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Motivation
Seismic imaging involves extremely large high-
dimensional data (petabytes=250  bytes)

Application and synthesis of disc. operators expensive

Imaging operators are near unitary (pseudolocal)
Compress the action of the operators ...

Inspiration:
 Quasi-SVD/Wavelet-Vaguelette

 sparsity on the model
 app invariance under the operator <=> diagonalization

 Compressive sampling
 sparsity on the model
 incoherence measurement “basis” and sparsity frame
 diagonalization of the operator by the measurement basis
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Exploration seismology

• create images of the subsurface

• need for higher resolution/deeper

• clutter and data incompleteness are 
problems
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Forward problem

• second order hyperbolic PDE

• interested in the singularities of

F [c]u :=

(
1

c2(x)
· ∂2

∂t2
−

d∑

i=1

∂2

∂x2
1

)
u(x, t) = f(x, t)

m = c− c̄



Inverse problem
Minimization:

After linearization (Born app.) forward model with noise:

Conventional imaging:

    is prohibitively expensive to invert
evaluation of         involves expensive wavefield 
extrapolators

m̃ = arg min
m

‖d− F [m]‖2
2
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(
Ψm

)
(x) + e(x)

Ψ

d(xs, xr, t) =
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K[c̄]m

)
(xs, xr, t) + n(xs, xr, t)

K[c̄]



Approximate inversion 
Gramm matrix by 

scaling/Quasi-SVD

Joint work with Chris Stolk* and 
Peyman Moghaddam

Mathematics Department, 
Twente University, the Netherlands

“Sparsety- and continuity-promoting seismic imaging 
with  curvelet frames” to appear in ACHA



Related work
Wavelet-Vaguelette/Quasi-SVD methods based on

 homogeneous operators
 absorb “square-root” of the Gramm matrix in WVD’s
 Wavelets/curvelets near diagonalize the operator and 

are sparse on the model
 Nonlinear solution of linear inverse problems by wavelet-vaguelette 

decomposition (Donoho ‘95)
 Recovering Edges in Ill-posed Problems: Optimality of curvelet 

Frames (Candes & Donoho ‘00)

Scaling methods based on a diagonal approximation 
of    , assuming

 smoothness on the symbol and conormality reflectors
 Illumination-based normalization (Rickett ‘02)
 Amplitude preserved migration (Plessix & Mulder ‘04)
 Amplitude corrections (Guitton ‘04)
 Amplitude scaling (Symes ‘07)

Ψ



Hessian/Normal operator
[Stolk 2002, ten Kroode 1997, de Hoop 2000, 2003]

Alternative to expensive least-squares migration.
In high-frequency limit     is a pseudo-differential operator

 composition of two Fourier integral operators
 pseudolocal (near unitary)
 singularities are preserved
 symbol is smooth for smooth velocity models

Corresponds to a spatially-varying dip filter after 
appropriate preconditioning (=> zero order PsDO).

Ψ
(
Ψf

)
(x) :=

(
KT Kf

)
(x) =

∫

Rd
e−ix·ξa(x, ξ)f̂(ξ)dξ

c̄



• Allows for the decomposition

in Rd.

Lemma 1. With C ′ some constant, the following holds

‖(Ψ(x,D)− a(xν , ξν))ϕν‖L2(Rn
) ≤ C ′2−|ν|/2. (14)

To approximate Ψ, we define the sequence u := (uµ)µ∈M = a(xµ, ξµ). Let DΨ be the

diagonal matrix with entries given by u. Next we state our result on the approximation of

Ψ by CTDΨC.

Theorem 1. The following estimate for the error holds

‖(Ψ(x,D)− CTDΨC)ϕµ‖L2(Rn
) ≤ C ′′2−|µ|/2, (15)

where C ′′ is a constant depending on Ψ.

This main result proved in Appendix A shows that the approximation error for the

diagonal approximation goes to zero for increasingly finer scales. The approximation derives

from the property that the symbol is slowly varying over the support of a curvelet, an

approximation that becomes more accurate as the scale increases.

Decomposition of the normal operator

By virtue of Theorem 1, the normal operator can be factorized

(
Ψϕµ

)
(x) $

(
CTDΨCϕµ

)
(x) (16)

=
(
AAT ϕµ

)
(x)

with A :=
√

DΨC and AT := CT
√

DΨ. Because the seismic reflectivity can be written as a

superposition of curvelets, we can replace ϕµ in the above equation with the model m. We

15

(
Ψϕµ

)
(x) !

