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ABSTRACT

The tasks of sampling, compression and reconstruction are very common and often necessary

in seismic data processing due to the large size of seismic data. Curvelet-based Recovery

by Sparsity-promoting Inversion, motivated by the newly developed theory of compressive

sensing, is among the best recovery strategies for seismic data. The incomplete data input to

this curvelet-based recovery is determined by randomized sampling of the original complete

data. Unlike usual regular undersampling, randomized sampling can convert aliases to

easy-to-eliminate noise, thus facilitating the process of reconstruction of the complete data

from the incomplete data. Randomized sampling methods such as jittered sampling have

been developed in the past that are suitable for curvelet-based recovery, however most have

only been applied to sampling in one dimension. Considering that seismic datasets are

usually higher dimensional and extremely large, in the present paper, we extend the 1D

version of jittered sampling to two dimensions, both with underlying Cartesian and hexago-

nal grids. We also study separable and non-separable two dimensional jittered sampling,

the former referring to the Kronecker product of two one-dimensional jittered samplings.

These different categories of jittered sampling are compared against one another in terms of

signal-to-noise ratio and visual quality, from which we find that jittered hexagonal sampling

is better than jittered Cartesian sampling, while fully non-separable jittered sampling is

better than separable sampling. Because in the image processing and computer graphics

literature, sampling patterns with blue-noise spectra are found to be ideal to avoid aliasing,

we also introduce two other randomized sampling methods, possessing sampling spectra with

beneficial blue noise characteristics, Poisson Disk sampling and Farthest Point sampling.

We compare these methods, and apply the introduced sampling methodologies to higher

dimensional curvelet-based reconstruction. These sampling schemes are shown to lead to
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better results from CRSI compared to the other more traditional sampling protocols, e.g.

regular subsampling.

Keywords: curvelets, irregular sampling, seismic data, acquisition design, jittered

sampling, blue noise
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INTRODUCTION AND MOTIVATION

Seismic data volumes are usually extremely large, requiring immense amounts of storage

space. They are also often incomplete, with traces missing due to complex acquisition

conditions. Due to economical reasons (it can be costly to place many sources and receivers),

we also wish to reduce the number of sources or receivers, i.e. sample only some traces or

positions by design. Thus seismic data compression and recovery become very important

issues.

Obviously, in general, if samples are added to an already selected sample set, we obtain

higher-resolution reconstructed data, which is desirable. However on the other hand, in

order to save measurement costs in the field, the fewer samples that are acquired the better.

These two competing requirements lead us to design sampling methodologies that minimize

the number of samples necessary while at the same time maintaining the quality of the

reconstructed data volume from these samples.

For traditional uniform regular sampling, the Shannon/Nyquist sampling theorem states

that it is necessary to sample at a frequency over at least twice the signal’s maximum frequency

magnitude. A newly developed theory called “compressed sensing” (CS) (Candès et al.,

2006b; Donoho, 2006) provides new insights, and opens up the possibility of reconstructing

compressible images or signals of scientific interest accurately from a number of samples

far fewer than that dictated by the Nyquist rate, though now using irregular randomized

sampling, and not regular sampling.
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Irregular sampling of seismic images

Based on CS theory, a successful recovery method for seismic data, named Curvelet-based

Recovery by Sparsity-promoting Inversion (CRSI), was developed by (Herrmann and Hen-

nenfent, 2008). It is derived from a sparsifying transform, in this case the discrete curvelet

transform (Candès et al., 2006a), in conjunction with an undersampling scheme that favours

recovery. Curvelets have a wide variety of applications in many fields (Ma and Plonka,

2009), and pertinent to this paper, it has been demonstrated that curvelets are a very

good choice for seismic data sets, with their localized plane-wave-like frame elements and

well-documented sparsity for seismic data wavefronts (Candès et al., 2006a; Herrmann et al.,

2007; Chauris and Nguyen, 2008). We therefore use the discrete curvelet transform for the

sparsifying transform in CRSI.

When regular periodic undersampling is used as the underlying sampling scheme input

to this reconstruction, performance is poor due to the presence of well-known periodic

aliases (Zwartjes and Sacchi, 2007). On the other hand, randomized undersampling can

render coherent aliases into easy-to-remove incoherent noise in the frequency domain, so that

CRSI reconstruction becomes a simple denoising problem (Hennenfent and Herrmann, 2008).

Expressions for the variance of this incoherent noise are given in the appendix of this paper.

Unfortunately, commonly used discrete uniform random sampling cannot control gap lengths

between missing traces, and this can greatly affect the quality of reconstruction, since there

may be too much contiguous data that is unsampled, leading to a severely underdetermined

problem which cannot be easily regularized to give a satisfactory solution. Thus, jittered

sampling was introduced to mitigate this issue (Hennenfent and Herrmann, 2007, 2008), so

that gap size is limited while at the same time there is enough randomness that aliases are
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converted to noise.

But most other methods are only applicable to 1D sampling, i.e. they sample some

traces along only one space axis of the data (the complete data is shown in Figure 1(a)), as

in Figure 2(a). However, as we know, higher dimensional seismic data is more common, e.g.,

seismic volumes, which are always very large, necessitating a strategy to reconstruct them

from as few traces as possible, in order to design seismic data acquisition with less shots

and/or receivers (Tang et al., 2009; Zwartjes and Sacchi, 2007). Moreover, as mentioned in

(Herrmann and Hennenfent, 2008), compared to the common shot/receiver reconstruction, a

significant improvement can be achieved with shot-receiver interpolation, because the 3D

geometry of seismic lines will be fully exploited by the 3D curvelet transform.

However, there exist only a few higher dimensional sampling strategies for curvelet-based

seismic data recovery in the literature. (Herrmann and Hennenfent, 2008) used 2D uniform

discrete random sampling while performing 3D interpolation, and though there was some

improvement over 2D regular subsampling, there was still room for improvement in their

obtained interpolated results. Knowing that jittered sampling is better than uniform discrete

random sampling in one dimension, it is natural to extend it to two dimensions (László, 1995)

in the hope that it would also be better than uniform random sampling in this case. In this

paper, first we compare 2D jittered sampling on underlying Cartesian and hexagonal regular

grids. In addition to this, we also introduce another two types of blue-noise sampling schemes,

Poisson Disk sampling (Cook, 1986) and Farthest Point sampling (Eldar et al., 1997), in

order to increase the choice of sampling schemes for CRSI, since such irregular sampling

methods are commonly used in the computer graphics and image processing communities.

