6 -2*u(t, x)/dt**2 + u(t - dt, x)/dt**2 + u(t + dt, x)/dt**2

Furthermore, Devito provides shortcuts for common differential operations such186

as the Laplacian via u.laplace. The full discrete wave equation can then be imple-187

mented in a single line of Python (Listing 3).188

To solve the time-dependent wave equation with an explicit time-stepping scheme,189

the symbolic expression representing our PDE has to be rearranged such that it yields190

an update rule for the wavefield u at the next time step: u(t + dt) = f(u(t), u(t −191

5

This manuscript is for review purposes only.

Listing 3 Expressing the wave equation.

1 >>> wave_equation = m * u.dt2 - u.laplace
2 >>> wave_equation
3 (-2*u(t, x)/dt**2 + u(t - dt, x)/dt**2 + u(t + dt, x)/dt**2)*m(x) + 2*u(t, x)/h_x

2 - u(t, x - h_x)/h_x **2 - u(t, x + h_x)/h_x2

dt))). Devito allows to rearrange the PDE expression automatically using the solve192

function, as shown in Listing 4.193

Listing 4 Time-stepping scheme for the acoustic wave equation. region=INTERIOR

ensures that the Dirichlet boundary conditions at the edges of the Grid are satisfied.

1 >>> from devito import Eq , INTERIOR , solve
2 >>> stencil = Eq(u.forward , solve(wave_equation , u.forward), region=INTERIOR)
3 >>> stencil
4 Eq(u(t + dt, x), -2*dt**2*u(t, x)/(h_x **2*m(x)) + dt**2*u(t, x - h_x)/(h_x **2*m(x)

) + dt**2*u(t, x + h_x)/(h_x **2*m(x)) + 2*u(t, x) - u(t - dt , x))

Note that the stencil expression in Listing 4 does not yet contain the point194

source q. This could be included as a regular Function which has zeros all over the195

grid except for a few points; this, however, would obviously be wasteful. Instead,196

SparseFunctions allow to perform operations, such as injecting a source or sampling197

the wavefield, at a subset of grid points determined by coordinates. In the case in198

which coordinates do not coincide with grid points, bilinear (for 2D) or trilinear (for199

3D) interpolation are employed. To inject a point source into the stencil expression,200

we use the inject function of the SparseTimeFunction object that represents our201

seismic source (Listing 5).1202

Listing 5 Expressing the injection of a source into a field.

1 >>> injection = q.inject(field=u.forward , expr=dt**2 * q / m)
2 >>> injection
3 [Eq(u[t + 1, INT(floor((-o_x + q_coords[p_q , 0])/h_x))], dt **2*(1 - FLOAT(-h_x*INT

(floor((-o_x + q_coords[p_q , 0])/h_x)) - o_x + q_coords[p_q , 0])/h_x)*q[time ,
p_q]/m[INT(floor((-o_x + q_coords[p_q , 0])/h_x))] + u[t + 1, INT(floor((-o_x +
q_coords[p_q , 0])/h_x))]),

4 Eq(u[t + 1, INT(floor((-o_x + q_coords[p_q , 0])/h_x)) + 1], dt**2* FLOAT(-h_x*INT(
floor((-o_x + q_coords[p_q , 0])/h_x)) - o_x + q_coords[p_q , 0])*q[time , p_q
]/(h_x*m[INT(floor((-o_x + q_coords[p_q , 0])/h_x)) + 1]) + u[t + 1, INT(floor
((-o_x + q_coords[p_q , 0])/h_x)) + 1])]

The inject function takes the field being updated as an input argument (in this203

case u.forward), while expr=dt**2 * q / m is the expression being injected. The204

result of the inject function is a list of symbolic expressions, similar to the stencil205

expression we defined earlier. As we shall see, these expressions are eventually joined206

together and used to create an Operator object – the solver of our PDE.207

3.3. Boundary conditions. Simple boundary conditions (BCs), such as Dirich-208

let BCs, can be imposed on individual equations through special keywords (see List-209

ing 4). For more exotic schemes, instead, the BCs need to be explicitly written (e.g.,210

Higdon BCs [15]), just like any of the symbolic expressions defined in the Listings211

1More complicated interpolation schemes can be defined by precomputing the grid points cor-
responding to each sparse point, and their respective coefficients. The result can then be used to
create a PrecomputedSparseFunction, which behaves like a SparseFunction at the symbolic level.

6

This manuscript is for review purposes only.

above. For reasons of space, this aspect is not elaborated further; the interested212

reader may refer to [26].213

3.4. Control flow. By default, the extent of a TimeFunction in the time dimen-214

sion is limited by its time order. Hence, the shape of u in Listing 1 is (time order +215

1, nx) = (3, nx). The iterative method will then access u via modulo iteration, that216

is u[t%3, ...]. In many scenarios, however, the entire time history, or at least periodic217

time slices, should be saved (e.g., for inversion algorithms). Listing 6 expands our218

running example with an equation that saves the content of u every 4 iterations, up219

to a maximum of save = 100 time slices.220

Listing 6 Implementation of time sub-sampling.

1 >>> from devito import ConditionalDimension
2 >>> ts = ConditionalDimension(’ts’, parent=g.time_dim , factor =4)
3 >>> us = TimeFunction(name=’us ’, grid=g, save =100, time_dim=ts)
4 >>> save = Eq(us, u)

In general, all equations that access Functions (or TimeFunctions) employing221

one or more ConditionalDimensions will be conditionally executed. The condition222

may be a number indicating how many iterations should pass between two executions223

of the same equation, or even an arbitrarily complex expression.224

3.5. Domain, halo, and padding regions. A Function internally distin-225

guishes between three regions of points.226

Domain Represents the computational domain of the Function and is inferred from227

the input Grid. This includes any elements added to the physical domain228

purely for computational purposes, e.g. absorbing boundary layers.229

Halo The grid points surrounding the domain region, i.e. “ghost” points that are230

accessed by the stencil when iterating in proximity of the domain boundary.231

Padding The grid points surrounding the halo region, which are allocated for perfor-232

mance optimizations, such as data alignment. Normally this region should be233

of no interest to a user of Devito, except for precise measurement of memory234

allocated for each Function.235

4. The Devito compiler. In Devito, an Operator carries out three fundamen-236

tal tasks: generation of low-level code, JIT compilation, and execution. The Operator237

input consists of one or more symbolic equations. In the generated code, these equa-238

tions are scheduled within loop nests of suitable depth and extent. The Operator also239

accepts substitution rules (to replace symbols with constant values) and optimization240

levels for the Devito Symbolic Engine (DSE) and the Devito Loop Engine (DLE). By241

default, all DSE and DLE optimizations that are known to unconditionally improve242

performance are automatically applied. The same Operator may be reused with dif-243

ferent input data; JIT-compilation occurs only once, triggered by the first execution.244

Overall, this lowering process – from high-level equations to dynamically compiled245

and executable code – consists of multiple compiler passes, summarized in Figure 2246

and discussed in the following sections (a minimal background in data dependence247

analysis is recommended; the unfamiliar reader may refer to a classic textbook such248

as [1]).249

4.1. Equations lowering. In this pass, three main tasks are carried out: in-250

dexification, substitution, and domain-alignment.251

7

This manuscript is for review purposes only.

Equations lowering
Input Equations → Lowered Equations

Invariants extraction

Aliases detection

Factorization

Common sub-expressions elimination

Local analysis

Symbolic optimization [DSE]
Clusters → Clusters

IET construction
Clusters → IET [abstract syntax tree]

IET optimization [DLE/YLE]
IET → IET

Synthesis
IET → CGen AST → C/C++ string

Clustering
Lowered Equations → Clusters

Declarations

Instrumentation for profiling

Header files, globals, macros, …

Enforcement of iteration direction

Grouping

JIT Compilation
C/C++ string → kernel.c → kernel.so

IET analysis
IET → IET

SIMD vectorization

Loop blocking

Shared-memory (hierarchical) parallelism

Low-level optimization
(e.g., sw prefatching)

Fig. 2: Compiler passes to lower symbolic equations into shared objects through an
Operator.

• As explained in Section 3, the input equations typically involve ore or more indexed252

Functions. The indexification consists of converting such objects into actual ar-253

rays. An array always keeps a reference to its originating Function. For instance,254

all accesses to u such as u[t, x + 1] and u[t + 1, x− 2] would store a pointer to the255

same, user-defined Function u(t, x). This metadata is exploited throughout the256

various compilation passes.257

• During substitution, the user-provided substitution rules are applied. These may258

be given for any literal appearing in the input equations, such as the grid spacing259

symbols. Applying a substitution rule increases the chances of constant folding,260

but it makes the Operator less generic. The values of symbols for which no261

substitution rule is available are provided at execution time.262

• The domain-alignment step shifts the array accesses deriving from Functions hav-263

ing non-empty halo and padding regions. Thus, the array accesses become logically264

aligned to the equation’s natural domain. For instance, given the usual Function265

u(t, x) having two points on each side of the x halo region, the array accesses u[t, x]266

and u[t, x + 2] are transformed, respectively, into u[t, x + 2] and u[t, x + 4]. When267

x = 0, therefore, the values u[t, 2] and u[t, 4] are fetched, representing the first and268

third points in the computational domain.269

4.2. Local analysis. The lowered equations are analyzed to collect information270

relevant for the Operator construction and execution. In this pass, an equation is271

inspected “in isolation”, ignoring its relationship with the rest of the input. The272

following metadata are retrieved and/or computed:273

8

This manuscript is for review purposes only.