(
CT DΨCϕµ

)
(x)

=
(
AAT ϕµ

)
(x)

with A :=
√

DΨC and AT := CT
√

DΨ.

Approximation



Solution

P :






minx J(x) subject to ‖y −Ax‖2 ≤ ε

m̃ = (AH)†x̃

with

J(x) =

sparsity︷ ︸︸ ︷
α‖x‖1 +β ‖Λ1/2

(
AH

)†
x‖p

︸ ︷︷ ︸
continuity

.

Solve

 uses curvelet sparsity on the model
 employs curvelet invariance under the Gramm operator
 removes the curvelet frame ambiguity
 removes artifacts by anisotropic diffusion 
 does not realy incorporate ideas from compressive 



Migrated data Amplitude-corrected & denoised migrated 
data

Imaging example

 two-way reverse time wave-equation migration with 
checkpointing [Symes ‘07]

 adjoint state method with 8000 time steps
 evaluation       takes 6 h on 60 CPU’sKT



Compressed wavefield 
extrapolation
joint work with Tim Lin

“Compressed wavefield extrapolation” to appear in Geophysics



Motivation
Synthesis of the discretized operators form bottle 
neck of imaging
Operators have to be applied to multiple right-hand 
sides
Explicit operators are feasible in 2-D and lead to an 
order-of-magnitude performance increase
Extension towards 3-D problematic

 storage of the explicit operators
 convergence of implicit time-harmonic approaches

First go at the problem using CS techniques to 
compress the operator ...



Related work
Curvelet-domain diagonalization of FIO’s

 The Curvelet Representation of Wave Propagators is Optimally 
Sparse (Candes & Demanet ‘05)

 Seismic imaging in the curvelet domain and its implications for the 
curvelet design (Chauris ‘06)

 Leading-order seismic imaging using curvelets (Douma & de Hoop 
‘06)

Explicit time harmonic methods
 Modal expansion of one-way operators in laterally varying media 

(Grimbergen et. al. ‘98)
 A new iterative solver for the time-harmonic wave equation (Riyanti 

‘06) 

Fourier restriction
 How to choose a subset of frequencies in frequency-domain finite-

difference migration (Mulder & Plessix ‘04)



Suppose we want to shift a sparse spike train, i.e.,

 Eigen modes <=> Fourier transform.
 Can this operation be compressed by compressive 

sampling?

Inspiration

u = Tτv

= e−τDv
= Le−jτΩLHv

where
D = LΩLH

L = The Fourier Transform



Calculate instead

 Take compressed measurements in Fourier space.
 Recover with sparsity promotion
 Shift operator is compressed by the restriction

yielding compressed rectangular operators.
 Extend this idea to wavefield extrapolation?

Operators on spikes
[Candes et. al, Donoho]






y′ = RejΩτFv
A = RF
ũ = arg minu ‖u‖1 s.t. Au = y′

R ∈ Rm×N with m" N



Representation for seismic data
[Berkhout]
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One-way forward & inverse 
wavefield extrapolation

[Claerbout, 1971; Wapenaar and Berkhout, 1989]
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Different representations

diagonalization
operator

parsimony
wavefield

SVD/Lanczos/
modal

✓ ✕

curvelets ✕ ✓



Different representations

diagonalization
operator

parsimony
wavefield

SVD/Lanczos/
modal

✓ ✕

curvelets ✕ ✓

If incoherent this may actually work ....



One-Way Wave Operator
 Solution of the one-way wave equation

 After discretization solve eigenproblem on 

 Helmholtz operator is Hermitian
 monochromatic
 velocity   varies laterally

H2

(Claerbout, 1971; Wapenaar and Berkhout, 1989)

W(x3;x′
3) = exp(−j(x3 − x′

3)H1)

H2 =





(
ω
c̄1

)2
0 · · · 0

0
(

ω
c̄2

)2
· · · 0

...
...

. . .
...