These schemes can be used both for 1D and higher dimensional samplings.
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In the context of seismic acquisition, sampling corresponds to the determination of

source and receiver geophone locations. Traditionally, spacing these geophones regularly was

common since this was an “easier” process to perform in the field. When a full seismic survey

is done in two dimensions, in a traditional experimental setup, often source and receiver

geophones are dragged along a straight line perpendicular to their common axis on cables

and then shots fired from the source(s) at certain intervals as the truck (or boat in the case

of marine data acquisition) travels along what is called the inline direction. The common

axis for the source and receiver geophone is called the crossline direction, while as just stated

the direction along which the truck travels is called the inline direction (Vermeer, 1990). The

case where the inline and crossline directions are sampled regularly with the same sampling

interval for each corresponds to the placement of receivers as in Figure 3(a). Typically the

inline direction is sampled more densely than the crossline direction Long (2004), so in fact

the sampling intervals along each axis could be different. There is also some choice as to

where the cables are positioned behind the truck or boat, and this positioning can be done in

an irregular fashion. As will be seen, introducing randomness leads to lesser magnitude, or at

least less coherent aliasing, and thus to superior seismic data recovery from the incomplete

data. In Figure 3(b) the positions of the cables are chosen according to a discrete uniform

random distribution. Unfortunately, for the CRSI scheme used for reconstruction, large gaps

in the incomplete data can lead to problems in the recovery. Therefore, in Figure 3(c), we

show an example where the cable positions are chosen according to a jittered distribution.

Also, (in this case) the vertical positions at which the shots are fired from the source can

be regular or irregular. In Figure 3(d), both the cable positions and the positions where

the shots are fired are from a jittered distribution with the same jittered distribution used

for all receivers. It is conceivably possible for each receiver to follow independent jittered
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distributions, and this case is illustrated in Figure 3(e).

Finally, at the present time, with the advent of new wireless portable Global Positioning

Systems (GPSs), it is much more feasible than in the past to place sources and receivers at

arbitrary locations on the area being surveyed. Figure 3(f) shows one such possible sampling

configuration, where sample locations are not confined to lie along the cable paths. In this

paper, we explore such fully two-dimensional sampling schemes in the context of seismic

acquisition, and these schemes hold much promise for future acquisition design because of

the advent of exciting new portable wireless positioning technologies.

Figure 1 shows the reference synthetic model we use in some of our experiments along

with its Fourier spectrum.

In Figure 2(a), we show the incomplete data from 1D discrete uniform random sampling,

where complete traces are taken at uniform random positions along the receiver and in

Figure 2(b), incomplete data with fully 2D random sample positions is shown, where systems

like GPS could be used to implement the sampling in practice.

Blue-noise and randomized sampling

Blue noise refers to a signal whose energy is concentrated at high frequencies with little

energy concentrated at lower non-zero frequencies. Sampling patterns with blue-noise spectra,

common in the field of image processing, have been proven to be able to scatter aliasing

artifacts throughout the Fourier spectrum out of the signal band as high-pass noise, which is

more easily filtered out (Dippé and Wold, 1985; Ignjatovic and Bocko, 2005). This feature is

very effective in obtaining good reconstructions with some Fourier-based methods, and as we

see in this paper for curvelet-based techniques. Jittered sampling, Poisson Disk sampling and
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Farthest Point sampling are among the best schemes in the image processing and computer

graphics literature yielding blue-noise spectra (Mitchell, 1987; Hennenfent and Herrmann,

2008). In the field of magnetic resonance imaging, (Lustig et al., 2009) have used Poisson

Disk sampling to provide a locally uniform distribution for compressive sensing. Here, we

will introduce all three of these randomized sampling schemes for seismic reconstruction by

curvelet-based sparsity promotion.

In the experiments in this paper, we made a comparison between these schemes in terms

of reconstruction quality, so that some comparisons of these samplings for curvelet-based

seismic data reconstruction could be made. We intend to do a more complete study of

Poisson Disk and Farthest Point sampling in seismic acquisition design in a future work,

along with possibly other methods in a future work and adaptive versions of these methods,

however the results we obtained in this paper are promising.

The main contributions of this paper are the generalization of the one-dimensional

jittered sampling in (Hennenfent and Herrmann, 2008) to two dimensions. There is more

than one way of doing this, depending on the underlying regular tiling of the plane, e.g.

rectangular or hexagonal. We find that both give similar aliasing magnitudes, however

hexagonal jittered sampling permits one to use a lower sampling density to sample data of

the same bandwidth, due to its more efficient packing in the plane. We also experiment

with some other two-dimensional randomized sampling methods found in the computer

graphics and image processing literature, namely Poisson Disk sampling and Farthest Point

sampling. We find that both these methods give similar to and slightly better results

than two-dimensional hexagonal jittered sampling. All of these methods, by virtue of their

aperiodicity and randomness, improve upon regular subsampling when used in conjunction

with CRSI to reconstruct higher-dimensional seismic data.
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CRSI RECONSTRUCTION METHOD

Restriction operator

Defining vec to be a vectorization operator on a 2D data matrix, and A ⊗ B to be the

Kronecker product of the two matrices A and B, one may formulate 2D Curvelet-based

Recovery by Sparsity-Promoting Inversion (CRSI) reconstruction as an inverse problem.

Though we limit the discussion here to CRSI in 2 dimensions, it is straightforward to

generalize the method to higher dimensions. The reconstruction from an incomplete 2D

seismic dataset follows the forward model

b = Rvec(s), (1)

where b ∈ Rp represents the vector of acquired incomplete 2D data with missing traces or

positions, s ∈ Rm×n is the 2D signal, to be recovered, i.e. the adequately sampled data, and

R ∈ Rp×mn is the restriction operator that collects the p acquired samples from s, mn� p.

Thus R is a sampling matrix, on which both the acquired data b, and the recovery of model

m depend.

If the restriction operator R can be expressed as the Kronecker product of two matrices

R1 ∈ Rp1×m and R2 ∈ Rp2×n, with p1 · p2 = p, then we call the sampling associated with R

a separable sampling method. Otherwise, we call the sampling method non-separable. If

we sample only certain traces, but each trace consists of complete data, then R = Rt ⊗ Im,

with Rt the restriction to the sampled traces, and Im the mxm identity matrix. The

matrix Rt is a restriction operator corresponding to a 1D sampling of traces. This matrix

can thus use any 1D sampling scheme, e.g. Rr for 1D regularly subsampling, Rj1 for 1D

jittered subsampling or Ru for 1D uniform random subsampling. It is also possible to do
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completely 2D subsampling in which case R will not be expressible as a Kronecker product

in a non-trivial way, e.g. Rj2 for fully two-dimensional jittered sampling. Several choices of

restriction matrix R are shown in Figure 3.