• input and output Functions;274

• Dimensions, which are topologically ordered based on how they appear in the275

various array index functions; and276

• two notable Spaces: the iteration space, ISpace, and the data space, DSpace.277

A Space is a collection of points given by the product of n compact intervals on278

Z. With the notation d[om, oM] we indicate the compact interval [dm + om, dM +279

oM] over the Dimension d, in which dm and dM are parameters (specialized only280

at runtime), while om and oM are known integers. For instance, [x[0, 0], y[−1, 1]]281

describes a rectangular two-dimensional space over x and y, whose points are given282

by the Cartesian product [xm, xM] × [ym − 1, yM + 1]. The ISpace and DSpace are283

two special types of Space. They usually span different sets of Dimensions. A DSpace284

may have Dimensions that do not appear in an ISpace, in particular those that are285

accessed only via integer indices. Likewise, an ISpace may have Dimensions that are286

not part of the DSpace, such as a reduction axis. Further, an ISpace also carries, for287

each Dimension, its iteration direction.288

As an example, consider the equation stencil in Listing 4. Immediately we see289

that input = [u,m], output = [u], Dimensions = [t, x]. The compiler constructs the290

ISpace [t[0, 0]+, x[0, 0]∗]. The first entry t[0, 0]+ indicates that, along t, the equation291

should run between tm + 0 and tM + 0 (extremes included) in the forward direction,292

as indicated by the symbol +. This is due to the fact that there is a flow dependence293

in t, so only a unitary positive stepping increment (i.e., t = t + 1) allows a correct294

propagation of information across consecutive iterations. The only difference along295

x is that the iteration direction is now arbitrary, as indicated by ∗. The DSpace is296

[t[0, 1], x[0, 0]]; intuitively, the entry t[0, 1] is used right before running an Operator297

to provide a default value for tM – in particular, tM will be set to the largest possible298

value that does not cause out-of-domain accesses (i.e., out-of-bounds array accesses).299

4.3. Clustering. A Cluster is a sequence of equations having (i) same ISpace,300

(ii) same control flow (i.e., same ConditionalDimensions), and (iii) no dimension-301

carried “true” anti-dependences among them.302

As an example, consider again the setup in Section 3. The equation stencil cannot303

be “clusterized” with the equations in the injection list as their ISpaces are different.304

On the other hand, the equations in injection can be grouped together in the same305

Cluster as (i) they have same ISpace [t[0, 0]∗, pq[0, 0]∗], (ii) same control flow, and306

(iii) there are no true anti-dependences among them (note that the second equation307

in injection does write to u[t+ 1, ...], but as explained later this is in fact a reduction,308

that is a “false” anti-dependence).309

4.3.1. Iteration direction. First, each equation is assigned a new ISpace,310

based upon a global analysis. Any of the iteration directions that had been marked as311

“arbitrary” (∗) during local analysis may now be enforced to forward (+) or backward312

(−). This process exploits data dependence analysis.313

For instance, consider the flow dependence between stencil and the injection equa-314

tions. If we want u to be up-to-date when evaluating injection, then we eventually315

need all equations to be scheduled sequentially within the t loop. For this, the ISpaces316

of the injection equations are specialized by enforcing the direction forward along the317

Dimension t. The new ISpace is [t[0, 0]+, pq[0, 0]∗].318

Algorithm 1 illustrates how the enforcement of iteration directions is achieved in319

general. Whenever a clash is detected (i.e., two equations with ISpace [d[0, 0]+, ...]320

and [d[0, 0]−, ...]), the original direction determined by the local analysis pass is kept321

(lines 11 and 13), which will eventually lead to generating different loops.322

9

This manuscript is for review purposes only.

Algorithm 1: Clustering: enforcement of iteration directions (pseudocode).

Input: A sequence of equations E.
Output: A sequence of equations E ′ with altered ISpace.
// Map each dimension to a set of expected iteration directions

1 mapper ← detect flow directions(E);
2 for e in E do
3 for dim, directions in mapper do
4 if len(directions) == 1 then

// No ambiguity

5 forced[dim] ← directions.pop();

6 else if len(directions) == 2 then
// No ambiguity as long as one of the two items is /Any/

7 try
8 directions.remove(Any);
9 forced[dim] ← directions.pop();

10 except
11 forced[dim] ← e.directions[dim];

12 else
13 forced[dim] ← e.directions[dim];
14 end if

15 end for
16 E ′.append(e. rebuild(directions=forced))

17 end for
18 return E ′

4.3.2. Grouping. This step performs the actual clustering, checking ISpaces323

and anti-dependences, as well as handling control flow. The procedure is shown in324

Algorithm 2; some explanations follow.325

Algorithm 2: Clustering: grouping expressions into Clusters (pseudocode)

Input: A sequence of equations E.
Output: A sequence of clusters C.

1 C ← ClusterGroup();
2 for e in E do
3 grouped ← false;
4 for c in reversed(C) do
5 anti, flow ← get dependences(c, e);
6 if e.ispace == c.ispace and anti.carried is empty then
7 c.add(e);
8 grouped ← true;
9 break;

10 else if anti.carried is not empty then
11 c.atomics.update(anti.carried.cause);
12 break;

13 else if flow.cause.intersection(c.atomics) then
// cannot search across earlier clusters

14 break;

15 end for
16 if not grouped then
17 C.append(Cluster(e));
18 end if

19 end for
20 C ← control flow(C);
21 return C

• Robust data dependence analysis, capable of tracking flow-, anti-, and output-326

10

This manuscript is for review purposes only.

dependencies at the level of array accesses, is necessary. In particular, it must327

be able to tell whether two generic array accesses induce a dependence or not.328

The data dependence analysis performed is conservative; that is, a dependence is329

always assumed when a test is inconclusive. Dependence testing is based on the330

standard Lamport test [1]. In Algorithm 2, data dependence analysis is carried331

out by the function get dependences.332

• If an anti-dependence is detected along a Dimension i, then i is marked as atomic333

– meaning that no further clustering can occur along i. This information is also334

exploited by later Operator passes (see Section 4.5).335

• Reductions, and in particular increments, are treated specially. They represent a336

special form of anti-dependence, as they do not break clustering. get dependen-337

ces detects reductions and removes them from the set of anti-dependencies.338

• Given the sequence of equations [E1, E2, E3], it is possible that E3 can be grouped339

with E1, but not with its immediate predecessor E2 (e.g., due to a different340

ISpace). However, this can only happen when there are no flow or anti-dependen-341

ces between E2 and E3; i.e. when the if commands at lines 10 and 13 are not342

entered, thus allowing the search to proceed with the next equation. This opti-343

mization was originally motivated by gradient operators in seismic imaging kernels.344

• The routine control flow, omitted for brevity, creates additional Clusters if345

one or more ConditionalDimensions are encountered. These are tracked in a346

special Cluster field, guards, as also required by later passes (see Section 4.5).347

4.4. Symbolic optimization. The DSE – Devito Symbolic Engine – is a macro-348

pass reducing the arithmetic strength of Clusters (e.g., their operation count). It con-349

sists of a series of passes, ranging from standard common sub-expression elimination350

(CSE) to more advanced rewrite procedures, applied individually to each Cluster.351

The DSE output is a new ordered sequence of Clusters: there may be more or fewer352

Clusters than in the input, and both the overall number of equations as well as353

the sequence of arithmetic operations might differ. The DSE passes are discussed in354

Section 5.1. We remark that the DSE only operates on Clusters (i.e., on collections355

of equations); there is no concept of “loop“ at this stage yet. However, by altering356

Clusters, the DSE has an indirect impact on the final loop-nest structure.357

4.5. IET construction. In this pass, the intermediate representation is low-358

ered to an Iteration/Expression Tree (IET). An IET is an abstract syntax tree in359

which Iterations and Expressions – two special node types – are the main actors.360

Equations are wrapped within Expressions, while Iterations represent loops. Loop361

nests embedding such Expressions are constructed by suitably nesting Iterations.362

Each Cluster is eventually placed in its own loop (Iteration) nest, although some363

(outer) loops may be shared by multiple Clusters.364

Consider again our running acoustic wave equation example. There are three365

Clusters in total: C1 for stencil, C2 for save, and C3 for the equations in injection.366

We use Algorithm 3 – an excerpt of the actual cluster scheduling algorithm – to367

explain how this sequence of Clusters is turned into an IET. Initially, the schedule368

list is empty, so when C1 is handled two nested Iterations are created (line 15),369

respectively for the Dimensions t and x. Subsequently, C2’s ISpace and the current370

schedule are compared (line 5). It turns out that t appears among C2’s guards, hence371

the for loop is exited at line 12 without inspecting the second and last iteration.372

Thus, index = 1, and the previously built Iteration over t is reused. Finally,373

when processing C3, the for loop is exited at the second iteration due to line 6, since374

pq! = x. Again, the t Iteration is reused, while a new Iteration is constructed for375

11

This manuscript is for review purposes only.

Algorithm 3: An excerpt of the cluster scheduling algorithm, turning a list (of Clusters) into
a tree (IET). Here, the fact that different Clusters may eventually share some outer Iterations
is highlighted.

Input: A sequence of Clusters C.
Output: An Iteration/Expression Tree.

1 schedule ← list();
2 for c in C do
3 root ← None;
4 index ← 0;
5 for i0, i1 in zip(c.ispace, schedule) do
6 if i0 != i1 or i0.dimension in c.atomics then
7 break;

8 end if
9 root ← schedule[i1];

10 index ← index + 1;
11 if i0.dim in c.guards then
12 break;
13 end if

14 end for
15 〈build as many Iterations as Dimensions in c.ispace[index:] and nest them inside root〉;
16 〈update schedule〉;
17 〈...〉
18 end for

the Dimension pq. Eventually, the constructed IET is as in Listing 7.376

Listing 7 Graphical representation of the IET produced by the cluster scheduling
algorithm for the running example.

