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Drivers
Recent technology push calls for collection

‣ high-quality broad-band data volumes (>100k channels)

‣ larger offsets &  full azimuth

Exposes vulnerabilities in our ability to control

‣ acquisition costs / time

‣ processing costs / time
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Drivers cont’d

Complexity of inversion algorithms exposes the “curse of 
dimensionality” in

‣ sampling: exponential growth of # samples for 
high dimensions

‣ optimization: exponential growth of # 
parameter combinations that need to be evaluated 
to minimize our objective functions

Wednesday, 9 January, 13



SLIM

Today’s agenda
Overview of 

‣ basics of exploration seismology

‣ type of problems we encounter

Examples of CS & convex optimization in seismic acquisition

‣ successes & challenges

Dimensionality reduction in wave-equation based inversion

‣ “poor man’s” approximate message passing
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Basics seismic acquisition
[Marine]

http://geomaticsolutions.com/seismic-surveys/
Wednesday, 9 January, 13
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©WesternGeco

Geco Eagle over Oslo
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Dynamite
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Dynamite
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VibroSeis
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Examples of records

On land: Vibroseis At sea: airguns
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What is in the subsurface?

Detail of seismic image containing faults
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“Outcrop” with fault-blocks 

What is in the subsurface?
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3D interpretation of very inhomogeneous medium by slicing 
through image cube

3D seismic image interpretation
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Common Shot Gather # 71: Rx = 600, Ry = 600

NOTE: The shot gather # 
corresponds to the # on 
the data file. 
Example, shot gather # 
71 comes from the 
SOURCE_000071.sgy  data 
file. 
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Problems

Seismic acquisition is “costly”

Difficult to acquire complete data volumes in 4 spatial 
dimensions

Physical constraints, noise, obstacles...

Inversion codes call for more and higher quality data

Seismic data volumes are becoming excessively large

Exposes vulnerabilities in our ability to compute our way 
out of this ...
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Migration output 12.5 m x 30 m  and 12.5 m x 15 m 
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Migration output 12.5 m x 30 m  and 12.5 m x 15 m 
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Migration output at 25 m x 30 m  and 10 m x 10 m 

Courtesy of BHP Billiton,Hess Corp,Repsol-
YPF
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Migration output at 25 m x 30 m  and 10 m x 10 m 

Courtesy of BHP Billiton,Hess Corp,Repsol-
YPF
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Narrow Azimuth  vs. Wide Azimuth  

NAZ  WAZ 
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Subsalt imaging improvements from 2005 to 2010: 
GSMP, FWI, RTM

2005 technologies
NAZ/SRME/WEM

2010 technologies
WAZ/GSMP/FWI/RTM
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Subsalt imaging improvements from 2005 to 2010: 
GSMP, FWI, RTM

2005 technologies
NAZ/SRME/WEM

2010 technologies
WAZ/GSMP/FWI/RTM

Salt 
flank 

Subsalt structures

Base salt
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Our contributions
Proposal to randomize acquisition

‣ random source/receiver locations

‣ jittered time dithering in (simultaneous) source marine 
acquisition

‣ recovery via curvelet-domain sparsity promotion or low-
rank promotion
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Coil shooting
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Coil shooting
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Coil shooting
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Shot distribution for single vessel coil shooting
Regular center distribution Random center distribution
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Coil center grid design
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Coil center grid design
Regular center distribution 
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Coil center grid design
Regular center distribution Random center distribution 

Wednesday, 9 January, 13



©WesternGeco

WAZ   vs. coil shooting comparison: the same processing sequence 
was applied on both datasetsWAZ Coil
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Challenge
Starting SPGl1 recovery...