We will present more about sampling schemes that define the matrix R in the next

section.

CRSI method

There is more than one possible solution of Equation (1) because any model that agrees

with the incomplete data y after being restricted by the matrix R will satisrfy the equation

– this is an underdetermined inverse problem. According to compressive sampling theory, it

was suggested to reformulate the problem as follows:

b = Ax with A def= RDH , (2)

where D is a sparse transform and DH is its adjoint – i.e., its conjugate transpose, and

x ∈ RN with N � n is the representation of s in the sparse domain.

In (Herrmann and Hennenfent, 2008), the discrete curvelet transform is adopted as

the sparse transform, i.e., D def= C, where C is the forward curvelet transform matrix, so

Equation (2) becomes

b = RCHx (3)

The curvelet transform gives a compressible representation of m, which in other words means

that the vector x has few large and many small non-zero coefficients. These properties

make it possible to successfully recover m according to the theory of compressive sampling

(Candès et al., 2006b; Candès, 2006). However to solve this underdetermined problem,

additional information must be provided to regularize the problem. The CRSI method
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promotes sparsity in the curvelet domain as a regularization term and gives a solution to

problem (3) by solving

Pσ :


x̃ = arg minx ‖x‖1 s.t. Ax = b,

s̃ = CH x̃,

(4)

where ‖x‖1
def=

∑N
i=1 |xi| is the `1 norm. The recovered vector that solves Pσ is x̃ and

s̃ ∈ Rm is the estimate of the recovered data obtained by applying CH . Here we solve this

problem with the Spectral Projected Gradient for `1 solver (SPGL1 - (Berg and Friedlander,

2008, 2007)).

RANDOMIZED SAMPLING SCHEMES

From traditional sampling theory, we know that, with regularly sampled points, aliasing

will occur at frequencies higher than the Nyquist limit, due to the regular and periodic

nature of the sampling. If we sample in an irregular manner to make the sizes of unsampled

regions unequal, it is possible for these aliases to be converted into easy-to-remove noise.

Randomized sampling is a way of achieving this, by distributing samples randomly, so that

every point has a finite probability of being sampled (Dippé and Wold, 1985).

Discrete uniform random sampling, where each location on a grid has exactly the same

probability of being chosen, can lead to poor reconstructions with CRSI since it cannot

control the size of gaps between samples. Such uniform random sampling converts aliases

into white noise in the frequency domain, from which in fact it can be very difficult to

remove and distinguish the required spectrum if the noise is of too high an amplitude.

On the other hand, uniform jittered sampling first subdivides the space into n regions,

with n the predetermined number of samples we wish to take, and then randomly takes one
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sample in each region. Because each region is sampled, and the regions form a partition of

the space (they are contiguous), the size of gaps can be controlled, and experimentally it is

found that a blue-noise spectrum is obtained. (Hennenfent and Herrmann, 2008) introduced

1D jittered sampling into CRSI and proved its effectiveness, and in the current paper, we

extend jitterd sampling to 2D.

Generalization of jittered sampling to 2D

For one-dimensional jittered sampling, there is only one degree of freedom, and that is

the selection of the positions of the traces to be sampled. But when jittered sampling is

extended to two dimensions, there are more choices for the underlying tiling of the field, e.g.

Cartesian or hexagonal tiling. Cartesian tiling simply consists of the usual regularly spaced

samples along each dimension, so this does not require further explanation. We now describe

jittered sampling with hexagonal tiling in more detail. Both the Cartesian and hexagonal

jittered samplings are non-separable sampling methods since they cannot be expressed as

the Kronecker product of two one-dimensional samplings. Later in the text, we sometimes

refer to such samplings as fully two-dimensional jittered samplings.

Hexagonal sampling

Regular hexagonal sampling grids have become popular due to their increased packing

density (about 13.4% greater) over the usual regular Cartesian grids. Larger bandwidth

signals can be sampled with hexagonal grids than with Cartesian grids if the same number

of samples is used for each.
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In two dimensions, Cartesian sampling of a function f can be described by the equation:

fCart
s (x, y) =

∞∑
k=−∞

∞∑
l=∞

f(kTx, lTy)δ(x− kTx)δ(y − lTy), (5)

with Tx and Ty the sampling intervals in x and y respectively, δ the continuous Dirac delta

function, and assuming the sampling domain is all of R2. The resulting sample train fCart
s

consists of impulses modulated by the function f ’s value at the corresponding impulse

locations. In general, the horizontal and vertical sampling intervals, Tx and Ty may be

different from each other, though for the purposes of this paper we only consider square

Cartesian sampling, where both of these intervals are equal.

On the other hand, hexagonal sampling can be thought of as being the union of two

Cartesian samplings staggered with respect to one another by half a sample. Such a sampling

may be described by the equation:

fHex
s (x, y) =

∞∑
k=−∞

∞∑
l=−∞

f(2kTx, lTy) δ(x− 2kTx) δ(y − lTy) +

f

(
(2k + 1)Tx,

(
l +

1
2

)
Ty

)
δ(x− (2k + 1)Tx) δ

(
y −

(
l +

1
2

)
Ty

)
,

where now the resulting sample train is fHex
s (x, y). Once again, we only consider regular

hexagonal sampling, which in this case, means that Tx = 3W
2 and Ty =

√
3W for some

positive constant W . This regular hexagonal sampling is shown in Figure 4.

Comparisons between Cartesian and hexagonal jittered sampling

Both Cartesian (rectangular) and hexagonal jittered strategies are shown in Fig. 5(a)

and 5(b). First, the field is tiled with Cartesian or hexagonal grids, and then a random

perturbation is made around the center of each tile while making sure the sample is kept

inside its tile. To some extent, the sampling depends on the tiling itself because of the

restriction that random perturbations keep a sample within a tile or a subset thereof. In
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Figure 6, the theoretical formulae in the appendix of this paper are used to calculate the

aliasing in the expected power spectrum of the jittered sampling process both for Cartesian

jittered sampling and hexagonal jittered sampling. This aliasing is plotted as a function

of the perturbation ratio, or simply the maximum allowed jitter ζ vs. the cell size γ. For

Cartesian jittered sampling, the cell size is computed as twice the distance from the cell’s

centre to any edge of the cell’s square perimeter, while for hexagonal jittered sampling, the

cell size is calculated to be the diameter of the circle circumscribing the hexagonal cell. In

this case, because the packing densities of Cartesian jittered and hexagonal jittered sampling

are different, the cell sizes are chosen so that the same number of samples is taken for each

scheme.