1 for t = t_m to t_M:
2 |-- for x = x_m to x_M:
3 | |-- <Eq(u[t+1,x], ...)>
4 |
5 |-- if t % 4 == 0
6 | |-- for x = x_m to x_M:
7 | |-- <Eq(us[t/4, x], ...)>
8 |
9 |-- for p_q = p_q_m to p_q_M:

10 |-- <Eq(u[t+1,f(p_q)], ...)>
11 |-- <Eq(u[t+1,g(p_q)], ...)>

4.6. IET analysis. The newly constructed IET is analyzed to determine Itera-377

tion properties such as sequential, parallel, and vectorizable, which are then378

attached to the relevant nodes in the IET. These properties are used for loop optimiza-379

tion, but only by a later pass (see Section 4.7). To determine whether an Iteration380

is parallel or sequential, a fundamental result from compiler theory is used –381

the i-th Iteration in a nest comprising n Iterations is parallel if for all depen-382

dences D, expressed as distance vectors D = (d0, ..., dn−1), either (d1, ..., di−1) > 0 or383

(d1, ..., di) = 0 [1].384

4.7. IET optimization. This macro-pass transforms the IET for performance385

optimization. Apart from runtime performance, this pass also optimizes for rapid386

JIT compilation with the underlying C compiler. A number of loop optimizations are387

introduced, including loop blocking, minimization of remainder loops, SIMD vector-388

ization, shared-memory (hierarchical) parallelism via OpenMP, software prefetching.389

These will be detailed in Section 5. A backend (see Section 4.9) might provide its own390

12

This manuscript is for review purposes only.

loop optimization engine.391

4.8. Synthesis, dynamic compilation, and execution. Finally, the IET392

adds variable declarations and header files, as well as instrumentation for performance393

profiling, in particular, to collect execution times of specific code regions. Declara-394

tions are injected into the IET, ensuring they appear as close as possible to the scope395

in which the relative variables are used, while honoring the OpenMP semantics of pri-396

vate and shared variables. To generate C code, a suitable tree visitor inspects the IET397

and incrementally builds a CGen tree [19], which is ultimately translated into a string398

and written to a file. Such files are stored in a software cache of Devito-generated399

Operators, JIT-compiled into a shared object, and eventually loaded into the Python400

environment. The compiled code has a default entry point (a special function), which401

is called directly from Python at Operator application time.402

4.9. Operator specialization through backends. In Devito, a backend is403

a mechanism to specialize data types as well as Operator passes, while preserving404

software modularity (inspired by [25]).405

One of the main objectives of the backend infrastructure is promoting software406

composability. As explained in Section 2, there exist a significant number of interest-407

ing tools for stencil optimization, which we may want to integrate with Devito. For408

example, one of the future goals is to support GPUs, and this might be achieved by409

writing a new backend implementing the interface between Devito and third-party410

software specialized for this particular architecture.411

Currently, two backends exist:412

core the default backend, which relies on the DLE for loop optimization.413

yask an alternative backend using the YASK stencil compiler to generate optimized414

C++ code for IntelR© XeonR© and IntelR© Xeon PhiTM architectures [40].415

Devito transforms the IET into a format suitable for YASK, and uses its API416

for data management, JIT-compilation, and execution. Loop optimization is417

performed by YASK through the YASK Loop Engine (YLE).418

The core and yask backends share the compilation pipeline in Figure 2 until the loop419

optimization stage.420

5. Automated performance optimizations. As discussed in Section 4, De-421

vito performs symbolic optimizations to reduce the arithmetic strength of the expres-422

sions, as well as loop transformations for data locality and parallelism. The former are423

implemented as a series of compiler passes in the DSE, while for the latter there cur-424

rently are two alternatives, namely the DLE and the YLE (depending on the chosen425

execution backend).426

Devito abstracts away the single optimizations passes by providing users with a427

certain number of optimization levels, called “modes“, which trigger pre-established428

sequences of optimizations – analogous to what general-purpose compilers do with,429

for example, -O2 and -O3. In Sections 5.1, 5.2, and 5.3 we describe the individual430

passes provided by the DSE, DLE, and YLE respectively, while in Section 7.1 we431

explain how these are composed into modes.432

5.1. DSE - Devito Symbolic Engine. The DSE passes attempt to reduce the433

arithmetic strength of the expressions through FLOP-reducing transformations [11].434

They are illustrated in Listings 8-11, which derive from the running example used435

throughout the article. A detailed description follows.436

• Common sub-expression elimination (CSE). Two implementations are avail-437

able: one based upon SymPy’s cse routine and one built on top of more basic438

13

This manuscript is for review purposes only.

SymPy routines, such as xreplace. The former is more powerful, being aware439

of key arithmetic properties such as associativity; hence it can discover more re-440

dundancies. The latter is simpler, but avoids a few critical issues: (i) it has a441

much quicker turnaround time; (ii) it does not capture integer index expressions442

(for increased quality of the generated code); and (iii) it tries not to break factor-443

ization opportunities. A generalized common sub-expressions elimination routine444

retaining the features and avoiding the drawbacks of both implementations is still445

under development. By default, the latter implementation is used when the CSE446

pass is selected.447

Listing 8 An example of common sub-expressions elimination.

1 >>> 9.0*dt*dt*u[t, x + 1] - 18.0* dt*dt*u[t][x + 2] + 9.0*dt*dt*u[t, x + 3]
2 temp0 = dt*dt
3 9.0* temp0*u[t, x + 1] - 18.0* temp0*u[t][x + 2] + 9.0* temp0*u[t, x + 3]

• Factorization. This pass visits each expression tree and tries to factorize FD448

weights. Factorization is applied without altering the expression structure (e.g.,449

without expanding products) and without performing any heuristic search across450

groups of expressions. This choice is based on the observation that a more ag-451

gressive approach is only rarely helpful (never in the test cases in Section 7),452

while the increase in symbolic processing time could otherwise be significant. The453

implementation exploits the SymPy collect routine. However, while collect454

only searches for common factors across the immediate children of a single node,455

the DSE implementation recursively applies collect to each Add node (i.e., an456

addition) in the expression tree, until the leaves are reached.457

Listing 9 An example of FD weights factorization.

1 >>> 9.0* temp0*u[t, x + 1] - 18.0* temp0*u[t][x + 2] + 9.0* temp0*u[t, x + 3]
2 9.0* temp0 *(u[t, x + 1] + u[t, x + 3]) - 18.0* temp0*u[t][x + 2]

• Extraction. The name stems from the fact that sub-expressions matching a458

certain condition are pulled out of a larger expression, and their values are stored459

into suitable scalar or tensor temporaries. For example, a condition could be460

“extract all time-varying sub-expressions whose operation count is larger than a461

given threshold”. A tensor temporary may be preferred over a scalar temporary if462

the intention is to let the IET construction pass (see Section 4.5) place the pulled463

sub-expressions within an outer loop nest. Obviously, this comes at the price of464

additional storage. This peculiar effect – trading operations for memory – will be465

thoroughly analyzed in Sections 6 and 7.466

Listing 10 An example of time-varying sub-expressions extraction. Only sub-
expressions performing at least one floating-point operation are extracted.

1 >>> 9.0* temp0*(u[t, x + 1] + u[t, x + 3]) - 18.0* temp0*u[t][x + 2]
2 temp1[x] = u[t, x + 1] + u[t, x + 3]
3 9.0* temp0*temp1[x] - 18.0* temp0*u[t][x + 2]

• Detection of aliases. The Alias-Detection Algorithm implements the most ad-467

vanced DSE pass. In essence, an alias is a sub-expression that is redundantly com-468

puted at multiple iteration points. Because of its key role in the Cross-Iteration469

14

This manuscript is for review purposes only.

Redundancy-Elimination algorithm, the formalization of the Alias-Detection Al-470

gorithm is postponed until Section 6.471

Listing 11 An example of alias detection.

1 >>> 9.0* temp0*u[t, x + 1] - 18.0* temp0*u[t][x + 2] + 9.0* temp0*u[t, x + 3]
2 temp[x] = 9.0* temp0*u[t, x]
3 temp[x + 1] - 18.0* temp0*u[t][x + 2] + temp[x + 3]

5.2. DLE - Devito Loop Engine. The DLE transforms the IET via classic472

loop optimizations for parallelism and data locality [17]. These are summarized below.473

• SIMD Vectorization. Implemented by enforcing compiler auto-vectorization474

via special pragmas from the OpenMP 4.0 language. With this approach, the475

DLE aims to be performance-portable across different architectures. However,476

this strategy causes a significant fraction of vector loads/stores to be unaligned477

to cache boundaries, due to the stencil offsets. As we shall see, this is a primary478

cause of performance loss.479

• Loop Blocking. Also known as “tiling”, this technique implemented by replacing480

Iteration trees in the IET. The current implementation only supports blocking481

over fully-parallel Iterations. Blocking over dimensions characterized by flow- or482

anti-dependences, such as the time dimension in typical explicit finite difference483

schemes, is instead work in progress (this would require a preliminary pass known484

as loop skewing; see Section 8 for more details). On the other hand, a feature of485

the present implementation is the capability of blocking across particular sequences486

of loop nests. This is exploited by the Cross-Iteration Redundancy-Elimination487

algorithm, as shown in Section 6.3. To determine an optimal block shape, an488

Operator resorts to empirical auto-tuning.489

• Parallelism. Shared-memory parallelism is introduced by decorating Iterations490

with suitable OpenMP pragmas. The OpenMP static scheduling is used. Nor-491

mally, only the outermost fully-parallel Iteration is annotated with the parallel492

pragma. However, heuristically nested fully-parallel Iterations are collapsed if493

the core count is greater than a certain threshold. This pass also ensures that all494

array temporaries allocated in the scope of the parallel Iteration are declared as495

private and that storage is allocated where appropriate (stack, heap).496

Summarizing, the DLE applies a sequence of typical stencil optimizations, aiming497

to reach a minimum level of performance across different architectures. As we shall498

see, the effectiveness of this approach, based on simple transformations, deteriorates499

on architectures strongly conceived for hierarchical parallelism. This is one of the main500

reasons behind the development of the yask backend (see Section 4.9), described in501

the following section.502

5.3. YLE - YASK Loop Engine. “YASK” (Yet Another Stencil Kernel) is an503

open-source C++ software framework for generating high-performance implementa-504

tions of stencil codes for IntelR© XeonR© and IntelR© Xeon PhiTM processors. Previous505

publications on YASK have discussed its overall structure [40] and its application to506

the IntelR© Xeon PhiTM x100 family (code-named Knights Corner) [37] and IntelR©507