0 0 · · ·
(

ω
c̄n1

)2





+ D2

c̄



Modal transform
 Solve eigenproblem & take square root

    is orthonormal & defines the modal transform that 
diagonalizes one-way wavefield extrapolation

 Eigenvalues play role of vertical wavenumbers
 Extrapolation operator is diagonalized

H1 = LΛ1/2LH

L

W = FHLe−jΛ1/2
(x3−x′

3)LHF



Eigenfunctions
 Radiating and guided modes

 Eigenmodes form a “complete” & orthonormal basis
 Evanescent eigenmodes decay exponentially

                   

1000 Grimbergen et al.

organized in vectors such that the corresponding 3-D wavefield
operators again become matrices. Following this procedure, a
one-way monochromatic wavefield at depth level x3 can be
written as a vector, according to

P±(x3) =





P
±(!x1, !x2, x3)

P
±(2!x1, !x2, x3)

...

P
±(M!x1, !x2, x3)
P

±(!x1, 2!x2, x3)
...
...

P
±(M!x1, N!x2, x3)





. (41)

This way of organizing the data can be used to derive a matrix
operator from equation (40), which represents the Helmholtz
operator at a fixed depth level x3 for the 3-D situation. As in the
2-D case, this matrix operator is extremely sparse. To illustrate,
we have computed a number of modes. One medium is later-
ally invariant with a velocity of 2500 m/s; the other medium
profile is the circular symmetric extension of the profile shown
in Figure 3. Figure 6 shows the 2-D eigenfunctions at a
fixed x3.

FIG. 4. (a) Spectrum of the square root operator Ĥ1 for a laterally invariant medium with a velocity of c0 = 2500 m/s. The frequency
equals 25 Hz; hence, k0 = ω/c0 = 0.063 m−1. (b) and (c) Two radiating wave modes at fixed x3. Note that the radiating wave modes
in the homogeneous profile are harmonic functions. (d) Spectrum of the square root operator Ĥ1 for the laterally variant medium
of Figure 3. (e) Guided wave mode. (f) Radiating wave mode. The squares in the spectrum of the square root operator denote the
eigenvalues corresponding to the plotted eigenfunctions.

EXAMPLES

Well-to-well extrapolation

As a first illustration of the one-way operators that have been
constructed, a crosswell configuration is considered. A point
source in one well generates a wavefield that is recorded in an-
other well. The medium is assumed to be depth dependent only.
In this example, the direction of preference is horizontal, while
the lateral dimension represents depth. Figure 7 shows the 1-D
subsurface model and the result of finite-difference modeling,
which is used as a benchmark. The results of model expan-
sion and the local explicit method are compared in Figure 8.
Not surprisingly, the results of the local explicit method are
very poor in this example because of the considerable velocity

FIG. 5. Amplitude of the eigenvalues of the propagator matrix
for an extrapolation distance of 30 m.

(from Grimbergen ‘98)



Compressed wavefield extrapolation

Recorded DataOriginal events

Forward model

Reconstruct point scatterers  from recorded data ....

u = Le−jΛ1/2
∆x3LHv



Compressed wavefield extrapolation

 Randomly subsample & phase rotate in Modal domain
 Recover by norm-one minimization
 Capitalize on 

 the incoherence modal functions and point 
scatterers

 reduced explicit matrix size
 constant velocity <=> Fourier recovery






y = RLHu

A = RejΛ1/2
∆x3LH

x̃ = arg minx ‖x‖1 s.t. Ax = y
ṽ = x̃



Compressed wavefield extrapolation

Recorded Data Reconstructed events

Reconstruction

Only 1 % of original modes were used ...



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Illustration of the dip limitation during inverse extrapolation. (a) a bandwidth-

limited impulsive source. (b) the forward extrapolated wavefield (cf. Eq. (24)). (c) The

refocused pulse through inverse extrapolation with matched filtering (cf. Eq. (31)). (d)

the same but with least-squares inverse extrapolation (cf. Eq. (32)); (e-h) The time-spatial

spectra of (a-d). Notice the lack of spatial frequencies corresponding to steep dips in (f-h).

56

 Despite the existence of 
evanescent (exponentially 
decaying) waves modes 
recovery is successful

 If you are looking for point-
scatterers, we have a proof of 
concept that is fast

 Earth is more complex ...

Observations



Compressed wavefield extrapolation

(a)

(b)

Figure 10: Initial wavefields used for the stylized extrapolation examples. (a) A chain of

horizonally-oriented fine-scale curvelets playing the role of a “plane wave”. (b) A fan of

fine-scale curvelets with different angle.