Jittered hexagonal undersampling (0 < ζ < γ)

When ζ = 0, we have no jitter, thus this case corresponds to regular hexagonal undersampling,

and there are full aliasing replicas. As the value of ζ increases, the amplitudes of the aliases

decreases. In Figure 6, we use the expressions derived in the appendix to plot the amount

of aliasing for the expected spectra of hexagonal and Cartesian jittered sampling vs. the

perturbation ratio β = ζ
γ as β ranges from 0 to 1. Note that for optimal (i.e. with ζ = γ)

jittered sampling the amount of aliasing for the expected spectrum is zero, however for any

typical instance of optimal jittered sampling, the actual amount of aliasing will be non-zero

due to the variance of the random jittered sampling spectrum. This variance is shown later

in Figure 7.

As an example, we also select β = 0.3 for a domain of dimensions 200x200, and plot

an instance of this random sampling spectrum in Figure 8(a). Observe that in this figure,

aliases are present, but their amplitudes are less than that of the base signal spectrum.
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Optimally-jittered hexagonal undersampling (ζ = γ)

When the amount of jitter in each hexagonal cell is maximal, then it can be easily shown

that the coefficients of all the impulses in Equation 17, as derived in the Appendix, are zero

except the impulse corresponding to the DC component at the origin, with coefficient 1.

In other words, if we define the Gram matrix of the selection and sparsity operator

G def= AHA (6)

Except for the unit diagonal the expected value of each element of the Gram matrix is zero,

or more simply, the (ignoring gridding effects) expected value of the Gram matrix is the

identity matrix. However there will still be some aliasing since the variances of the entries

of this matrix are non-zero. These variances (ignoring gridding effects) are given by the

expression 8
3
√

3γ2 (1− |ψZ(f)|2), as derived in the appendix of this paper. The variances are

not dependent on the jitter ζ, but are dependent on the spatial frequency vector f = (f1, f2).

It is seen that for the zero-frequency, the variance of the spectrum is 0, meaning that the

base signal replica will always be reproduced exactly without being scaled. An example

spectrum for optimal jittered sampling is shown in Figure 8(b).

We also plot the sampling spectrum for an instance of optimal hexagonal jittered sampling

in Fig. 8(a), where it can be seen that there are no aliases, but just wideband noise of low

magnitude which may be easily filtered out.

Alternative progressive randomized sampling schemes

As stated in the recent work by (Grundland et al., 2009), jittered sampling attempts to

replicate a blue-noise spectrum, which will yield good reconstruction results. There are

other sampling methods that have spectra, which are more “blue” in the sense that there is
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more of a clear threshold frequency below which the spectrum magnitude is insignificant

(except for the zero frequency), and above which there is substantial spectral energy. Two

such methods in that paper, and used in the larger computer graphics and image processing

communities are Poisson Disk and Farthest Point sampling. However these methods are

not tailored to CRSI reconstruction since they do not explicitly limit the distances between

samples. Despite this, it is possible to find some bounds on these distances, so that there

would be extremely large unsampled areas, which would hinder the performance of CRSI.

Therefore, we also wish to look at these methods to determine their performance compared

to the other sampling methods discussed in this paper.

Poisson Disk sampling selects n points at random iteratively, and only keeps a sample if

it is at a sufficient distance away from all previously selected samples. This distance can be

slowly shrunk as the number of samples, and hence the sampling density, increases. This

also leads to a blue noise spectrum, as Fig. 9(a) and 9(c) show.

Farthest Point sampling is another irregular sampling scheme with excellent anti-aliasing

properties, and is based on the computational geometry concept of the Voronoi diagram

(Eldar et al., 1997). The main idea for that scheme, as suggested by its name, is to repeatedly

place the next sample point to be the farthest point from all previously selected samples.

This ensures that there are no regions of the image that are not adequately sampled, while

at the same time, some randomness is maintained by initially selecting a small number of

randomly selected seed samples. It can be proven that the farthest point from the previous

samples is a vertex of the Voronoi diagram of those samples. So points are added one at

a time to the sample set, and the Voronoi diagram updated incrementally. Please see Fig.

9(b) and 9(d).
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For the purposes of this paper, we use a discrete approximation to Farthest Point

sampling, which although takes more CPU time because of the fine grid spacing taken,

is much simpler algorithmically. In our approximation algorithm, we maintain a distance

array D, each element of which contains the value of the distance squared of that discrete

grid point to the closest already selected sample. At each iteration, the array element with

maximum D value is chosen as the next sample sn+1 = (xn+1, yn+1), and then the distance

map updated using the formula:

Dn+1(i, j) = min(Dn(i, j), (i− xn+1)2 + (j − yn+1)2),

for all array positions (i, j) in the image. If there is more than one maximal array element,

then one is chosen at random. If the discrete grid is fine enough, this results in a good

approximation to the continuous version of Farthest Point sampling, without dealing with

the intricacies of computational geometry constructs such as the Voronoi diagram.

Both Poisson Disk and Farthest Point sampling fall under the category of progressive

sampling methods, while jittered sampling does not. A sampling algorithm is called pro-

gressive if samples are selected one at a time, and if the sampling can be stopped after

any desired number of samples is taken, still giving a good reconstruction result with this

incomplete sampling. It can be easily seen from the descriptions of Poisson Disk and Farthest

Point sampling above, that they both fit this definition. On the other hand, for jittered

sampling a regular tiling is first taken, and then samples chosen within each tile. If we stop

the sampling before all samples have been taken, then clearly there will be some tiles which

are left unsampled, and as described earlier, this will lead to reconstructions of poor quality

by CRSI.

Now we wish to translate what progressive and non-progressive samplings mean into
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practical terms when sampling in the field for seismic data acquisition. In general, successive

samples for a progressive sampling scheme will be relatively far apart, especially in the

early stages of the sampling, since when one location has been sampled, we do not need

to sample close to it. Rather, it is better to sample locations far away from all previously

selected samples since at least in the case of a stationary image model, unsampled regions of

images need to be sampled more than regions already sampled, since they are more likely to

exhibit error when reconstructed. So if there is only one individual who is laying down the

receivers using a GPS system as explained in the introduction of this paper, and we wish

to maintain the progressive nature of the sampling so that it can be stopped at any time

without significantly affecting reconstruction quality for that number of samples, they would

have to travel a very large distance, zigzagging between successive samples as determined by

one of these schemes.