Xeon PhiTM x200 family (code-named Knights Landing) [38, 33] many-core CPUs.508

Unlike Devito, it does not expose a symbolic language to the programmer or create509

stencils from finite-difference approximations of differential equations. Rather, the510

programmer provides simple declarative descriptions of the stencil equations using511

a C++ or Python API. Thus, Devito operates at a level of abstraction higher than512

15

This manuscript is for review purposes only.

that of YASK, while YASK provides performance portability across Intel architectures513

and is more focused on low-level optimizations. Following is a sample of some of the514

optimizations provided by YASK:2515

• Vector-folding. In traditional SIMD vectorization, such as that provided by516

a vectorizing compiler, the vector elements are arranged sequentially along the517

unit-stride dimension of the grid, which must also be the dimension iterated over518

in the inner-most loop of the stencil application. Vector-folding is an alternative519

data-layout method whereby neighboring elements are arranged in small multi-520

dimensional tiles. Figure 3 illustrates three ways to pack eight double-precision521

floating-point values into a 512-bit SIMD register. Figure 3a shows a traditional522

1D “in-line” layout, and 3b and 3c show alternative 2D and 3D “folded” lay-523

outs. Furthermore, these tiles may be ordered in memory in a dimension indepen-524

dent of the dimensions used in vectorization [37]. The combination of these two525

techniques can significantly increase overlap and reuse between successive stencil-526

application iterations, reducing the memory-bandwidth demand. For stencils that527

are bandwidth-bound, this can provide significant performance gains [37, 33].528

• Software prefetching. Many high-order or staggered-grid stencils require many529

streams of data to be read from memory, which can overwhelm the hardware530

prefetchers. YASK can be directed to automatically generate software prefetch531

instructions to improve the cache hit rates, especially on Xeon Phi CPUs.532

• Hierarchical parallelism. Dividing the spatial domain into tiles to increase tem-533

poral cache locality is a common stencil optimization as discussed earlier. When534

implementing this technique, sometimes called “cache-blocking”, it is typical to535

assign each thread to one or more small rectilinear subsets of the domain in which536

to apply the stencil(s). However, if these threads share caches, one thread’s data537

will often evict data needed later by another thread, reducing the effective capacity538

of the cache. YASK addresses this by employing two levels of OpenMP paralleliza-539

tion: the outer level of parallel loops are applied across the cache-blocks, and an540

inner level is applied across sub-blocks within those tiles. In the case of the Xeon541

Phi, the eight hyper-threads that share each L2 cache can now cooperate on filling542

and reusing the data in the cache, rather than evicting each other’s data.543

YASK also provides other optimizations, such as temporal wave-fron tiling, as544

well as MPI support. These features, however, are not exploited by Devito yet. The545

interested reader may refer to [38, 39].546

To obtain the best of both tools, we have integrated the YASK framework into547

the Devito package. In essence, the Devito yask backend exploits the intermediate548

representation of an Operator to generate YASK kernels. This process is based upon549

sophisticated compiler technology. In Devito v3.1, roughly 70% of the Devito API is550

supported by the yask backend3.551

6. The Cross-Iteration Redundancy-Elimination Algorithm. Aliases, or552

“cross-iteration redundancies” (informally introduced in Section 5.1), in FD operators553

depend on the differential operators used in the PDE(s) and the chosen discretization554

scheme. From a performance viewpoint, the presence of aliases is a non-issue as long555

as the operator is memory-bound, while it becomes relevant in kernels with a high556

arithmetic intensity. In Devito, the Cross-Iteration Redundancy-Elimination (CIRE)557

algorithm attempts to remove aliases with the goal of reducing the operation count. As558

2Not all YASK features are currently used by Devito.
3At the time of writing, reaching feature-completeness is one the major on-going development

efforts

16

This manuscript is for review purposes only.

a. 1× 1× 8 1D fold b. 1× 2× 4 2D fold c. 2× 2× 2 3D fold

Fig. 3: Various folds of 8 elements [37]. The smaller diagram in the upper-left of each
sub-figure illustrates a single SIMD layout, and the larger diagram shows the input
values needed for a typical 25-point stencil, as from an 8th-order finite-difference ap-
proximation of an isotropic acoustic wave. Note that the 1×1×8 1D fold corresponds
to the traditional in-line vectorization.

shown in Section 7, the CIRE algorithm has considerable impact in seismic imaging559

kernels. The algorithm is implemented through the orchestration of multiple DSE560

and DLE/YLE passes, namely extraction of candidate expressions (DSE), detection561

of aliases (DSE), loop blocking (DLE/YLE).562

6.1. Extraction of candidate expressions. The criteria for extraction of can-563

didate sub-expressions are:564

• Any maximal time-invariant whose operation count is greater than Thr0 = 10565

(floating point arithmetic only). The term “maximal” means that the expression566

is not embedded within a larger time-invariant. The default value Thr0 = 10,567

determined empirically, provides systematic performance improvements in a series568

of seismic imaging kernels. Transcendental functions are given a weight in the569

order of tens of operations, again determined empirically.570

• Any maximal time-varying whose operation count is greater than Thr1 = 10. Such571

expressions often lead to aliases, since they typically result from taking spatial and572

time derivatives on TimeFunctions. In particular, cross-derivatives are a major573

cause of aliases.574

This pass leverages the extraction routine described in Section 5.1.575

6.2. Detection of aliases. To define the concept of aliasing expressions, we576

first need to formalize the notion of translated operands. Here, an operand is regarded577

as the arithmetic product of a scalar value (or “coefficient”) and one or more indexed578

objects. An indexed object is characterized by a label (i.e., its name), a vector of n579

dimensions, and a vector of n displacements (one for each dimension). We say that580

an operand o1 is translated with respect to an operand o0 if o0 and o1 have same581

coefficient, label, and dimensions, and if their displacement vectors are such that one582

is the translation of the other (in the classic geometric sense). For example, the583

operand 2 ∗ u[x, y, z] is translated with respect to the operand 2 ∗ u[x+ 1, y + 2, z + 3]584

since they have same coefficient (2), label (u), and dimensions ([x, y, z]), while the585

displacement vectors [0, 0, 0] and [1, 2, 3] are expressible by means of a translation.586

Now consider two expressions e0 and e1 in fully-expanded form (i.e., a non-nested587

sum-of-operands). We say that e0 is an alias of e1 if the following conditions hold:588

• the operands in e0 (e1) are expressible as a translation of the operands in e1 (e0);589

• the same arithmetic operators are applied to the involved operands.590

17

This manuscript is for review purposes only.

For example, consider e = u[x] + v[x], having two operands u[x] and v[x]; then:591

• u[x-1] + v[y-1] is not an alias of e, due to a different dimension vector.592

• u[x] + w[x] is not an alias of e, due to a different label.593

• u[x+2] + v[x] is not an alias of e, since a translation cannot be determined.594

• u[x+2] + v[x+2] is an alias of e, as the operands u[x + 2] and v[x + 2] can be595

expressed as a translation of u[x] and v[x] respectively, with T (od) = od + 2 and596

od representing the displacement vector of an operand.597

The relation “e0 is an alias of e1” is an equivalence relation, as it is at the same598

time reflexive, symmetric, and transitive. Thanks to these properties, the turnaround599

times of the Alias-Detection Algorithm are extremely quick (less than 2 seconds run-600

ning on an IntelR© XeonR© E5-2620 v4 for the challenging tti test case with so=16,601

described in Section 7.2), despite the O(n2) computational complexity (with n repre-602

senting the number of candidate expressions, see Section 6.1).603

Algorithm 4 highlights the fundamental steps of the Alias-Detection Algorithm.604

In the worst case scenario, all pairs of candidate expressions are compared by ap-605

plying the aliasing definition given above. Aggressive pruning, however, is applied606

to minimize the cost of the search. The algorithm uses some auxiliary functions:607

(i) calculate displacements returns a mapper associating, to each candidate, its608

displacement vectors (one for each indexed object); (ii) compare ops(e1, e2) eval-609

uates to true if e1 and e2 perform the same operations on the same operands; (iii)610

is translated(d1, d2) evaluates to true if the displacement vectors in d2 are pairwise-611

translated with respect to the vectors in d1 by the same factor. Together, (ii) and612

(iii) are used to establish whether two expressions alias each other (line 8).613

Eventually, m sets of aliasing expressions are determined. For each of these sets614

G0, ..., Gm−1, a pivot – a special aliasing expression – is constructed. This is the key615

for operation count reduction: the pivot pi of Gi = {e0, ..., ek−1} will be used in place616

of e0, ..., ek−1 (thus obtaining a reduction proportional to k). A simple example is617

illustrated in Listing 11.618

Algorithm 4: The Alias-Detection Algorithm (pseudocode).

Input: A sequence of expressions E.
Output: A sequence of Alias objects A.

1 displacements ← calculate displacements(E);
2 A ← list();
3 unseen ← list(E);
4 while unseen is not empty do
5 top ← unseen.pop();
6 G = Alias(top);
7 for e in unseen do
8 if compare ops(top, e) and is translated(displacements[top], displacements[e])

then
9 G.append(e);

10 unseen.remove(e);

11 end if

12 end for
13 A.append(G)

14 end while
15 return A

Several optimizations for data locality, not shown in Algorithm 4, are also applied.619

The interested reader may refer to the documentation and the examples of Devito v3.1620

for more details; below, we only mention the underlying ideas.621

18

This manuscript is for review purposes only.