 ==================================================================================
 SPGL1_SLIM v. 46  (Tue, 14 Jun 2011) based on v.1017
 ==================================================================================
 No. rows              : 103672320      No. columns           : 1459253760
 Initial tau           : 0.00e+00      Two-norm of b         : 3.92e+05
 Optimality tol        : 1.00e-04      Target objective      : 0.00e+00
 Basis pursuit tol     : 1.00e-06      Maximum iterations    :      110

  Iter      Objective   Relative Gap  Rel Error      gNorm   stepG    nnzX    nnzG            tau
     0  3.9236638e+05  0.0000000e+00   1.00e+00  6.903e+03     0.0       0       0  2.2303101e+07
     1  3.9219958e+05  1.9364118e+00   1.00e+00  6.677e+03    -0.3       2       0
     2  3.4192692e+05  2.1884194e+00   1.00e+00  5.147e+03     0.0   14452       0
     3  3.2859582e+05  4.1722491e-01   1.00e+00  1.373e+03     0.0   48295       0

   108  1.5609476e+03  1.6347854e+04   1.00e+00  7.335e+00     0.0  356264726       0
   109  1.5850938e+03  9.3198454e+04   1.00e+00  4.283e+01     0.0  346355398       0
   110  1.5641524e+03  6.9308202e+04   1.00e+00  3.104e+01     0.0  345144021       0

 ERROR EXIT -- Too many iterations

 Products with A     :     125        Total time   (secs) :  34838.7
 Products with A'    :     112        Project time (secs) :  2875.2
 Newton iterations   :      26        Mat-vec time (secs) :  25882.1
 Line search its     :      23        Subspace iterations :       0
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Open questions
Sparse recovery gives encouraging results

Able to scale sparse recovery to “large” problem sizes

‣ true 3D remains a big challenge

Sparsity-promoting program far from reaching convergence

‣ what are good criteria to measure performance

‣ how can we improve convergence & scale 
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Solve an underdetermined system of linear equations:

Problem statement

data
(measurements
/observations)

unknown

b � Cn

A � Cn�P

x0 � CP

=

Ab

x0

n ⌧ P

A = RMSH

{

sampling matrix
transform matrix
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Sampling matrix (RM)
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Measurements (b)
“Ideal” simultaneous 

acquisition
Random 

time-dithering
Periodic  

time-dithering
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Sparse recovery

Solve the convex optimization problem 
(one-norm minimization):

Sparsity-promoting solver:  SPG�1 [van den Berg and Friedlander, 2008]

{

data-consistent 
amplitude recovery

x̃ = arg min
x

�x�1 subject to Ax = b

Recover single-source prestack data volume: d̃ = SHx̃
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“Ideal” simultaneous acquisition
Sparsity-promoting recovery : 10.5 dB

Recovered Residual
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 Random time-dithering
Sparsity-promoting recovery : 8.06 dB

Recovered Residual
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 Periodic time-dithering 
Sparsity-promoting recovery : 4.80 dB

Recovered Residual
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Gram matrices

Mansour et. al. 9Compressed sensing simultaneous Marine acquisition
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Figure 3: Gram matrices of randomized and constant time shifting operators, top and
bottom left, respectively, coupled with a curvelet transform. The top and bottom right
plots show column 300 of the Gram matrices.

The University of British Columbia Technical Report. TR-2011-04, August 5, 2011
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Different transforms

Mansour et. al. 10Compressed sensing simultaneous Marine acquisition
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Figure 4: Gram matrices of randomized and constant time shifting operators, top and
bottom left, respectively, coupled with a Fourier transform. The top and bottom right
plots show the center columns of the Gram matrices.

The University of British Columbia Technical Report. TR-2011-04, August 5, 2011
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RIP constants

Mansour et. al. 12Compressed sensing simultaneous Marine acquisition
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Figure 5: Comparison between the histograms of �̂
⇤

from 1000 realizations of A

⇤

, the
random time-shift sampling matrices A = RMS

H restricted to a set ⇤ of size k, the size
support of the largest transform coe�cients of a real (Gulf of Suez) seismic image. The
transform S is (a) the curvelet transform and (b) the nonlocalized 2D Fourier transform.
The histograms show that randomized time-shifting coupled with the curvelet transform has
better behaved RIP constant (�̂

⇤

= max{1 � �
min

,�
max

� 1} < 1) and therefore promotes
better recovery.