Herrmann et.al. –

64

 Extend to general 
wavefields

 Use curvelets as the 
sparsity representation

 Use the full & 
compressed forward 
operator operator

 Compressively 
extrapolate back 600m 
to the source

(a)

(b)

Figure 8: Lateral velocity profiles with background velocity 2000 ms−1. (a) Profile with

velocity low of 1200ms−1. (b) Profile with velocity high of 3500ms−1. Spatial sampling

interval of the profiles is set to 4m with 256 samples, while the sigma of both Gaussian

functions are set to 80 m.

Herrmann et.al. –

62



Restriction & sparsity strategies
 Forward extrapolation:

 Inverse extrapolation:

W1 :






y′ = RejΛ1/2
∆x3LH

A := RLHFCT

x̃ = arg minx ‖x‖1 s.t. Ax = y′

ũ = CT x̃,

F1 :






y = RLHFu

A′ = RejΛ1/2
∆x3LHCH

x̃ = arg minx ‖x‖1 s.t. A′x = y
ṽ = CT x̃.



Forward Extrapolation

(a) (b)

(c) (d)

Figure 11: Compressed forward extrapolation according to W1 (cf. Eq. (42)) for different

restrictions. The velocity model corresponds to the velocity low and is plotted in Fig. 8(a).

The initial source wavefield v is plotted in Fig. 10(a). (a) The full extrapolated wavefield

u = Wv is included for reference; (b) The compressed forward propagated wavefield with

pf = 0.2 and pµ = 0.0.2; (c) The same as (b) but with pf = 0.4 and pµ = 0.4; (d) The same

as (b) but with pf = 0.6 and pµ = 0.4. Observe that the forward propagated wavefield is

largely recovered for the restriction in (c).

Herrmann et.al. –

65

 (a) is Full extrapolation
 (b)-(d) is compressed extrapolation, (b) p = 0.04, (c) 

p = 0.16, (d) p = 0.24



Inverse Extrapolation

(a) (b)

(c) (d)

(e) (f)

Figure 13: Compressed inverse extrapolation according F1 (cf. Eq. (45)) for different re-

strictions. For (a-c) the velocity model is given by the Gaussian low (Fig. 8(a)) and in (d-f)

by the Gaussian high (Fig. 8(b)). The initial source wavefield v is plotted in Fig. 10(a).

(a) Inverse extrapolated wavefield for pf = 0.2 and pµ = 0.2; (b) The same as (a) but with

pf = 0.4 and pµ = 0.4;(c) The same as (a) but with pf = 0.6 and pµ = 0.4; (d-f) the same

as (a-c) but for the velocity high. Observe that the recovery for the velocity high is slightly

better.

Herrmann et.al. –

67

 (a) p = 0.04
 (b) p = 0.16, (c) pf=0.4, px=0.4



Evanescent Recovery

(a) (b)

(c)

Figure 14: Inversion of the evanescent wavemodes according ṽm = WTu or ṽ = F1[u]

(cf. Eq. 45). The velocity model is constant at 2000ms−1. The initial source wavefield, v, is

defined in terms of a the curvelet fan plotted in Fig. 10(b). (a) The full forward propgated

wavefield u = Wv; (b) The matched filter; (c) The !1 recovery. Observe that the steep

evanescent angles are fully recovered.

Herrmann et.al. –

68

 (a) is downward extrapolated wavefield
 (b) is matched filter
 (c) is “compressed” inverse extrapolation



Velocity model

Figure 13: Lateral velocity profile for the overthrust examples.Herrmann et.al. –

68



Compressed inverse extrapolation
Overthrust exploding reflector Full forward extrapolation 

Matched filter Recovered from p=0.25



Multiscale and angular compressed 
wavefield extrapolation
 Propose a scheme motivated by extensions of CS 

 adapt discretization & restriction
 parallel implementation

Fj
1 :






yj = RjMju
A′

j := RjM
′
jC

T
j

x̃j = arg minxj
‖xj‖1 s.t. A′

jxj = yj
ṽ =

∑
j C

T
j x̃j,

with j = {j, l} the scale and angle.