• The pivot of Gi is constructed, rather than selected out of e0, ..., ek−1, so that622

it could coexist with as many other pivots as possible within the same Cluster.623

For example, consider again Listing 11: there are infinite possible pivots temp[x624

+ s] = 9.0*temp0*u[t, x + s], and the one with s = 0 is chosen. However,625

this choice is not random: the Alias-Detection Algorithm chooses pivots based626

on a global optimization strategy, which takes into account all of the m sets of627

aliasing expressions. The objective function consists of choosing s so that multiple628

pivots will have identical ISpace, and thus be scheduled to the same Cluster629

(and, eventually, to the same loop nest).630

• Conservatively, the chosen pivots are assigned to array variables. A second opti-631

mization pass, called index bumping and array contraction in Devito v3.1, attempts632

to turn these arrays into scalar variables, thus reducing memory consumption.633

This pass is based on data dependence analysis, which essentially checks whether634

a given pivot is required only within its Cluster or by later Clusters as well. In635

the former case, the optimization is applied.636

6.3. Loop blocking for working-set minimization. In essence, the CIRE637

algorithm trades operation for memory – the (array) temporaries to store the aliases.638

From a run-time performance viewpoint, this is convenient only in arithmetic-intensive639

kernels. Unsurprisingly, we observed that storing temporary arrays spanning the640

entire grid rarely provides benefits (e.g., only when the operation count reductions641

are exceptionally high). We then considered the following options.642

1. Capturing redundancies arising along the innermost dimension only. Thus,643

only scalar temporaries would be necessary. This approach presents three644

main issues, however: (i) only a small percentage of all redundancies are645

captured; (ii) the implementation is non-trivial, due to the need for circular646

buffers in the generated code; (iii) SIMD vectorization is affected, since inner647

loop iterations are practically serialised. Some previous articles followed this648

path [9, 10].649

2. A generalization of the previous approach: using both scalar and array tempo-650

raries, without searching for redundancies across the outermost loop(s). This651

mitigates issue (i), although the memory pressure is still severely affected.652

Issue (iii) is also unsolved. This strategy was discussed in [20].653

3. Using loop blocking. Redundancies are sought and captured along all avail-654

able dimensions, although they are now assigned to array temporaries whose655

size is a function of the block shape. A first loop nest produces the array tem-656

poraries, while a subsequent loop nest consumes them, to compute the actual657

output values. The block shape should be chosen so that writes and reads to658

the temporary arrays do not cause high latency accesses to the DRAM. An659

illustrative example is shown in Listing 12.660

The CIRE algorithm uses the third approach, based on cross-loop-nest blocking.661

This pass is carried out by the DLE, which can introduce blocking over sequences of662

loops (see Section 5.2).663

7. Performance evaluation. We outline in Section 7.1 the compiler setup,664

computer architectures, and measurement procedure that we used for our performance665

experiments. Following that, we outline the physical model and numerical setup that666

define the problem being solved in Section 7.2. This leads to performance results,667

presented in Sections 7.3 and 7.4.668

19

This manuscript is for review purposes only.

Listing 12 The loop nest produced by the CIRE algorithm for the example in List-
ing 11. Note that the block loop (line 2) wraps both the producer (line 3) and
consumer (line 5) loops. For ease of read, unnecessary information are omitted.

1 for t = t_m to t_M:
2 for xb = x_m to x_M , xb += blocksize:
3 for x = xb to xb + blocksize + 3, x += 1
4 temp[x] = 9.0* temp0*u[t, x]
5 for x = xb to xb + blocksize; x += 1:
6 u[t+1,x,y] = ... + temp[x + 1] - 18.0* temp0*u[t][x + 2] + temp[x + 3] + ...

7.1. Compiler and system setup. We analyse the performance of generated669

code using enriched roofline plots. Since the DSE transformations may alter the670

operation count by allocating extra memory, only by looking at GFlops/s performance671

and runtime jointly can a quality measure of code syntheses be derived.672

For the roofline plots, Stream TRIAD was used to determine the attainable mem-673

ory bandwidth of the node. Two peaks for the maximum floating-point performance674

are shown: the ideal peak, calculated as675

#[cores] ·#[avx units] ·#[vector lanes] ·#[FMA ports] · [ISA base frequency]676677

and a more realistic one, given by the LINPACK benchmark. The reported runtimes678

are the minimum of three runs (the variance was negligible). The model used to679

calculate the operational intensity assumes that the time-invariant Functions are680

reloaded at each time iteration. This is a more realistic setting than a “compulsory-681

traffic-only” model (i.e., an infinite cache).682

We had exclusive access to two architectures: an IntelR© XeonR© Platinum 8180683

(formerly code-named Skylake) and an IntelR© Xeon PhiTM 7250 (formerly code-684

named Knights Landing), which will be referred to as skl8180 and knl7250. Thread685

pinning was enabled with the program numactl. The IntelR© compiler icc version686

18.0 was used to compile the generated code. The experiments were run with Devito687

v3.1 [41]. The experimentation framework with instructions for reproducibility is688

available at [42]. All floating point operations are performed in single precision, which689

is typical for seismic imaging applications.690

Any arbitrary sequence of DSE and DLE/YLE transformations is applicable to an691

Operator. Devito, provides three preset optimization sequences, or “modes”, which692

vary in aggressiveness and affect code generation in three major ways:693

• the time required by the Devito compiler to generate the code,694

• the potential reduction in operation count, and695

• the potential amount of additional memory that might be allocated to store (scalar,696

tensor) temporaries.697

A more aggressive mode might obtain a better operation count reduction than a non-698

aggressive one, although this does not necessarily imply a better time to solution as699

the memory pressure might also increase. The three optimization modes – basic,700

advanced, and aggressive– apply the same sequence of DLE/YLE transformations,701

which includes OpenMP parallelism, SIMD vectorization, and loop blocking. How-702

ever, they vary in the number, type, and order of DSE transformations. In particular,703

basic enables common sub-expressions elimination only;704

advanced enables basic, then factorization, extraction of time-invariant aliases;705

aggressive enables advanced, then extraction of time-varying aliases.706

Thus, aggressive triggers the full-fledged CIRE algorithm, while advanced uses707

only a relaxed version (based on time invariants). All runs used loop tiling with a708

20

This manuscript is for review purposes only.

block shape that was determined individually for each case using auto-tuning. The709

auto-tuning phase, however, was not included in the measured experiment runtime.710

Likewise, the code generation phase is not included in the reported runtime.711

7.2. Test case setup. In the following sections, we benchmark the performance712

of operators modeling the propagation of acoustic waves in two different models:713

isotropic and Tilted Transverse Isotropy (TTI, [44]), henceforth isotropic and tti,714

respectively. These operators were chosen for their relevance in seismic imaging tech-715

niques [44].716

Acoustic isotropic modeling is the most commonly used technique for seismic717

inverse problems, due to the simplicity of its implementation, as well as the compar-718

atively low computational cost in terms of FLOPs. The tti wave equation provides719

a more realistic simulation of wave propagation and accounts for local directional720

dependency of the wave speed, but comes with increased computational cost and721

mathematical complexity. For our numerical tests, we use the tti wave equation as722

defined in [44]. The full specification of the equation as well as the finite difference723

schemes and its implementation using Devito are provided in [24, 23]. Essentially,724

the tti wave equation consists of two coupled acoustic wave equations, in which725

the Laplacians are constructed from spatially rotated first derivative operators. As726

indicated by Figure 4, these spatially rotated Laplacians have a significantly larger727

number of stencil coefficients in comparison to its isotropic equivalent which comes728

with an increased operational intensity.729

The tti and isotropic equations are discretized with second order in time and730

varying space orders of 4, 8, 12 and 16. For both test cases, we use zero initial condi-731

tions, Dirichlet boundary conditions and absorbing boundaries with a 10 point mask732

(Section 3.5). The waves are excited by injecting a time-dependent, but spatially-733

localized seismic source wavelet into the subsurface model, using Devito’s sparse point734

interpolation and injection as described in Section 3.1. We carry out performance mea-735

surements for two velocity models of 5123 and 7683 grid points with a grid spacing736

of 20 m. Wave propagation is modeled for 1000 ms, resulting in 327 time steps for737

isotropic, and 415 time steps for tti. The time-stepping interval is chosen accord-738

ing to the Courant-Friedrichs-Lewy (CFL) condition [8], which guarantees stability739

of the explicit time-marching scheme and is determined by the highest velocity of the740

subsurface model and the grid spacing.741

Fig. 4: Stencils of the acoustic Laplacian for the isotropic (left) and tti (right) wave
equations and so=16. The anisotropic Laplacian corresponds to a spatially rotated
version of the isotropic Laplacian. The color indicates the distance from the central
coefficient.

21

This manuscript is for review purposes only.