A progressive sampling method is especially useful if we can very quickly compute the

reconstruction from the incomplete sampled data at any given instant. In that case, one could

inspect if the reconstruction was of good quality, and this would help in determining if more

samples would be required. A compromise between fully progressive and non-progressive

sampling methods would be a semi-progressive sampling algorithm. In this case, the sampling

pattern locations could be determined for example after every K samples, e.g. for K, 2K,

3K, ... samples, with K > 1, and K sufficiently large so that the newest K samples would

be of sufficient density over the acquisition domain so that receivers could e.g. be placed

by sweeping through the image domain top-to-bottom and left-to-right, without requiring

excessive travelling distance for the individual performing the placement of the receivers.

This would be similar to what could be done for a non-progressive sampling method, except

that in this semi-progressive case, each K samples is treated as a non-progressive sampling
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subset. In general, unequal numbers of samples could be chosen for each subset so that

instead of K, 2K, 3K, ... the sampling number sequence could be k1, k2, k3, ... with ki ∈ N

and increasing.

An alternative solution would be to distribute a number of individuals to place these

receivers, each one covering a subdomain of the entire domain being sampled. Each

individual would only be responsible for placing receivers which would lie within their

respective subdomain. This would require synchronization between the individuals placing

the receivers since the order of placement is also important for a progressive sampling method.

However the benefits in determining the reconstruction progressively could outweigh any

potential drawbacks in terms of number of individuals involved and coordination required

between them.

RESULTS AND DISCUSSION

In this section, we conduct experiments on the 2D synthetic reference model found in Figure

1. We first compare the reconstruction results for when we sample with a 1D discrete uniform

random distribution along the receiver axis and taking full traces, vs. taking the same

amount of data with a fully 2-dimensional discrete uniform random distribution over the

model. We would expect that taking samples with a fully 2D uniform random distribution

would lead to better results, and in Figure 10 we see that this is indeed the case. The

reconstruction in Figure 10(b) is free of the many reconstruction artifacts that are clearly

visible in Figure 10(a). We define the signal-to-noise ratio (SNR) as SNR = 20 log10
‖f0‖2
‖f−f0‖2 ,

where f0 is the original data, and f is the interpolated data. The signal-to-noise ratio of the

result in Figure 10(b) is also ∼ 3 dB higher than that in Figure 10(a).
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To compare the 2D hexagonal jittered undersampling with discrete uniform random

undersampling, a synthetic time slice is chosen to do the experiments. As the sampling rate

varying from 10% to 50%, we record SNR values, as shown in Fig. 11, for different rates

of undersampling, it is found that 2D jittered sampling gives higher SNRs than discrete

uniform random sampling for all sampling rates. For example, for a sampling rate of 50%,

the uplift of jittered sampling over discrete uniform random sampling is approximatly 2 dB.

As expected, from Fig. 11, we see that as the sampling rate increases from 10% to 50%,

the SNR of the reconstruction increases. What should be also noted is that because the CRSI

reconstruction scheme is based on compressed sensing, the sampling rate necessary is not

related to the maximum frequency of the underlying wavefield, as is the case with Nyquist

sampling, but instead on the wavefield’s complexity. This leads to a further reduction in the

number of samples necessary to achieve a given SNR for less complicated wavefields. More

information on this observation may be found in (Herrmann et al., 2009), and also later in

this paper.

Figure 12 shows the spectra from the different sampling methods discussed in this paper.

The original spectrum of the model is shown in Figure 1. In Figure 12(a), there are full

copies of the original spectrum in Figure 1 of the same magnitude as the original spectrum.

In Figure 12(b), where discrete random sampling is introduced along one axis, these aliases

are less pronounced, and also it can be seen along the zero source frequency there is dimming

in the spectrum, and this is due to the jittered sampling, which is taken in the crossline

direction. The spectrum in Figure 12(c) is for a sampling similar to that in (b), except

that instead of discrete uniform random sampling, we use jittered sampling in the crossline

direction. This leads to a slight improvement in the sampling spectrum, with the incoherent

noise less obvious. In Figure 12(d), each direction is sampled with a 1D jittered distribution,
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each one possibly being a different instance of such a distribution. The overal 2-D sampling

pattern is expressible as the Kronecker product of the two one-dimensional jittered sampling

distributions. The aliases are much less visible than in Figures (b) and (c), due to the

fact that regular samples are not taken along any direction. Also, there is dimming of

the spectrum, however this time along both the zero source and receiver frequencies. The

spectrum in Figure 12(e) corresponds to a jittered sampling pattern as in Figure 3(e), where

now different jittered sampling positions are taken for each receiver position. This is again

better than the previous spectra, with very little aliasing or noise present. Finally, in Figure

12(f), we see the spectrum for fully 2D (optimal) jittered sampling, and now there is no

aliasing, with only some incoherent noise that can be easily filtered out from the spectrum.

In Figure 13, we show the reconstructions from the incomplete data determined by the

various sampling methods discussed in this paper. As expected, the results progressively

improve from Figure 13(a) to 13(f), as the sampling positions become less constrained and

less regular. There is a notable (∼ 1.64 dB) improvement even when samples are only taken

irregularly in one dimension and regularly in the other, over completely 2D regular sampling.

Next, we employ 3D seismic lines for comparison of the sampling methods, including

2D Poisson disk sampling and Farthest Point sampling. Here, we only sample 25% of the

total number of traces with different sampling methods, then do the recovery by CRSI with

3D curvelets. The interpolated results for the different schemes are shown in Figs. 14 and

15, and the residuals in Figs. 16 and 17. Again, jittered sampling is better than discrete

uniform random sampling, while Poisson Disk and Farthest Point sampling are somewhat

better than jittered sampling. Visually, it is a bit difficult to see the differences between

the reconstructions from these sampling methods in Figures 14 and 15, and therefore we

plot the residuals (the original model minus the reconstructions in Figures 16 and 17. From
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this latter figure, we see that Poisson Disk and Farthest Point sampling have residuals that

look quite similar to each other, and both have slightly less energy than the residual for

jittered sampling. The difference between the Farthest Point/Poisson Disk vs. the jittered

sampling residuals is evident at the apex of the residual in the time slice at roughly t = 0.4.

Additionally, the jittered sampling residual can be seen visually to be of less energy than

the residual from discrete uniform random sampling, with the difference between the two

especially obvious at the elliptical structure in the top square of the data cube plot.