The University of British Columbia Technical Report. TR-2011-04, August 5, 2011
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Random time-dithering
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 Random time-dithering with 1 source vessel
Recovery : 8.06 dB

Recovered Residual
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 Random time-dithering with 2 source vessels
Recovery : 10.3 dB

Recovered Residual
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Challenges
Extension to 3D seismic (5-D data) exposes vulnerabilities

‣ redundancy of directional spasifying transforms

‣ cost of matvecs and # of matvecs for convex 
optimization

Explore a different kind of structure

‣ “low-rank” of matrix / tensor representations

‣ seismic data may not be low-rank but we have seen 
encouraging results 
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Nuclear Norm  
‣  

‣ Just like the 1-norm approximates the 0-norm, so the 
nuclear norm approximates the rank. 

‣ Therefore, to find a low rank solution, solve:

Given any matrix X = USV T ,

the nuclear norm is kXk⇤ =

X
(diag(S)) .

min
X
kXk⇤

such that kb� F(X)k2  � .
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Bring on the Pareto!

‣ We can use SPGL1 to solve such problems if

- It is easy to project onto 

- It is easy to evaluate the dual norm. 

‣ Dual norm is simply maximum singular value (op norm)

‣ But just computing the nuclear norm requires SVDs. 
Fortunately, we can use a clever trick...

min
X
kXk⇤

such that kb� F(X)k2  � .

B⌧
⇤ := {X : kXk⇤  ⌧}

Wednesday, 9 January, 13
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Factorization Approach
‣ The Nuclear norm has a convenient property: 

‣ We can work with L, R rather than X:

‣ Advantages: no SVD required; trivial projection; 
potential to use factors L, R downstream. 

kXk⇤ = inf
X=LR⇤

1
2

�
kLk2

F + kRk2
F

�

min
L,R

1
2

�
kLk2F + kRk2F )

such that kb� F(LR⇤)k2  � .
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Rank Optimization in 
Midpoint-Offset

• Seismic data have faster 
singular value decay in 
midpoint-offset domain

• We recover 50% missing 
data by solving the rank 
optimization problem 
for high (70) and low 
(20) frequencies. 

• nr = ns = 354. 
Complete data before  

and after transformation  
Wednesday, 9 January, 13
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Work flow: 

‣ Convert data with missing traces to M-O domain. 

‣ Initialize L, R factors of pre-selected rank. 

‣ Run rank optimization algorithm (SPGL1+). 

‣ Form dense solution X = LR* 

‣ Convert solution back to source-receiver domain. 
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Gulf of Suez: Least Squares + Low Rank 

Frequency Slice : 70 Hz, Rank : 20

50% Missing data, before interpolation
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‣ 150 SPGL1 iterations; sigma = 1e-6,  nr = ns = 354.
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Frequency Slice : 70 Hz, Rank : 40

50% Missing data, before interpolation
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Gulf of Suez: Least Squares + Low Rank 

‣ 150 SPGL1 iterations; sigma = 1e-6,  nr = ns = 354.
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Wave-equation 
based inversion

PDE constrained inversion

‣ Batching techniques that exploit separable structure & 
linearity in the sources

‣ CS techniques to reduce size of GN subproblems & 
linearity in the sources

‣ AMP techniques to speed up convergence by using 
redundancy in data
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We	  model	  the	  data	  in	  the	  acoustic	  
approximation

Full-waveform inversion

d = Puq

�
!2m+r2

�
u = q

1/soundspeed2m =
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Realistic	  scale	  (3D):	  
• 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  unknowns
• 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  measurements
• 3D	  Helmholtz	  equation	  is	  non-‐
trivial	  to	  solve.

Full-waveform inversion

m ⇠ O(109)

d ⇠ O(1015)
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Quasi-‐Newton	  approach

But:	  evaluation	  of	  full	  misfit	  and	  
gradient	  is	  very	  expensive.