7.3. Performance: acoustic wave in isotropic model. This section illus-742

trates the performance of isotropic with the core and yask backends. To relieve743

the exposition, we show results for the DSE in advanced mode only; the aggressive744

has no impact on isotropic, due to the memory-bound nature of the code [23].745

The performance of core on skl8180, illustrated in Figure 5a (yask uses slightly746

smaller grids than core due to a flaw in the API of Devito v3.1, which will be fixed747

in Devito v3.2), degrades as the space order (henceforth, so) increases. In particular,748

it drops from 59% of the attainable machine peak to 36% in the case of so=16. This749

is the result of multiple issues. As so increases, the number of streams of unaligned750

virtual addresses also increases, causing more pressure on the memory system. IntelR©751

VTune
TM

revealed that the lack of split registers to efficiently handle split loads was752

a major source of performance degradation. Another major issue for isotropic753

on core concerns the quality of the generated SIMD code. The in-line vectorization754

performed by the auto-vectorizer produces a large number of pack/unpack instructions755

to move data between vector registers, which introduces substantial overhead. IntelR©756

VTune
TM

also confirmed that, unsurprisingly, isotropic is a memory-bound kernel.757

Indeed, switching off the DSE basically did not impact the runtime, although it did758

increase the operational intensity of the four test cases.759

The performance of core on knl7250 is not as good as that on skl8180. Figure 5b760

shows an analogous trend to that on skl8180, with the attainable machine peak761

systematically dropping as so increases. The issue is that here the distance from the762

peak is even larger. This simply suggests that core is failing at exploiting the various763

levels of parallelism available on knl7250.764

The yask backend overcomes all major limitations to which core is subjected.765

On both skl8180 and knl7250, yask outperforms core, essentially since it does not766

suffer from the issues presented above. Vector folding minimizes unaligned accesses;767

software prefetching helps especially for larger values of so; hierarchical OpenMP768

parallelism is fundamental to leverage shared caches. The speed-up on knl7250 is769

remarkable, since even in the best scenario for core (so=4), yask is roughly 3×770

faster, and more than 4× faster when so=12.771

7.4. Performance: acoustic wave in tilted transverse isotropy model.772

This sections illustrates the performance of tti with the core backend. tti cannot773

be run on the yask backend in Devito v3.1 as some fundamental features are still774

missing; this is part of our future work (more details in Section 8).775

Unlike isotropic, tti significantly benefits from different levels of DSE optimiza-776

tions, which play a key role in reducing the operation count as well as the register777

pressure. Figure 6 displays the performance of tti for the usual range of space orders778

on skl8180 and knl7250, for two different cubic grids.779

Generally, tti does not reach the same level of performance as isotropic. This780

is not surprising given the complexity of the PDEs (e.g., in terms of differential oper-781

ators), which translates into code with much higher arithmetic intensity. In tti, the782

memory system is stressed by a considerably larger number of loads per loop iteration783

than in isotropic. On skl8180, we ran some profiling with IntelR© VTune
TM

. We784

determined that one of the major issues is the pressure on both L1 cache (lack of split785

registers, unavailability of “fill buffers” to handle requests to the other levels of the786

hierarchy) and DRAM (bandwidth and latency). Clearly, this is only a summary from787

some sample kernels – the actual situation varies depending on the DSE optimizations788

as well as the so employed.789

It is remarkable that on both skl8180 and knl7250, and on both grids, the790

22

This manuscript is for review purposes only.

1 2 4 8 16 32 64
Operational intensity (FLOPs/Byte)

16

32

64

128

256

512

1024

2048

4096

8192

Pe
rfo

rm
an

ce
 (G

FL
OP

s/
s)

SO=4

59%

42s

SO=8

52%

48s

SO=12

46%

54s

SO=16

36%

69s

linpack
ideal

(a) skl8180, core, 7683 grid points.

1 2 4 8 16 32 64
Operational intensity (FLOPs/Byte)

16

32

64

128

256

512

1024

2048

4096

8192

Pe
rfo

rm
an

ce
 (G

FL
OP

s/
s)

SO=4

20%

27s

SO=8

15%

36s

SO=12

11%

49s

SO=16

10%

53s

linpack
ideal

(b) knl7250, core, 7683 grid points.

1 2 4 8 16 32 64
Operational intensity (FLOPs/Byte)

16

32

64

128

256

512

1024

2048

4096

8192

Pe
rfo

rm
an

ce
 (G

FL
OP

s/
s)

SO=4

63%

36s

SO=8

62%

37s

SO=12

61%

37s

SO=16

62%

37s

linpack
ideal

(c) skl8180, yask, 7483 grid points.

1 2 4 8 16 32 64
Operational intensity (FLOPs/Byte)

16

32

64

128

256

512

1024

2048

4096

8192
Pe

rfo
rm

an
ce

 (G
FL

OP
s/

s)

SO=4

53%

9s
SO=8

52%

10s

SO=12
44%

11s

SO=16
39%

13s

linpack
ideal

(d) knl7250, yask, 7483 grid points.

Fig. 5: Performance of isotropic on multiple Devito backends and architectures.

cutoff point beyond which advanced results in worse runtimes than aggressive is791

so=8. One issue with aggressive is that to avoid redundant computation, not only792

additional memory is required, but also more data communication may occur through793

caches, rather than through registers. In Figure 12, for example, we can easily deduce794

that temp is first stored, and then reloaded in the subsequent loop nest. This is an795

overhead that advanced does not pay, since temporaries are communicated through796

registers, for as much as possible. Beyond so=8, however, this overhead is overtaken797

by the reduction in operation count, which grows almost quadratically with so, as798

reported in Table 1.799

Table 1: Operation counts for different DSE modes in tti

so basic advanced aggressive

4 299 260 102
8 857 707 168
12 1703 1370 234
16 2837 2249 300

The performance on knl7250 is overall disappointing. This is unfortunately800

caused by multiple factors – some of which already discussed in the previous sec-801

23

This manuscript is for review purposes only.

tions. These results, and more in general, the need for performance portability across802

future (IntelR© or non-IntelR©) architectures, motivated the ongoing yask project. Here,803

the overarching issue is the inability to exploit the multiple levels of parallelism typ-804

ical of architectures such as knl7250. Approximately 17% of the attainable peak is805

obtained when so=4 with advanced (best runtime out of the three DSE modes for806

the given space order). This occurs when using 5123 points per grid, which allows807

the working set to completely fit in MCDRAM (our calculations estimated a size of808

roughly 7.5GB). With the larger grid size (Figure 6d), the working set increases up809

to 25.5GB, which exceeds the MCDRAM capacity. This partly accounts for the 5×810

slow down in runtime (from 34s to 173s) in spite of only a 3× increase in number of811

grid points computed per time iteration.812

1 2 4 8 16 32 64 128
Operational intensity (FLOPs/Byte)

16

32

64

128

256

512

1024

2048

4096

8192

Pe
rfo

rm
an

ce
 (G

FL
OP

s/
s)

SO=4

33%

72s

SO=8

12%

197s

SO=12

8%

307s

SO=16

8%

478s

SO=4

52%

51s

SO=8

30%

90s

SO=12

16%

166s

SO=16

11%

264s

SO=4

60%

64s

SO=8

41%

94s

SO=12

30%

128s

SO=16

24%

159s

linpack
ideal

<basic> <advanced> <aggressive>

(a) skl8180, 5123 grid points.

1 2 4 8 16 32 64 128
Operational intensity (FLOPs/Byte)

16

32

64

128

256

512

1024

2048

4096

8192

Pe
rfo

rm
an

ce
 (G

FL
OP

s/
s)

SO=4

27%

287s

SO=8

13%

606s

SO=12

8%

1001s

SO=16

9%

1527s

SO=4

42%

203s

SO=8

30%

285s

SO=12

16%

527s

SO=16

12%

825s

SO=4

62%

203s

SO=8
43%

292s

SO=12
30%

413s

SO=16

25%

502s

linpack
ideal

<basic> <advanced> <aggressive>

(b) skl8180, 7683 grid points.

1 2 4 8 16 32 64 128
Operational intensity (FLOPs/Byte)

16

32

64

128

256

512

1024

2048

4096

8192

Pe
rfo

rm
an

ce
 (G

FL
OP

s/
s)

SO=4

10%

53s

SO=8

7%

147s

SO=12
7%

279s

SO=16

5%

635s

SO=4

17%

34s

SO=8

10%

77s

SO=12

7%

214s

SO=16

5%

465s

SO=4

15%

58s

SO=8

10%

89s

SO=12

7%

117s
SO=16

7%

128s

linpack
ideal<basic> <advanced> <aggressive>

(c) knl7250, 5123 grid points.

1 2 4 8 16 32 64 128
Operational intensity (FLOPs/Byte)

16

32

64

128

256

512

1024

2048

4096

8192

Pe
rfo

rm
an

ce
 (G

FL
OP

s/
s)

SO=4

10%

180s

SO=8

7%

459s

SO=12

7%

923s

SO=16

5%

2127s

SO=4

11%

173s

SO=8

8%

297s

SO=12

6%

767s

SO=16

4%

1922s

SO=4

8%

328s

SO=8

5%

505s

SO=12

4%

640s

SO=16

5%

559s

linpack
ideal<basic> <advanced> <aggressive>

(d) knl7250, 7683 grid points.

Fig. 6: Performance of tti on core for different architectures and grids.

