Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).
Copyright (c) 2007 SLIM group @ The University of British Columbia.

Compressive seismic
Imaging

Felix J. Herrmann
joint work with

Tim Lin*, Peyman Moghaddam*, Gilles Hennenfent*,
Deli Wang* & Chris Stolk (Universiteit Twente)
*Seismic Laboratory for Imaging and Modeling

slim.eos.ubc.ca
von Neuman Meeting 2007,

L \SLIM Snowbird, July 11

| Seismic Laboratory for
Imaging and Modeling




Motivation

Seismic imaging involves extremely large high-
dimensional data (petabytes=2~° bytes)

Application and synthesis of disc. operators expensive
Imaging operators are near unitary (pseudolocal)
Compress the action of the operators ...

Inspiration:
®= Quasi-SVD/Wavelet-Vaguelette

sparsity on the model
app invariance under the operator <=> diagonalization

= Compressive sampling

sparsity on the model
incoherence measurement “basis” and sparsity frame
diagonalization of the operator by the measurement basis
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Seismic data acquisition
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Exploration seismology

A,

@ \

create images of the subsurface

need for higher resolution/deeper

clutter and data incompleteness are
problems




Forward problem

® second order hyperbolic PDE

® interested in the singularities of

m =¢ — C




Inverse problem

Minimization:
m = argmin ||d — F[m]||5
After linearization (Born app.) ?c?rward model with noise:
d(zs, z,,t) = (K[c)m)(xs, T, t) + n(Ts, 20, T)

Conventional imaging:
(K'd)(z) = (K'"Km)(z)+ (K'n)(z)
y(z) = (¥m)(z)+e(z)

\|/ is prohibitively expensive to invert

evaluation of K |c| involves expensive wavefield
extrapolators
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Related work

Wavelet-Vaguelette/Quasi-SVD methods based on

" homogeneous operators
®= absorb “square-root” of the Gramm matrix in WVD's

= Wavelets/curvelets near diagonalize the operator and

are sparse on the model

Nonlinear solution of linear inverse problems by wavelet-vaguelette
decomposition (Donoho '95)

Recovering Edges in Ill-posed Problems: Optimality of curvelet
Frames (Candes & Donoho '00)

Scaling methods based on a diagonal approximation
of I, assuming

= smoothness on the symbol and conormality reflectors
Illumination-based normalization (Rickett ‘02)
Amplitude preserved migration (Plessix & Mulder '04)
Amplitude corrections (Guitton '04)
Amplitude scaling (Symes '07)




Hessian/Normal operator

[Stolk 2002, ten Kroode 1997, de Hoop 2000, 2003]

Alternative to expensive least-squares migration.
In high-frequency limit I is a pseudo-differential operator

(Uf)(2) = (KTKf)(z) = / e, €) f(€)de

= composition of two Fourier integral operators

= pseudolocal (near unitary)

® singularities are preserved

" symbol is smooth for smooth velocity models ¢

Corresponds to a spatially-varying dip filter after
appropriate preconditioning (=> zero order PsDO).




Approximation

Theorem 1. The following estimate for the error holds

< C”’2—|M|/27

H(\If(a:, D) — CTD\PC)S@MHL2(R”

)

where C" is a constant depending on W.
Allows for the decomposition

(‘Ij%pu)(x) (CTD‘PCS%)(@
(AATQOM) ()

with A := +/DyC and A! := C*1/Dy.




Solution

ly — Axlz < e

sparsity

A —'—
J(x) = aflx|: +5 1AM (A7) x|,
N— —

continuity

uses curvelet sparsity on the model

employs curvelet invariance under the Gramm operator
removes the curvelet frame ambiguity

removes artifacts by anisotropic diffusion

does not realy incorporate ideas from compressive




Imaging example
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Migrated data Amplitude-corrected & denoised migrated
data
= two-way reverse time wave-equation migration with
checkpointing [Symes '07]

= adjoint state method with 8000 time steps
= evaluation K' takes 6 h on 60 CPU’s
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“"Compressed wavefield extrapolation” to appear in Geophysics




Motivation

Synthesis of the discretized operators form bottle
neck of imaging

Operators have to be applied to multiple right-hand
sides

Explicit operators are feasible in 2-D and lead to an
order-of-magnitude performance increase

Extension towards 3-D problematic
= storage of the explicit operators
= convergence of implicit time-harmonic approaches

First go at the problem using CS techniques to
compress the operator ...




Related work

Curvelet-domain diagonalization of FIO’s

The Curvelet Representation of Wave Propagators is Optimally
Sparse (Candes & Demanet '05)

Seismic imaging in the curvelet domain and its implications for the
curvelet design (Chauris '06)

Leading-order seismic imaging using curvelets (Douma & de Hoop
‘06)

Explicit time harmonic methods

Modal expansion of one-way operators in laterally varying media
(Grimbergen et. al. '98)

A new iterative solver for the time-harmonic wave equation (Riyanti
‘06)

Fourier restriction

How to choose a subset of frequencies in frequency-domain finite-
difference migration (Mulder & Plessix ‘04)
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Inspiration

Suppose we want to shift a sparse spike train, i.e.,

u = T v

—7D

€ V

Le_jTﬂLHV

D LOLA

. = The Fourier Transform

" Eigen modes <=> Fourier transform.

®= Can this operation be compressed by compressive
sampling?




Operators on spikes

[Candes et. al, Donohoj
Calculate instead

y' = Rel Fyv
A =RF

~

u = argming||ully st. Au=y’

ake compressed measurements in Fourier space.
Recover with sparsity promotion
Shift operator is compressed by the restriction

R c R™N with m <« N

vielding compressed rectangular operators.
Extend this idea to wavefield extrapolation?