Batched optimization

mk+1 = mk + �ksk

sk = �Bkr�[mk]

min
m

�[m] =
1

K

KX

i=1

�i[m]
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The	  gradient	  can	  be	  calculated	  via	  
the	  adjoint	  state	  method

Full waveform inversion

A[m]ui = qi

A[m]Hvi = PT (di � F [m]qi)

@�i

@mk
= uH

i

✓
@A[m]

@mk

◆H

vi
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The	  gradient	  is	  the	  average

which	  we	  can	  approximate	  by

Optimization

r� =
1

K

KX

i=1

r�i

r� ⇡ re� =
1

|I|
X

i2I
r�i
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Grow	  the	  sample	  by	  adding	  
elements
• in	  a	  pre-‐scribed	  order
• chosen	  at	  random	  without	  
replacement

• chosen	  at	  random	  with	  
replacement

Optimization
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Error	  in	  the	  gradient

Optimization
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Optimization
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FWI
with compressive sensing

Work on small subsets of data and use sparsity promotion 
to control errors of Gauss-Newton updates

‣ works for simultaneous & sequential (marine) data

Use separable structure of FWI and use techniques from

• stochastic optimization & compressive sensing [Bertsekas, 
’96, Nemirovsky, ’08, Candes et.al., ’06, Donoho, ’06]

• approximate message passing [Donoho et. al. ’09, Montanari, ’12]

• phase encoding [Krebs et.al., ’09, Operto et. al., ’09, Herrmann et.al., ’08-10’] 
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Random source-
encoded imaging

Replace GN update with all data (overdetermined system)

with K large by sparsity-promoting GN (underdetermined)

with               and              supershots & linearized Born 
scattering operators

e
xmig = A

⇤
b minimize

x

1

2K

KX

i=1

kbi �Aixk22approximating

minimize

x

kxk1 subject to bi = Aix, i = 1 · · ·K 0

K 0 ⌧ K {bi,Ai}

Wednesday, 9 January, 13



SLIM

Continuation
methods

Versatile large-scale sparsity-promoting solvers limit the 
number of matrix-vector multiplies by cooling, which 

‣ slowly allows components to enter into the solution

‣ solves an intelligent series of LASSO subproblems for 
decreasing sparsity levels

‣ uses convexity & smoothness of Pareto curves with 
Newton root finding

Wednesday, 9 January, 13
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Supercooled
spectral-projected gradients
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA1x� b1k2 s.t kxk�1  �1

[van den Berg & Friedlander, ’08]

[Hennefent et. al., ’08]

[Lin & FJH, ’09-]
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Problems
One-norm solvers suffer from:

‣ first-order spectral-gradient methods need many 
iterations

‣ second-order quasi-Newton need to store multiple 
model vectors

‣ correlation buildup that slows down convergence

Can insights from AMP be used to accelerate current state-
of-the art one-norm solvers?
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Compressive imaging
[with message passing]

Select independent random source encodings after each LASSO 
subproblem is solved

‣ calculate corresponding supershots

‣ redefine Jacobian operator (and its adjoint)
(select independent simultaneous sources & supershots)

Promote sparsity in the curvelet domain
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Supercooling
Break correlations between the model iterate and matrix A 
by rerandomization

‣ draw new independent               after each LASSO 
subproblem is solved

‣ brings in “extra” information without growing the 
system

‣ minimal extra computational & memory cost

{bt,At}
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Supercooled
spectral-projected gradients
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA1x� b1k2 s.t kxk�1  �1

[van den Berg & Friedlander, ’08]

[Hennefent et. al., ’08]

[Lin & FJH, ’09-]
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(c) Pareto curve and solution path

Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA2x� b2k2 s.t kxk�1  �2
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(c) Pareto curve and solution path

Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA3x� b3k2 s.t kxk�1  �3
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(c) Pareto curve and solution path

Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA4x� b4k2 s.t kxk�1  �4
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Compressive imaging
[with message passing]

Result: Estimate for the model x

t+1

x

0, ex � 0 and t, ⌧0  � 0 ; // Initialize1

while t  T do2

W �W 2 RK⇥K0
with Wij ⇠ N(0, 1/

p
K 0) ; // Random encoding3

{b,q} � {DW,QW} ; // Draw sim sources and data

4

A � rF [m0;q]; // New demigration operator

5

x

t+1  � spgl1(A,b, ⌧ t,� = 0,xt); // Reach Pareto6

⌧ t  � kxt+1k1; // New initial ⌧ value7

t � t+�T ; // Add # of iterations of spgl18

end9

Algorithm 1: Supercooled sparsity-promoting migration.
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Imaging results