Real data

In Figure 18, the real SAGA dataset (see e.g. (Verschuur et al., 1992) for a detailed

description of this dataset) is shown and the reconstruction from CRSI with hexagonal

jittered sampling is shown in Figure 19. The reconstruction is faithful to the original with

most important structures present. In the top square of the data cube, it can be seen

that some of the fainter structures around the main diagonal where the source and receiver

positions are close to each other are not very visible in the CRSI reconstruction. Otherwise,

the reconstruction is very good, and some structures are smoother, which is important for

visualization of the reconstructed volume.
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EXTENSIONS

Non-uniform CRSI

The present work mainly used CRSI, where the curvelet transform is regular. Non-uniform

CRSI (NCRSI) (Fénélon, 2008), based on the non-equispaced Fast Discrete Curvelet Trans-

form (NFDCT), can deal with irregular sampling points or traces better without binning.

The current version of NCRSI is for 1D sampling; we are currently developing NCRSI for

higher dimensions, in combination with the non-equispaced curvelet transform, and results

from this higher-dimensional NCRSI will be presented in a future work.

Adaptive sampling and reconstruction

If we know a priori some properties of the model for which we are acquiring data, then

it is possible to sample more densely those areas of the image for which we know there is

more information content. In general, this would correspond to higher frequency parts of

the model since more samples are required to capture the wavefronts that are present in

such regions, which are rapidly changing, and for which if a change is not captured by the

samples, it will not show up in the reconstruction.

In addition to this, the reconstruction may also be made adaptive. The analytic

expressions for the sampling spectra for hexagonal and Cartesian jittered sampling in the

appendix, can be used to weight the unknown solution vector so that more curvelet-domain

sparsity is enforced in the image at frequencies in the sampling spectrum where there is less

energy. These two extensions are left to future work, along with symmetric sampling, which

also allows the sampling density to be reduced.
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Insights from compressive sampling theory

The profound implication of compressive sensing, of which this paper is a particular instance,

is that the sampling rates are no longer determined by the Nyquist sampling criterion.

Instead, the sampling rate can be chosen in accordance with the recovery quality one desires.

This error decays for increasing sampling rates or for more compressive wavefields. In

addition, (Herrmann et al., 2009; Lin and Herrmann, 2009) recently showed that simultaneous

acquisition is another instance of compressive sensing, which leads to even better recovery.

Combination of simultaneous acquisition with the approach presented in this paper will

allow us to obtain an even greater reduction in the number of sources and receivers required

for sampling a wavefield. Because both methods are linear, we envisage the development of

a progressive sampling strategy, where the reconstruction from previously taken samples

is updated as new samples are added until a reconstructed wavefield of desired quality is

obtained.

CONCLUSIONS

In this paper, we explored sampling schemes with blue-noise patterns for curvelet-based

interpolation. We extended jittered sampling to 2D and from our experiments, we have

found that for higher dimensions, 2D jittered sampling is again significantly better than

uniform random sampling in that it leads to reconstructions of higher SNR and of better

visual quality than uniform random sampling when used to select the incomplete restricted

data for CRSI. It was found that hexagonal jittered sampling is preferred over Cartesian

jittered sampling due to its less stringent requirements on the sampling density for images

of the same bandwidth. Additionally, we studied separable versus non-separable jittered
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sampling, which indicates that completely non-separable jittered sampling is better. As well,

we tested two other blue-noise pattern sampling schemes, i.e. Farthest Point and Poisson

Disk sampling, which also gave good results under some conditions, despite not having been

designed for curvelet-based reconstruction as jittered sampling is. We will explore these

other methods more in a future work. We applied all these sampling techniques to 2D

and 3D seismic data interpolation by CRSI, and obtained very good results, as compared

to methods previously used in the literature. It would also be valuable to investigate the

combination of the ideas of spatial subsampling design as we have done in this paper with

the approach of using simultaneous independent sources as mentioned previously. This

would lead to an even greater savings in the required sampling rate to achieve a desired

SNR for the reconstructed wavefield.
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APPENDIX - ANALYSIS OF 2D JITTERED SAMPLING

From the technical report of Brémaud et al. (P. Brémaud and Ridolfi, 2002), if there is a

wide sense stationary point process S jittered by a point process Z, so that the jitter point

process J is given by J = S + Z, then the Bartlett spectrum of J , µJ(df) is given by

µJ(df) = |ψZ(f)|2µS(df) + λ(1− |ψZ(f)|2)df , (7)

where µS(df) is the Bartlett spectrum of the process S, ψZ(f) is the characteristic function

of Z, and λ is the intensity of the process S. The arguments of many of the functions

in Equation 7 are df because the power spectral density measures the expected power in

small intervals around each point in the frequency domain. The Bartlett power spectrum

is a generalization of the usual power spectral density for point processes which are not

wide-sense stationary (Bartlett, 1963). Since S is indeed a deterministic process, the Bartlett

spectrum of S will just be the usual power spectrum. Additionally, the intensity of S will

simply be the sampling density. Then Equation 7 becomes:

SJ(f) = |ψZ(f)|2SS(f)+λ(1−|ψZ(f)|2) = |E{e−2πi(f ·ε̄)}|2|Ŝ(f)|2+λ(1−|E{e−2πi(f ·ε̄)}|2) (8)

The above can be shown to be equal to

SJ(f) = (|E{Ĵ(f)}|)2 + λ(1− |E{e−2πi(f ·ε̄)}|2), (9)

since the jitter point process Z is assumed to be independent of the regular sampling process

S.

Below, we derive the expected value and standard deviation of the Fourier spectrum for

regular hexagonal jittered sampling. This can then be shown to be equivalent to finding

the expectation and standard deviation of the entries of the Gram matrix AHA for the

sampling, which can then be used to analyze the amount of aliasing present for this type of
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jittered sampling. We could also derive similar expressions for regular rectangular jittered

sampling, however elect not to, since using the same techniques as for hexagonal jittered

sampling, these can be easily derived, but not easily vice-versa.