Representation for seismic data
[Berkhout]




One-way forward & inverse

wavefield extrapolation
[Claerbout. 1971: Wanenaar and Berkhout, 1989]




Different representations

diagonalization | parsimony
operator wavefield

SVD/Lanczos/ |Y X
modal

curvelets




Different representations

diagonalization
operator

parsimony
wavefield

SVD/Lanczos/
modal

X

curvelets

If incoherent this may actually work ....




One-Way Wave Operatot

Solution of the one-way wave equation
W(w3;x3) = exp(—j(z3 — z3)H1)

After discretization solve eigenproblem on H,

. i . ,
| 0 ()
® Helmholtz operator is Hermitian

] monOCh romat|c (Claerbout, 1971; Wapenaar and Berkhout, 1989)
= velocity C varies laterally




Modal transform

Solve eigenproblem & take square root

H, = LAY?LY
L is orthonormal & defines the modal transform that
diagonalizes one-way wavefield extrapolation

Eigenvalues play role of vertical wavenumbers
Extrapolation operator is diagonalized




Higentunctions

Radiating and guided modes

(from Grimbergen ‘98)
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Eigenmodes form a “complete” & orthonormal basis
Evanescent eigenmodes decay exponentially =) S
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Compressed wavetield extrapolation

A 1/2
u = Le_JA AzsT Hy

Offset (km)
4 5 6 7 8 9 10

Offset (km)

Original events

Imaging and Modeling



Compressed wavetield extrapolation

y = RL"u
RejAl/QAC”’SLH

= arg miny (|x||1 s.t. Ax =Yy

~o

= X
Randomly subsample & phase rotate in Modal domain
Recover by norm-one minimization

Capitalize on

= the incoherence modal functions and point
scatterers

" reduced explicit matrix size
= constant velocity <=> Fourier recovery




Compressed wavetield extrapolation

Recorded Data Reconstructed events

Only 1 % of original modes were used ...




Observations

0

Despite the existence of AN BN SN SR
evanescent (exponentially
decaying) waves modes
recovery is successful

If you are looking for point-
scatterers, we have a proof of
concept that is fast

Earth is more complex ...
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Compressed wavetield extrapolation

Offset (m)
200 400 600 800 1000

Extend to general
wavefields

Use curvelets as the
sparsity representation

Use the full &
compressed forward
operator operator

Compressively
extrapolate back 600m
to the source
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Restriction & sparsity strategies

= Forward extrapolation:
y' = Re/A“AsapH
A .= RLYFC!

Wl .
arg miny ||x||; st. Ax=y

e
a=C'x,

= Inverse extrapolation:
y = RL” Fu
A = RejAl/QAangHcH

= argminy ||x|1 st. A'x=y
v=C'x.

Fli




Forward Extrapolation
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2 (a) is Full extrapolation

2 (b)-(d) is compressed extrapolation, (b) p = 0.04, (c)

4

= Q. = 0. L \sSLIM
p = 0.16, (d) p = 0.24 O

Seismic Laboratory for
Imaging and Modeling




Inverse Extrapolation
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Evanescent Recovery

Offset (km) Offset (km)

(©)
2 (a) is downward extrapolated wavefield
2 (b) is matched filter

2 (c) is "compressed” inverse extrapolation




Velocity model
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Compressed inverse extrapolation
Overthrust exploding reflector Full forward extrapolation
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Multiscale and angular compressed
wavefield extrapolation

Propose a scheme motivated by extensions of CS

(Tsaig and Donoho ‘06)

yj/: RJMJI/I 1

F | )

with j = {,(} the scale and angle.

= adapt discretization & restriction
= parallel implementation




joint work with Deli Wang (visitor
from Jilin university) and Gilles
Hennenfent




Related work

Focusing:

Focal transformation, an imaging concept for signal
restoration and noise removal (Berkhout & Verschuur
'06)

® mapping of multiples => primaries

®= incorporation of prior information on the Green’s
function in the recovery

Acquisition restriction in migration:

A quasi-Monte Carlo approach to 3-D migration:
Theory (Sun et. al. '97)




Recovery with focussing

Solve

b {i—agnm&bclsﬁ.HAx—ﬂ2§e
.

f =87T%

RAPCT
APC!
RP(:)

picking operator.




Recovery with focussing

Solve

P . {i—argminxﬂxl s.t. [Ax —ylle <€
C

RAPCT
APC!
RP(:)

picking operator.




Shot
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Green’s function ar
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Offset (m)
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Recovered Data in Focal Domain
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Focused curvelet
recovery

A = RAPC?

Lateral (m) L \SLIM
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Imaging and Modeling
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Conclusions

Curvelets sparsity on the model and near
diagonalization yields stable inversion Gramm matrix

Compressed wavefield extrapolation
reduction in synthesis cost
inverse extrapolation works well when focussed
mutual coherence curvelets and modes
performance of horm-one solver

Double-role CS matrix is cool ... upscale to “real-life”
will be a challenge

Focusing in combination with curvelets leads to
better recovery

That is good seismic because imaging = focusing
L \SLIM
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Open problems

What deeper insights can CS give?
= CS principles and near unitary operators

®= Coherence generalized to frames to study
cols modeling operator <=> curvelets
radiation vs guided modes <=> curvelets

Norm-one solver for reduced system as fast a LSQR
on the full system

Fast random eigenvalue solver does not exist

Many more ...
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