(Tsaig and Donoho ‘06)



Compressed focusing 
with curvelets

joint work with Deli Wang (visitor 
from Jilin university) and Gilles 

Hennenfent



Related work

Focusing:
Focal transformation, an imaging concept for signal 
restoration and noise removal (Berkhout & Verschuur 
‘06) 

 mapping of multiples => primaries
 incorporation of prior information on the Green’s 

function in the recovery

Acquisition restriction in migration:
A quasi-Monte Carlo approach to 3-D migration: 
Theory (Sun et. al. ‘97)



Solve

Curvelet-based processing 3

SPARSITY-PROMOTING INVERSION

Our solution strategy is built on the premise that seismic
data and images have a sparse representation, x0, in the
curvelet domain. To exploit this property, our forward
model reads

y = Ax0 + n (1)

with y a vector with noisy and possibly incomplete mea-
surements; A the modeling matrix that includes CT ; and
n, a zero-centered white Gaussian noise. Because of the
redundancy of C and/or the incompleteness of the data,
the matrix A can not readily be inverted. However, as
long as the data, y, permits a sparse vector, x0, the ma-
trix, A, can be inverted by a sparsity-promoting program
(Candès et al., 2006b; Donoho, 2006) of the following type:

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ST x̃
(2)

in which ε is a noise-dependent tolerance level, ST the
inverse transform and f̃ the solution calculated from the
vector x̃ (the symbol ˜ denotes a vector obtained by non-
linear optimization) that minimizes Pε.

Nonlinear programs such as Pε are not new to seismic
data processing and imaging. Refer, for instance, to the
extensive literature on spiky deconvolution (Taylor et al.,
1979) and transform-based interpolation techniques such
as Fourier-based reconstruction (Sacchi and Ulrych, 1996).
By virtue of curvelets’ high compression rates, the non-
linear program Pε can be expected to perform well when
CT is included in the modeling operator. Despite its large-
scale and nonlinearity, the solution of the convex problem
Pε can effectively be approximated with a limited (< 250)
number of iterations of a threshold-based cooling method
derived from work by Figueiredo and Nowak (2003) and
Elad et al. (2005). Each step involves a descent projection,
followed by a soft thresholding.

SEISMIC DATA RECOVERY

The reconstruction of seismic wavefields from regularly-
sampled data with missing traces is a setting where a
curvelet-based method will perform well (see e.g. Herr-
mann, 2005; Hennenfent and Herrmann, 2006a, 2007). As
with other transform-based methods, sparsity is used to
reconstruct the wavefield by solving Pε. It is also shown
that the recovery performance can be increased when in-
formation on the major primary arrivals is included in the
modeling operator.

Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete
data corresponds to the inversion of the picking operator
R. This operator models missing data by inserting zero
traces at source-receiver locations where the data is miss-
ing. The task of the recovery is to undo this operation
by filling in the zero traces. Since seismic data is sparse

in the curvelet domain, the missing data can be recovered
by compounding the picking operator with the curvelet
modeling operator, i.e., A := RCT . With this defini-
tion for the modeling operator, solving Pε corresponds to
seeking the sparsest curvelet vector whose inverse curvelet
transform, followed by the picking, matches the data at
the nonzero traces. Applying the inverse transform (with
S := C in Pε) gives the interpolated data.

An example of curvelet based recovery is presented in
Figure 1, where a real 3-D seismic data volume is recov-
ered from data with 80% traces missing (see Figure 1(b)).
The missing traces are selected at random according to a
discrete distribution, which favors recovery (see e.g. Hen-
nenfent and Herrmann, 2007), and corresponds to an av-
erage sampling interval of 125 m . Comparing the ’ground
truth’ in Figure 1(a) with the recovered data in Figure 1(c)
shows a successful recovery in case the high-frequencies
are removed (compare the time slices in Figure 1(a) and
1(c)). Aside from sparsity in the curvelet domain, no prior
information was used during the recovery, which is quite
remarkable. Part of the explanation lies in the curvelet’s
ability to locally exploit the 3-D structure of the data
and this suggests why curvelets are successful for complex
datasets where other methods may fail.

Focused recovery

In practice, additional information on the to-be-recovered
wavefield is often available. For instance, one may have
access to the predominant primary arrivals or to the ve-
locity model. In that case, the recently introduced focal
transform (Berkhout and Verschuur, 2006), which ’decon-
volves’ the data with the primaries, incorporates this addi-
tional information into the recovery process. Application
of this primary operator, ∆P, adds a wavefield interaction
with the surface, mapping primaries to first-order surface-
related multiples (see e.g. Verschuur and Berkhout, 1997;
Herrmann, 2007). Inversion of this operator, strips the
data off one interaction with the surface, focusing pri-
maries to (directional) sources, which leads to a sparser
curvelet representation.