Analysis of aliasing for 2D regular hexagonal jittered sampling

As in (Hennenfent and Herrmann, 2008), we derive expressions to analyze the aliasing for

2D regular hexagonal jittered sampling. In order to do this, we need to find the spectrum of

this sampling process. Since this process is random, the spectrum will also be a random

process. Hence we calculate the expectation and variance of this random spectrum. Let γ
2

be the radius of any regular hexagon in the hexagonal sampling grid, so that γ = 2W as in

Figure 4. In this case, the jittered sampling locations rn are determined by the formula:

r(k1, k2) = r1(k1, k2)
⋃

r2(k1, k2), (10)

where

r1(k1, k2) =

(
3
2
γk1,

√
3

2
γk2

)
+ ε1k1,k2

(11)

and

r2(k1, k2) =

(
3
2
γk1 +

3
4
γ,

√
3

2
γk2 +

√
3

4
γ

)
+ ε2k1,k2

, (12)

and the εik1,k2
are a set of identically uniformly and independently distributed random

variables on the hexagon with circumscribing circle of radius ζ
2 , centered at the origin, for

all indices k1 and k2 and i = 1 or 2. Call this distribution of the εik1,k2
, p ζ

2
(ε).

Then similar to (Hennenfent and Herrmann, 2008), the sampling operator s is given by

the expression:

s(r) =
∞∑

k1=−∞

∞∑
k2=−∞

δ(r− r1(k1, k2)) +
∞∑

k1=−∞

∞∑
k2=−∞

δ(r− r2(k1, k2)). (13)
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The Fourier transform of the sampling operator s is

Ŝ(f) =
4

3
√

3γ2

∞∑
k1=−∞

∞∑
k2=−∞

δ

(
f1 − k1

2
3γ

)
δ

(
f2 − k2

2√
3γ

)(
1 + (−1)k1+k2

)
e−2πif ·ε1k1,k2 ,

(14)

where f = (f1, f2) is the frequency variable vector. Therefore, the expected value of the

Fourier transform of the sampling operator s is:

E{Ŝ(f)} =

E{e−2πi(f1ε̄x+f2ε̄y)} · 4
3
√

3γ2

∞∑
k1=−∞

∞∑
k2=−∞

δ

(
f1 − k1

2
3γ

)
δ

(
f2 − k2

2√
3γ

)(
1 + (−1)k1+k2

)
.

(15)

Here, because all the ε1k1,k2
’s are identically distributed, they can be replaced by a generic

ε = (ε̄x, ε̄y) in the expected value of the sampling operator’s Fourier transform. So we are left

to compute E{e−2πi(f1ε̄x+f2ε̄y)}, where (ε̄x, ε̄y) is distributed uniformly on the hexagon Hζ

with circumscribing circle of radius ζ
2 centered at the origin. This is in fact the characteristic

function ψZ(f) as in Equation 7, of the distribution p ζ
2
(ε). After some calculations, the

following expression is obtained for this characteristic function:

ψZ(f) =
4
√

3
9π2f1f2(f2

1 − 3f2
2 )ζ2

(
2 sin

(
πζ

2
f1

)
sin
(
πζ

2

√
3f2

)
(f2

1 − 3f2
2 )− 2f1f2

√
3 cos(πζf1)+

(16)

cos
(
πζ

2
(f1 +

√
3f2)

)
f1(f1 +

√
3f2)− cos

(
πζ

2
(f1 −

√
3f2)

)
f1(f1 −

√
3f2)

)

By the sifting property of the δ function, the expected value of Ŝ(f) may be simplified
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to:

E{Ŝ(f)} =
∞∑

k1,k2=−∞
k1+k2 even

8
√

3
9π2k1k2(k2

1 − 9k2
2)ζ2

(
cos
(
πζ

3γ
(k1 + 3k2)

)
k1(k1 + 3k2)−

cos
(
πζ

3γ
(k1 − 3k2)

)
k1(k1 − 3k2) + 2 sin

(
πζ

3γ
k1

)
sin
(
πζ

γ
k1

)
(k2

1 − 9k2
2) (17)

−6k1k2 cos
(

2πζ
3γ

k1

))
δ

(
f1 −

k1
3
2γ

)
δ

(
f2 −

k2√
3

2 γ

)
.

The intensity of the regular hexagonal sampling process, λ is computed as the sampling

density, or the expected number of samples per unit area, which in this case is simply

λ = 8
3
√

3γ2 .

Let the ratio of the perturbation range to the edge length be β = ζ
γ . Then the above

expression becomes:

E{Ŝ(f)} =
∞∑

k1,k2=−∞
k1+k2 even

8
√

3
9π2k1k2(k2

1 − 9k2
2)ζ2

(
cos
(
πβ

3
(k1 + 3k2)

)
k1(k1 + 3k2)− cos

(
πβ

3
(k1 − 3k2)

)
k1(k1 − 3k2)

(18)

+2 sin
(
πβ

3
k1

)
sin(πβk1)(k2

1 − 9k2
2)− 6k1k2 cos

(
2πβ
3
k1

))
δ

(
f1 −

k1
3
2γ

)
δ

(
f2 −

k2√
3

2 γ

)
.

Observe that there is still a dependence on the maximum jitter magnitude ζ, but that

this is expected, since for a given perturbation ratio β, as γ, and thus ζ increases, the

hexagonal jittered sampling grid spreads out and becomes bigger, which implies that the

sampling mask becomes lower in frequency. As (k1, k2) → (0, 0), the limit of the above is 1,

as expected, since this corresponds to the base replica of the sampling spectrum, and should

have magnitude of unity. Other values of the spectrum can be calculated by substituting

various values of k1 and k2, and these values can only be non-zero when the condition that

k1 + k2 is even holds.

32



The expression in Equation 18 is the expected value of the regular hexagonal jittered

sampling spectrum. We now wish to find the variance of this random spectrum. This can be

done by computing the power spectral density for the regular hexagonal jittered sampling

process, and then using the fact that

σ2
J = SJ(f)− [E{Ŝ(f)}]2 = λ(1− |ψZ(f)|2) (19)

Therefore, the variance of the hexagonal jittered sampling process is given by

σ2
J =

8
3
√

3γ2

(
1−

(
4
√

3
9π2f1f2(f2

1 − 3f2
2 )ζ2

(
2 sin

(
πζ

2
f1

)
sin
(
πζ

2

√
3f2

)
(f2

1 − 3f2
2 )−

2f1f2

√
3 cos (πζf1) + cos

(
πζ

2
(f1 +

√
3f2)

)
f1(f1 +

√
3f2)− cos

(
πζ

2
(f1 −

√
3f2)

)
f1(f1 −

√
3f2)

))2
)

(20)

Ignoring discretization effects, the elements of the Gram matrix L = AHA are each

random with mean given by Equation 18 and variance given by Equation 20, but where only

the elements of this matrix corresponding to grid points closest to the impulse locations in the

frequency response for the regular hexagonal jittered samples are equal to the corresponding

magnitudes of the impulse functions and can be non-zero.