8. Further work. While many simulation and inversion problems such as full-813

waveform inversion only require the solver to run on a single shared memory node,814

many other applications require support for distributed memory parallelism (typically815

via MPI) so that the solver can run across multiple compute nodes. The immediate816

plan is to leverage yask’s MPI support, and perhaps to include MPI support into core817

at a later stage. Another important feature is staggered grids, which are necessary for818

a wide range of FD discretization methods (e.g. modelling elastic wave propagation).819

Basic support for staggered grids is already included in Devito v3.1, but currently820

24

This manuscript is for review purposes only.

only through a low-level API – the principle of graceful degradation in action. We821

plan to make the use of this feature more convenient.822

As discussed in Section 7.4, the yask backend is not feature-complete yet; in823

particular, it cannot run the tti equations in the presence of array temporaries.824

As tti is among the most advanced models for wave propagation used in industry,825

extending Devito in this direction has high priority.826

There also is a range of advanced performance optimization techniques that we827

want to implement, such as “time tiling” (i.e., loop blocking across the time dimen-828

sion), on-the-fly data compression, and mixed-precision arithmetic exploiting appli-829

cation knowledge. Finally, there is an on-going effort towards adding an ops [31]830

backend, which will enable code generation for GPUs and also supports distributed831

memory parallelism via MPI.832

9. Conclusions. Devito is a system to automate high-performance stencil com-833

putations. While Devito provides a Python-based syntax to easily express FD ap-834

proximations of PDEs, it is not limited to finite differences. A Devito Operator835

can implement arbitrary loop nests, and can evaluate arbitrarily long sequences of836

heterogeneous expressions such as those arising in FD solvers, linear algebra, or in-837

terpolation. The compiler technology builds upon years of experience from other838

DSL-based systems such as FEniCS and Firedrake, and wherever possible Devito839

uses existing software components including SymPy and NumPy, and YASK. The840

experiments in this article show that Devito can generate production-level code with841

compelling performance on state-of-the-art architectures.842

REFERENCES843

[1] Compilers: principles, techniques, and tools, Pearson/Addison Wesley, Boston, MA, USA,844
second ed., 2007, http://www.loc.gov/catdir/toc/ecip0618/2006024333.html.845

[2] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, Unified Form Lan-846
guage: a domain-specific language for weak formulations of partial differential equations,847
ACM Transactions on Mathematical Software (TOMS), 40 (2014), p. 9.848

[3] A. Arbona, B. Miñano, A. Rigo, C. Bona, C. Palenzuela, A. Artigues, C. Bona-Casas,849
and J. Massó, Simflowny 2: An upgraded platform for scientific modeling and simulation,850
arXiv preprint arXiv:1702.04715, (2017).851

[4] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, A practical automatic852
polyhedral parallelizer and locality optimizer, in Proceedings of the 2008 ACM SIGPLAN853
Conference on Programming Language Design and Implementation, PLDI ’08, New York,854
NY, USA, 2008, ACM, pp. 101–113, https://doi.org/10.1145/1375581.1375595, http://doi.855
acm.org/10.1145/1375581.1375595.856

[5] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, vol. 15,857
Springer New York, New York, NY, 2008, https://doi.org/10.1007/978-0-387-75934-0,858
http://dx.doi.org/10.1007/978-0-387-75934-0.859

[6] A. F. Cárdenas and W. J. Karplus, Pdel—a language for partial differential equations,860
Communications of the ACM, 13 (1970), pp. 184–191.861

[7] G. O. Cook Jr, Alpal: A tool for the development of large-scale simulation codes, tech. report,862
Lawrence Livermore National Lab., CA (USA), 1988.863

[8] R. Courant, K. Friedrichs, and H. Lewy, On the partial difference equations of mathemati-864
cal physics, International Business Machines (IBM) Journal of Research and Development,865
11 (1967), pp. 215–234, https://doi.org/10.1147/rd.112.0215.866

[9] K. Datta, S. Williams, V. Volkov, J. Carter, L. Oliker, J. Shalf, and K. Yelick,867
Auto-tuning the 27-point stencil for multicore, in In In Proc. iWAPT2009: The Fourth868
International Workshop on Automatic Performance Tuning, 2009.869

[10] S. J. Deitz, B. L. Chamberlain, and L. Snyder, Eliminating redundancies in sum-of-product870
array computations, in Proceedings of the 15th International Conference on Supercomput-871
ing, ICS ’01, New York, NY, USA, 2001, ACM, pp. 65–77, https://doi.org/10.1145/377792.872
377807, http://doi.acm.org/10.1145/377792.377807.873

25

This manuscript is for review purposes only.

http://www.loc.gov/catdir/toc/ecip0618/2006024333.html
https://doi.org/10.1145/1375581.1375595
http://doi.acm.org/10.1145/1375581.1375595
http://doi.acm.org/10.1145/1375581.1375595
http://doi.acm.org/10.1145/1375581.1375595
https://doi.org/10.1007/978-0-387-75934-0
http://dx.doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1147/rd.112.0215
https://doi.org/10.1145/377792.377807
https://doi.org/10.1145/377792.377807
https://doi.org/10.1145/377792.377807
http://doi.acm.org/10.1145/377792.377807

[11] Y. Ding and X. Shen, Glore: Generalized loop redundancy elimination upon ler-notation,874
Proc. ACM Program. Lang., 1 (2017), pp. 74:1–74:28, https://doi.org/10.1145/3133898,875
http://doi.acm.org/10.1145/3133898.876

[12] S. Fomel, P. Sava, I. Vlad, Y. Liu, and V. Bashkardin, Madagascar: open-source software877
project for multidimensional data analysis and reproducible computational experiments,878
Journal of Open Research Software, 1 (2013), p. e8, https://doi.org/http://dx.doi.org/10.879
5334/jors.ag.880

[13] T. O. Foundation, OpenFOAM v5 User Guide, https://cfd.direct/openfoam/user-guide/.881
[14] K. A. Hawick and D. P. Playne, Simulation software generation using a domain-specific lan-882

guage for partial differential field equations, in 11th International Conference on Software883
Engineering Research and Practice (SERP’13), no. CSTN-187, Las Vegas, USA, 22-25 July884
2013, WorldComp, p. SER3829.885

[15] R. L. Higdon, Numerical absorbing boundary conditions for the wave equation, Mathematics886
of Computation, 49 (1987), pp. 65–90, http://www.jstor.org/stable/2008250.887

[16] C. T. Jacobs, S. P. Jammy, and N. D. Sandham, Opensbli: A framework for the automated888
derivation and parallel execution of finite difference solvers on a range of computer archi-889
tectures, CoRR, abs/1609.01277 (2016), http://arxiv.org/abs/1609.01277.890

[17] J. Jeffers and J. Reinders, High Performance Parallelism Pearls Volume Two: Multicore891
and Many-core Programming Approaches, Morgan Kaufmann Publishers Inc., San Fran-892
cisco, CA, USA, 1st ed., 2015.893

[18] A. Klöckner, Loo.py: transformation-based code generation for GPUs and CPUs, in Proceed-894
ings of ARRAY ‘14: ACM SIGPLAN Workshop on Libraries, Languages, and Compilers for895
Array Programming, Edinburgh, Scotland., 2014, Association for Computing Machinery,896
https://doi.org/{10.1145/2627373.2627387}.897

[19] A. Klckner, Cgen - c/c++ source generation from an ast. https://github.com/inducer/cgen,898
2016.899

[20] S. Kronawitter, S. Kuckuk, and C. Lengauer, Redundancy elimination in the exastencils900
code generator, in ICA3PP Workshops, 2016.901

[21] C. Lengauer, S. Apel, M. Bolten, A. Größlinger, F. Hannig, H. Köstler, U. Rüde,902
J. Teich, A. Grebhahn, S. Kronawitter, S. Kuckuk, H. Rittich, and C. Schmitt,903
Exastencils: Advanced stencil-code engineering, in Euro-Par 2014: Parallel Process-904
ing Workshops - Euro-Par 2014 International Workshops, Porto, Portugal, August 25-905
26, 2014, Revised Selected Papers, Part II, 2014, pp. 553–564, https://doi.org/10.1007/906
978-3-319-14313-2 47, https://doi.org/10.1007/978-3-319-14313-2 47.907

[22] A. Logg, K.-A. Mardal, G. N. Wells, et al., Automated Solution of Differential Equations908
by the Finite Element Method, Springer, 2012, https://doi.org/10.1007/978-3-642-23099-8.909

[23] M. Louboutin, M. Lange, F. J. Herrmann, N. Kukreja, and G. Gorman, Per-910
formance prediction of finite-difference solvers for different computer architectures,911
Computers & Geosciences, 105 (2017), pp. 148–157, https://doi.org/https://doi.org/912
10.1016/j.cageo.2017.04.014, https://www.slim.eos.ubc.ca/Publications/Public/Journals/913
ComputersAndGeosciences/2016/louboutin2016ppf/louboutin2016ppf.pdf. (Computers &914
Geosciences).915

[24] M. Louboutin, M. Lange, F. Luporini, N. Kukreja, P. A. Witte, P. Velesko, G. Gorman,916
and F. J. Herrmann, Devito: A portable and flexible mathematical api for geophysical917
applications. 2018.918

[25] G. R. Markall, F. Rathgeber, L. Mitchell, N. Loriant, C. Bertolli, D. A. Ham, and919
P. H. J. Kelly, Performance-portable finite element assembly using pyop2 and fenics, in920
28th International Supercomputing Conference, ISC, Proceedings, J. M. Kunkel, T. Lud-921
wig, and H. W. Meuer, eds., vol. 7905 of Lecture Notes in Computer Science, Springer,922
2013, pp. 279–289, https://doi.org/10.1007/978-3-642-38750-0 21, http://dx.doi.org/10.923
1007/978-3-642-38750-0 21.924

[26] Mathias Louboutin, Fabio Luporini, Boundary conditions in Devito, in preparation (2018).925
[27] A. Meurer, C. P. Smith, M. Paprocki, O. Čert́ık, S. B. Kirpichev, M. Rocklin, A. Ku-926

mar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P.927
Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry,928
A. R. Terrel, v. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Sco-929
patz, Sympy: symbolic computing in python, PeerJ Computer Science, 3 (2017), p. e103,930
https://doi.org/10.7717/peerj-cs.103, https://doi.org/10.7717/peerj-cs.103.931

[28] S. J. Pennycook, J. Sewall, and V. Lee, A metric for performance portability, arXiv preprint932
arXiv:1611.07409, (2016).933

[29] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe,934
Halide: A language and compiler for optimizing parallelism, locality, and recomputation935

26

This manuscript is for review purposes only.