By compounding the non-adaptive curvelet transform
with the data-adaptive focal transform, i.e., A := R∆PCT ,
the recovery can be improved by solving Pε. The solution
of Pε now entails the inversion of ∆P, yielding the spars-
est set of curvelet coefficients that matches the incomplete
data when ’convolved’ with the primaries. Applying the
inverse curvelet transform, followed by ’convolution’ with
∆P yields the interpolation, i.e. ST := ∆PCT. Compar-
ing the curvelet recovery with the focused curvelet recov-
ery (Fig ?? and ??) shows an overall improvement in the
recovered details.

SEISMIC SIGNAL SEPARATION

Predictive multiple suppression involves two steps, namely
multiple prediction and the primary-multiple separation.
In practice, the second step appears difficult and adap-

Recovery with focussing

with
A := R∆PCT

ST := ∆PCT

y = RP(:)
R = picking operator.



Solve

Curvelet-based processing 3

SPARSITY-PROMOTING INVERSION

Our solution strategy is built on the premise that seismic
data and images have a sparse representation, x0, in the
curvelet domain. To exploit this property, our forward
model reads

y = Ax0 + n (1)

with y a vector with noisy and possibly incomplete mea-
surements; A the modeling matrix that includes CT ; and
n, a zero-centered white Gaussian noise. Because of the
redundancy of C and/or the incompleteness of the data,
the matrix A can not readily be inverted. However, as
long as the data, y, permits a sparse vector, x0, the ma-
trix, A, can be inverted by a sparsity-promoting program
(Candès et al., 2006b; Donoho, 2006) of the following type:

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ST x̃
(2)

in which ε is a noise-dependent tolerance level, ST the
inverse transform and f̃ the solution calculated from the
vector x̃ (the symbol ˜ denotes a vector obtained by non-
linear optimization) that minimizes Pε.

Nonlinear programs such as Pε are not new to seismic
data processing and imaging. Refer, for instance, to the
extensive literature on spiky deconvolution (Taylor et al.,
1979) and transform-based interpolation techniques such
as Fourier-based reconstruction (Sacchi and Ulrych, 1996).
By virtue of curvelets’ high compression rates, the non-
linear program Pε can be expected to perform well when
CT is included in the modeling operator. Despite its large-
scale and nonlinearity, the solution of the convex problem
Pε can effectively be approximated with a limited (< 250)
number of iterations of a threshold-based cooling method
derived from work by Figueiredo and Nowak (2003) and
Elad et al. (2005). Each step involves a descent projection,
followed by a soft thresholding.

SEISMIC DATA RECOVERY

The reconstruction of seismic wavefields from regularly-
sampled data with missing traces is a setting where a
curvelet-based method will perform well (see e.g. Herr-
mann, 2005; Hennenfent and Herrmann, 2006a, 2007). As
with other transform-based methods, sparsity is used to
reconstruct the wavefield by solving Pε. It is also shown
that the recovery performance can be increased when in-
formation on the major primary arrivals is included in the
modeling operator.

Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete
data corresponds to the inversion of the picking operator
R. This operator models missing data by inserting zero
traces at source-receiver locations where the data is miss-
ing. The task of the recovery is to undo this operation
by filling in the zero traces. Since seismic data is sparse

in the curvelet domain, the missing data can be recovered
by compounding the picking operator with the curvelet
modeling operator, i.e., A := RCT . With this defini-
tion for the modeling operator, solving Pε corresponds to
seeking the sparsest curvelet vector whose inverse curvelet
transform, followed by the picking, matches the data at
the nonzero traces. Applying the inverse transform (with
S := C in Pε) gives the interpolated data.

An example of curvelet based recovery is presented in
Figure 1, where a real 3-D seismic data volume is recov-
ered from data with 80% traces missing (see Figure 1(b)).
The missing traces are selected at random according to a
discrete distribution, which favors recovery (see e.g. Hen-
nenfent and Herrmann, 2007), and corresponds to an av-
erage sampling interval of 125 m . Comparing the ’ground
truth’ in Figure 1(a) with the recovered data in Figure 1(c)
shows a successful recovery in case the high-frequencies
are removed (compare the time slices in Figure 1(a) and
1(c)). Aside from sparsity in the curvelet domain, no prior
information was used during the recovery, which is quite
remarkable. Part of the explanation lies in the curvelet’s
ability to locally exploit the 3-D structure of the data
and this suggests why curvelets are successful for complex
datasets where other methods may fail.