Analysis of aliasing for 2D regular Cartesian jittered sampling

We now briefly find the expectation and standard deviation of the sampling spectrum for

Cartesian jittered sampling. Since we have already gone through the derivation of these

functions for the more complicated case of hexagonal jittered sampling, we skip through

many of the steps in the present derivation.

For regular Cartesian jittered sampling, we find that the characteristic function is:

ψZ(f) =
sin(πf1ζ) sin(πf2ζ)

π2ζ2f1f2
(21)
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Hence the expected value of the spectrum for this type of sampling can be found to be:

E{Ŝ(f)} =
sin(πk1

ζ
γ ) sin(πk2

ζ
γ )

π2ζ2k1k2

∞∑
k1=−∞

∞∑
k2=−∞

δ

(
f1 −

k1

γ

)
δ

(
f2 −

k2

γ

)
(22)

The variance, once again wideband noise, is computed to be:

σ2
J = λ(1− |ψZ(f)|2) =

1
γ2

(
1− sin2(πf1ζ) sin2(πf2ζ)

π4ζ4f2
1 f

2
2

)
(23)
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same jittered positions for each receiver (separable), (e) 2D jittered sampling, jittered along

receiver and source axes, different jittered positions for each receiver (non-separable), (f)

fully 2D jittered sampling (non-separable)

13 Reconstructions from 75% missing traces: (a) 2D regular sampling, SNR=3.91 dB,

(b) regular along source axis, discrete uniform random along receiver axis, SNR=7.30 dB,

(c) regular along source axis, jittered along receiver axis, SNR=8.94 dB, (d) 2D jittered

sampling, jittered sampling along receiver and source axes, same source pos. for all receivers,

SNR=9.65 dB, (e) 2D jittered sampling along receiver and source axes, different source pos.

for each receiver, SNR=10.03 dB, (f) Fully 2D jittered sampling, SNR=10.86 dB

14 CRSI reconstruction from 75% missing traces sampled by (a) discrete uniform

random sampling, SNR=8.13 dB and (b) jittered sampling, SNR=8.43 dB

15 CRSI reconstruction from 75% missing traces sampled by (a) Farthest Point sam-

pling, SNR=8.50 dB and (b) Poisson Disk sampling, SNR=8.48 dB

16 CRSI reconstruction residuals from (a) random sampling and (b) jittered sampling

17 CRSI reconstruction residuals from (a) Farthest Point sampling and (b) Poisson

Disk sampling

18 Saga example: model

19 Saga example: CRSI reconstruction from 75% missing traces sampled by jittered

hexagonal sampling
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(a) (b)

Figure 1: (a) Reference synthetic seismic data and (b) Fourier spectrum of (a) –

37



(a) (b)

Figure 2: 25% random samples on time slice via: (a) 1D and (b) 2D sampling –
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(f)

Figure 3: A zoom of different types of sampling: (a) regular (R = Rr ⊗Rr) (b) uniform

random inline and regularly sampled crossline(R = Ru⊗Rr), (c) jittered sampling crossline

and regularly sampled inline (R = Rj1⊗Rr), (d) 2D jittered sampling, with jittered sample

positions crossline, and shots fired at positions determined by another jittered sampling

pattern, (e) 2D jittered sampling, jittered positions crossline, and different jittered positions

along each cable inline (non-separable), (f) Fully 2D jittered sampling (R = Rj2).

–
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Figure 4: Regular hexagonal sampling grid –
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(a) (b)

Figure 5: (a) Cartesian jittered sampling scheme, (b) hexagonal jittered sampling scheme

–
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Figure 6: Comparison of the theoretical aliasing for hexagonal versus Cartesian jittered

sampling.

–

42



Figure 7: Theoretical sampling variance for optimally-jittered hexagonal undersampling.

–
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(a)

(b)

Figure 8: Example spectrum for hexagonal jittered sampling with: (a) ζ < γ and (b) ζ = γ

–
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(a) (b)

(c) (d)

Figure 9: Sampling schemes of (a) Poisson Disk (b) Farthest Point, (c) is the sampling

spectrum of (a), and (d) is that of (b)

–
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(a) (b)

Figure 10: (a) Reconstruction from 1D samples in Figure 2(a) (SNR=6.77 dB) and (b)

Reconstruction from 2D samples in Figure 2(b) (SNR=9.75 dB)

–
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Figure 11: SNR of reconstruction from 2D jittered undersampling and discrete uniform

random undersampling, for different sampling rates

–
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(a) (b)

(c) (d)

(e) (f)

Figure 12: Spectra of different 2D sampling methods: (a) regular sampling, (b) regular

along source axis, discrete uniform random along receiver axis, (c) regular along source axis,

jittered along receiver axis, (d) 2D jittered sampling, jittered along receiver and source axes,

same jittered positions for each receiver (separable), (e) 2D jittered sampling, jittered along

receiver and source axes, different jittered positions for each receiver (non-separable), (f)

fully 2D jittered sampling (non-separable)

–
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(a) (b)

(c) (d)

(e) (f)

Figure 13: Reconstructions from 75% missing traces: (a) 2D regular sampling, SNR=3.91

dB, (b) regular along source axis, discrete uniform random along receiver axis, SNR=7.30

dB, (c) regular along source axis, jittered along receiver axis, SNR=8.94 dB, (d) 2D jittered

sampling, jittered sampling along receiver and source axes, same source pos. for all receivers,

SNR=9.65 dB, (e) 2D jittered sampling along receiver and source axes, different source pos.

for each receiver, SNR=10.03 dB, (f) Fully 2D jittered sampling, SNR=10.86 dB

–
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(a)

(b)

Figure 14: CRSI reconstruction from 75% missing traces sampled by (a) discrete uniform

random sampling, SNR=8.13 dB and (b) jittered sampling, SNR=8.43 dB
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(a)

(b)

Figure 15: CRSI reconstruction from 75% missing traces sampled by (a) Farthest Point

sampling, SNR=8.50 dB and (b) Poisson Disk sampling, SNR=8.48 dB
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(a)

(b)

Figure 16: CRSI reconstruction residuals from (a) random sampling and (b) jittered sampling

–
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(a)

(b)

Figure 17: CRSI reconstruction residuals from (a) Farthest Point sampling and (b) Poisson

Disk sampling

–
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Figure 18: Saga example: model –
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Figure 19: Saga example: CRSI reconstruction from 75% missing traces sampled by jittered

hexagonal sampling

–
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