https://doi.org/10.1145/3133898
http://doi.acm.org/10.1145/3133898
https://doi.org/http://dx.doi.org/10.5334/jors.ag
https://doi.org/http://dx.doi.org/10.5334/jors.ag
https://doi.org/http://dx.doi.org/10.5334/jors.ag
https://cfd.direct/openfoam/user-guide/
http://www.jstor.org/stable/2008250
http://arxiv.org/abs/1609.01277
https://doi.org/{10.1145/2627373.2627387}
https://github.com/inducer/cgen
https://doi.org/10.1007/978-3-319-14313-2_47
https://doi.org/10.1007/978-3-319-14313-2_47
https://doi.org/10.1007/978-3-319-14313-2_47
https://doi.org/10.1007/978-3-319-14313-2_47
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/https://doi.org/10.1016/j.cageo.2017.04.014
https://doi.org/https://doi.org/10.1016/j.cageo.2017.04.014
https://doi.org/https://doi.org/10.1016/j.cageo.2017.04.014
https://www.slim.eos.ubc.ca/Publications/Public/Journals/ComputersAndGeosciences/2016/louboutin2016ppf/louboutin2016ppf.pdf
https://www.slim.eos.ubc.ca/Publications/Public/Journals/ComputersAndGeosciences/2016/louboutin2016ppf/louboutin2016ppf.pdf
https://www.slim.eos.ubc.ca/Publications/Public/Journals/ComputersAndGeosciences/2016/louboutin2016ppf/louboutin2016ppf.pdf
https://doi.org/10.1007/978-3-642-38750-0_21
http://dx.doi.org/10.1007/978-3-642-38750-0_21
http://dx.doi.org/10.1007/978-3-642-38750-0_21
http://dx.doi.org/10.1007/978-3-642-38750-0_21
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103

in image processing pipelines, in Proceedings of the 34th ACM SIGPLAN Conference936
on Programming Language Design and Implementation, PLDI ’13, New York, NY, USA,937
2013, ACM, pp. 519–530, https://doi.org/10.1145/2491956.2462176, http://doi.acm.org/938
10.1145/2491956.2462176.939

[30] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. Mcrae, G.-T.940
Bercea, G. R. Markall, and P. H. J. Kelly, Firedrake: Automating the finite element941
method by composing abstractions, ACM Trans. Math. Softw., 43 (2016), pp. 24:1–24:27,942
https://doi.org/10.1145/2998441, http://doi.acm.org/10.1145/2998441.943

[31] I. Z. Reguly, G. R. Mudalige, M. B. Giles, D. Curran, and S. McIntosh-Smith, The944
ops domain specific abstraction for multi-block structured grid computations, in Pro-945
ceedings of the Fourth International Workshop on Domain-Specific Languages and High-946
Level Frameworks for High Performance Computing, WOLFHPC ’14, Piscataway, NJ,947
USA, 2014, IEEE Press, pp. 58–67, https://doi.org/10.1109/WOLFHPC.2014.7, http:948
//dx.doi.org/10.1109/WOLFHPC.2014.7.949

[32] W. W. Symes, D. Sun, and M. Enriquez, From modelling to inversion: designing a well-950
adapted simulator, Geophysical Prospecting, 59 (2011), pp. 814–833, https://doi.org/10.951
1111/j.1365-2478.2011.00977.x, http://dx.doi.org/10.1111/j.1365-2478.2011.00977.x.952

[33] J. Tobin, A. Breuer, A. Heinecke, C. Yount, and Y. Cui, Accelerating seismic simulations953
using the intel xeon phi knights landing processor, in Proceedings of ISC High Performance954
2017 (ISC17), to appear 2017.955

[34] Y. Umetani, Deqsol a numerical simulation language for vector/parallel processors, Proc. IFIP956
TC2/WG22, 1985, 5 (1985), pp. 147–164.957

[35] R. Van Engelen, L. Wolters, and G. Cats, Ctadel: A generator of multi-platform high958
performance codes for pde-based scientific applications, in Proceedings of the 10th inter-959
national conference on Supercomputing, ACM, 1996, pp. 86–93.960

[36] F. Witherden, A. Farrington, and P. Vincent, Pyfr: An open source frame-961
work for solving advectiondiffusion type problems on streaming architectures using962
the flux reconstruction approach, Computer Physics Communications, 185 (2014),963
pp. 3028 – 3040, https://doi.org/https://doi.org/10.1016/j.cpc.2014.07.011, http://www.964
sciencedirect.com/science/article/pii/S0010465514002549.965

[37] C. Yount, Vector folding: Improving stencil performance via multi-dimensional simd-vector966
representation, in Proceedings of the IEEE 17th International Conference on High Perfor-967
mance Computing and Communications (HPCC), Aug 2015, pp. 865–870, https://doi.org/968
10.1109/HPCC-CSS-ICESS.2015.27.969

[38] C. Yount and A. Duran, Effective use of large high-bandwidth memory caches in HPC sten-970
cil computation via temporal wave-front tiling, in Proceedings of the 7th International971
Workshop in Performance Modeling, Benchmarking and Simulation of High Performance972
Computer Systems held as part of ACM/IEEE Supercomputing 2016 (SC16), PMBS’16,973
Nov 2016.974

[39] C. Yount, A. Duran, and J. Tobin, Multi-level spatial and temporal tiling for efficient hpc975
stencil computation on many-core processors with large shared caches, Future Generation976
Computer Systems, (2017), https://doi.org/https://doi.org/10.1016/j.future.2017.10.041,977
http://www.sciencedirect.com/science/article/pii/S0167739X17304648.978

[40] C. Yount, J. Tobin, A. Breuer, and A. Duran, Yask–yet another stencil kernel: a framework979
for hpc stencil code-generation and tuning, in Proceedings of the 6th International Work-980
shop on Domain-Specific Languages and High-Level Frameworks for High Performance981
Computing held as part of ACM/IEEE Supercomputing 2016 (SC16), WOLFHPC’16, Nov982
2016, https://doi.org/10.1109/WOLFHPC.2016.08.983

[41] Zenodo/devito, Devito v3.1, October 2017, https://doi.org/10.5281/zenodo.836688.984
[42] Zenodo/devito-performance, Devito Experimentation Framework, July 2018, https://doi.985

org/TODO.986
[43] Y. Zhang and F. Mueller, Auto-generation and auto-tuning of 3d stencil codes on gpu987

clusters, in Proceedings of the Tenth International Symposium on Code Generation988
and Optimization, CGO ’12, New York, NY, USA, 2012, ACM, pp. 155–164, https:989
//doi.org/10.1145/2259016.2259037, http://doi.acm.org/10.1145/2259016.2259037.990

[44] Y. Zhang, H. Zhang, and G. Zhang, A stable tti reverse time migration and its991
implementation, GEOPHYSICS, 76 (2011), pp. WA3–WA11, https://doi.org/10.1190/992
1.3554411, https://doi.org/10.1190/1.3554411, https://arxiv.org/abs/https://doi.org/10.993
1190/1.3554411.994

27

This manuscript is for review purposes only.

https://doi.org/10.1145/2491956.2462176
http://doi.acm.org/10.1145/2491956.2462176
http://doi.acm.org/10.1145/2491956.2462176
http://doi.acm.org/10.1145/2491956.2462176
https://doi.org/10.1145/2998441
http://doi.acm.org/10.1145/2998441
https://doi.org/10.1109/WOLFHPC.2014.7
http://dx.doi.org/10.1109/WOLFHPC.2014.7
http://dx.doi.org/10.1109/WOLFHPC.2014.7
http://dx.doi.org/10.1109/WOLFHPC.2014.7
https://doi.org/10.1111/j.1365-2478.2011.00977.x
https://doi.org/10.1111/j.1365-2478.2011.00977.x
https://doi.org/10.1111/j.1365-2478.2011.00977.x
http://dx.doi.org/10.1111/j.1365-2478.2011.00977.x
https://doi.org/https://doi.org/10.1016/j.cpc.2014.07.011
http://www.sciencedirect.com/science/article/pii/S0010465514002549
http://www.sciencedirect.com/science/article/pii/S0010465514002549
http://www.sciencedirect.com/science/article/pii/S0010465514002549
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.27
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.27
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.27
https://doi.org/https://doi.org/10.1016/j.future.2017.10.041
http://www.sciencedirect.com/science/article/pii/S0167739X17304648
https://doi.org/10.1109/WOLFHPC.2016.08
https://doi.org/10.5281/zenodo.836688
https://doi.org/TODO
https://doi.org/TODO
https://doi.org/TODO
https://doi.org/10.1145/2259016.2259037
https://doi.org/10.1145/2259016.2259037
https://doi.org/10.1145/2259016.2259037
http://doi.acm.org/10.1145/2259016.2259037
https://doi.org/10.1190/1.3554411
https://doi.org/10.1190/1.3554411
https://doi.org/10.1190/1.3554411
https://doi.org/10.1190/1.3554411
https://arxiv.org/abs/https://doi.org/10.1190/1.3554411
https://arxiv.org/abs/https://doi.org/10.1190/1.3554411
https://arxiv.org/abs/https://doi.org/10.1190/1.3554411

	Introduction
	Related work
	DSL-based frameworks for partial differential equations
	High-level approaches to finite differences
	Devito and seismic imaging
	Performance optimizations

	Specification of a finite-difference method with Devito
	Symbolic types
	Discretization
	Boundary conditions
	Control flow
	Domain, halo, and padding regions

	The Devito compiler
	Equations lowering
	Local analysis
	Clustering
	Iteration direction
	Grouping

	Symbolic optimization
	IET construction
	IET analysis
	IET optimization
	Synthesis, dynamic compilation, and execution
	Operator specialization through backends

	Automated performance optimizations
	DSE - Devito Symbolic Engine
	DLE - Devito Loop Engine
	YLE - YASK Loop Engine

	The Cross-Iteration Redundancy-Elimination Algorithm
	Extraction of candidate expressions
	Detection of aliases
	Loop blocking for working-set minimization

	Performance evaluation
	Compiler and system setup
	Test case setup
	Performance: acoustic wave in isotropic model
	Performance: acoustic wave in tilted transverse isotropy model

	Further work
	Conclusions
	References