Focused recovery

In practice, additional information on the to-be-recovered
wavefield is often available. For instance, one may have
access to the predominant primary arrivals or to the ve-
locity model. In that case, the recently introduced focal
transform (Berkhout and Verschuur, 2006), which ’decon-
volves’ the data with the primaries, incorporates this addi-
tional information into the recovery process. Application
of this primary operator, ∆P, adds a wavefield interaction
with the surface, mapping primaries to first-order surface-
related multiples (see e.g. Verschuur and Berkhout, 1997;
Herrmann, 2007). Inversion of this operator, strips the
data off one interaction with the surface, focusing pri-
maries to (directional) sources, which leads to a sparser
curvelet representation.

By compounding the non-adaptive curvelet transform
with the data-adaptive focal transform, i.e., A := R∆PCT ,
the recovery can be improved by solving Pε. The solution
of Pε now entails the inversion of ∆P, yielding the spars-
est set of curvelet coefficients that matches the incomplete
data when ’convolved’ with the primaries. Applying the
inverse curvelet transform, followed by ’convolution’ with
∆P yields the interpolation, i.e. ST := ∆PCT. Compar-
ing the curvelet recovery with the focused curvelet recov-
ery (Fig ?? and ??) shows an overall improvement in the
recovered details.

SEISMIC SIGNAL SEPARATION

Predictive multiple suppression involves two steps, namely
multiple prediction and the primary-multiple separation.
In practice, the second step appears difficult and adap-

Recovery with focussing

with
A := R∆PCT

ST := ∆PCT

y = RP(:)
R = picking operator.

compression 
of the operator



Shot



Green’s function∆P





80 % missing



Focused curvelet 
recovery

Curvelet-based processing 3

SPARSITY-PROMOTING INVERSION

Our solution strategy is built on the premise that seismic
data and images have a sparse representation, x0, in the
curvelet domain. To exploit this property, our forward
model reads

y = Ax0 + n (1)

with y a vector with noisy and possibly incomplete mea-
surements; A the modeling matrix that includes CT ; and
n, a zero-centered white Gaussian noise. Because of the
redundancy of C and/or the incompleteness of the data,
the matrix A can not readily be inverted. However, as
long as the data, y, permits a sparse vector, x0, the ma-
trix, A, can be inverted by a sparsity-promoting program
(Candès et al., 2006b; Donoho, 2006) of the following type:

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ST x̃
(2)

in which ε is a noise-dependent tolerance level, ST the
inverse transform and f̃ the solution calculated from the
vector x̃ (the symbol ˜ denotes a vector obtained by non-
linear optimization) that minimizes Pε.

Nonlinear programs such as Pε are not new to seismic
data processing and imaging. Refer, for instance, to the
extensive literature on spiky deconvolution (Taylor et al.,
1979) and transform-based interpolation techniques such
as Fourier-based reconstruction (Sacchi and Ulrych, 1996).
By virtue of curvelets’ high compression rates, the non-
linear program Pε can be expected to perform well when
CT is included in the modeling operator. Despite its large-
scale and nonlinearity, the solution of the convex problem
Pε can effectively be approximated with a limited (< 250)
number of iterations of a threshold-based cooling method
derived from work by Figueiredo and Nowak (2003) and
Elad et al. (2005). Each step involves a descent projection,
followed by a soft thresholding.

SEISMIC DATA RECOVERY

The reconstruction of seismic wavefields from regularly-
sampled data with missing traces is a setting where a
curvelet-based method will perform well (see e.g. Herr-
mann, 2005; Hennenfent and Herrmann, 2006a, 2007). As
with other transform-based methods, sparsity is used to
reconstruct the wavefield by solving Pε. It is also shown
that the recovery performance can be increased when in-
formation on the major primary arrivals is included in the
modeling operator.

Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete
data corresponds to the inversion of the picking operator
R. This operator models missing data by inserting zero
traces at source-receiver locations where the data is miss-
ing. The task of the recovery is to undo this operation
by filling in the zero traces. Since seismic data is sparse

in the curvelet domain, the missing data can be recovered
by compounding the picking operator with the curvelet
modeling operator, i.e., A := RCT . With this defini-
tion for the modeling operator, solving Pε corresponds to
seeking the sparsest curvelet vector whose inverse curvelet
transform, followed by the picking, matches the data at
the nonzero traces. Applying the inverse transform (with
S := C in Pε) gives the interpolated data.

An example of curvelet based recovery is presented in
Figure 1, where a real 3-D seismic data volume is recov-
ered from data with 80% traces missing (see Figure 1(b)).
The missing traces are selected at random according to a
discrete distribution, which favors recovery (see e.g. Hen-
nenfent and Herrmann, 2007), and corresponds to an av-
erage sampling interval of 125 m . Comparing the ’ground
truth’ in Figure 1(a) with the recovered data in Figure 1(c)
shows a successful recovery in case the high-frequencies
are removed (compare the time slices in Figure 1(a) and
1(c)). Aside from sparsity in the curvelet domain, no prior
information was used during the recovery, which is quite
remarkable. Part of the explanation lies in the curvelet’s
ability to locally exploit the 3-D structure of the data
and this suggests why curvelets are successful for complex
datasets where other methods may fail.

Focused recovery

In practice, additional information on the to-be-recovered
wavefield is often available. For instance, one may have
access to the predominant primary arrivals or to the ve-
locity model. In that case, the recently introduced focal
transform (Berkhout and Verschuur, 2006), which ’decon-
volves’ the data with the primaries, incorporates this addi-
tional information into the recovery process. Application
of this primary operator, ∆P, adds a wavefield interaction
with the surface, mapping primaries to first-order surface-
related multiples (see e.g. Verschuur and Berkhout, 1997;
Herrmann, 2007). Inversion of this operator, strips the
data off one interaction with the surface, focusing pri-
maries to (directional) sources, which leads to a sparser
curvelet representation.

By compounding the non-adaptive curvelet transform
with the data-adaptive focal transform, i.e., A := R∆PCT ,
the recovery can be improved by solving Pε. The solution
of Pε now entails the inversion of ∆P, yielding the spars-
est set of curvelet coefficients that matches the incomplete
data when ’convolved’ with the primaries. Applying the
inverse curvelet transform, followed by ’convolution’ with
∆P yields the interpolation, i.e. ST := ∆PCT. Compar-
ing the curvelet recovery with the focused curvelet recov-
ery (Fig ?? and ??) shows an overall improvement in the
recovered details.

SEISMIC SIGNAL SEPARATION

Predictive multiple suppression involves two steps, namely
multiple prediction and the primary-multiple separation.
In practice, the second step appears difficult and adap-
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SEISMIC DATA RECOVERY

The reconstruction of seismic wavefields from regularly-sampled data with missing traces

is a setting where a curvelet-based method will perform well (see e.g. Herrmann, 2005;

Hennenfent and Herrmann, 2006a, 2007). As with other transform-based methods, sparsity

is used to reconstruct the wavefield by solving Pε. It is also shown that the recovery

performance can be increased when information on the major primary arrivals is included

in the modeling operator.

Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete data corresponds to the inversion

of the picking operator R. This operator models missing data by inserting zero traces at

source-receiver locations where the data is missing. The task of the recovery is to undo this

operation by filling in the zero traces. Since seismic data is sparse in the curvelet domain,

the missing data can be recovered by compounding the picking operator with the curvelet

modeling operator, i.e., A := RCT . With this definition for the modeling operator, solving

Pε corresponds to seeking the sparsest curvelet vector whose inverse curvelet transform,

followed by the picking, matches the data at the nonzero traces. Applying the inverse

transform (with S := C in Pε) gives the interpolated data.

An example of curvelet based recovery is presented in Figure 1, where a real 3-D seismic

data volume is recovered from data with 80 % traces missing (see Figure 1(b)). The missing

traces are selected at random according to a discrete distribution, which favors recovery (see

e.g. Hennenfent and Herrmann, 2007), and corresponds to an average sampling interval of

125 m . Comparing the ’ground truth’ in Figure 1(a) with the recovered data in Figure 1(c)
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Conclusions
 Curvelets sparsity on the model and near 

diagonalization yields stable inversion Gramm matrix
 Compressed wavefield extrapolation

 reduction in synthesis cost
 inverse extrapolation works well when focussed
 mutual coherence curvelets and modes
 performance of norm-one solver

 Double-role CS matrix is cool ... upscale to “real-life” 
will be a challenge

 Focusing in combination with curvelets leads to 
better recovery

 That is good seismic because imaging = focusing



Open problems
 What deeper insights can CS give?

 CS principles and near unitary operators
 Coherence generalized to frames to study

 cols modeling operator <=> curvelets
 radiation vs guided modes <=> curvelets

 Norm-one solver for reduced system as fast a LSQR 
on the full system

 Fast random eigenvalue solver does not exist

 Many more ...
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