Time-harmonic Helmholtz:

• 409 X 1401 with mesh size of 5m

• 9 point stencil [C. Jo et. al., ’96]

• absorbing boundary condition with damping layer with 
thickness proportional to wavelength

• solve wavefields on the fly with direct solver
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Imaging results
[background model]
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Migration results
[true perturbation]
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Imaging results
Split-spread surface-free ‘land’ acquisition:

• 350 sources with sampling interval 20m

• 701 receivers with sampling interval 10m

• maximal offset 7km (3.5 X depth of model)

• Ricker wavelet with central frequency of 30Hz

• recording time for each shot is 3.6s
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Migration results
[migration with all data]
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K0

K = 0.0003

Imaging results
Reduced setup:

• 10 random frequencies (versus 300 frequencies)
(20Hz-50Hz)

• 3 random simultaneous shots (versus 350 sequential shots)

Significant dimensionality reduction of

[Herrmann & Li, 2011]
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�x = Sparse curvelet-coe�cient vector

S

⇤
= Curvelet synthesis

Q = Simultaneous sources

�d = Super shots

� em = S

⇤
argmin

�x
k�xk`2 subject to k�d�

demigrationz }| {
rF [m

0

;Q]S

⇤�xk
2

 �

Least-squares migration with randomized supershots:

Imaging results
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�x = Sparse curvelet-coe�cient vector

S

⇤
= Curvelet synthesis

Q = Simultaneous sources

�d = Super shots

Imaging results
Sparsity-promoting migration with randomized supershots:

� �m = S� arg min
�x

��x��1 subject to ��d�
demigration� �� �
�F [m0;Q]S��x�2 � �
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Migration results
[     without renewals]`2
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Imaging results
[     without renewals]`1
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Migration results
[     with renewals]`2
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Migration results
[     with renewals]`1
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Migration results
[true perturbation]
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Migration results
[migration with all data]
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Migration results
[solution paths    ]`2
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Migration results
[solution paths    ]`1
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Imaging results
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Migration results
[model errors]
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Why does this work?
Physicist’s perspective:

We are dealing with extremely large systems that mix for

‣ large enough system sizes and long enough times

‣ large enough complexity in the velocity model

Linear systems start to behave like ‘Gaussian’ matrices

‣ show ‘phase-transitions’ for simple recovery algorithms

‣ approximations become better when systems get larger
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Add a term to iterative soft thresholding, i.e.,

Holds for

‣ normalized Gaussian matrices

‣ large-scale limit and for specific thresholding strategy

x

t+1 = ⌘t
�
A

⇤
r

t + x

t
�

r

t = b�Ax

t+
kxt+1k0

n
r

t�1

Approximate 
message passing

[Donoho et. al, ’09-’12; Montanari, ’10-’12, Rangan, ’11]

Aij 2 n�1/2N(0, 1)
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Statistically equivalent to

by drawing new independent pairs              for each iteration

Changes the story completely

‣ breaks correlation buildup

‣ faster convergence

x

t+1 = ⌘t
�
A

⇤
t r

t + x

t
�

r

t = bt �Atx
t

Approximate 
message passing

[Montanari, ’12]

{bt,At}
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r

t = b�Ax

t+
kxt+1k0

n
r

t�1

Iteration t=1
⌘t(A

⇤
r
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Iteration t=2
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Iteration t=3
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Iteration t=4
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Observations
Message-pass term has the same effect as drawing 
independent experiments

‣ ‘Gaussian’ matrices

‣ delicate normalization and thresholding strategy

‣ renders proposed method impractical 

‣ can lead to dramatically improved convergence

{bt,At}
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Sparse example
[n=500; N=10000; k=35; T=50]
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Ideal ‘Seismic’ example
[n/N=0.13;N=248759;T=500]
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Ideal ‘Seismic’ example
[n/N=0.13;N=248759;T=500]
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Supercooled
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Solution paths

Independent redraws of               lead to improved recovery{bt,At}
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MCC experiments
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Observations
Independent redraws of              get rid of small difficult to 
remove interferences

‣ working only with subsets of the data

But, aren’t we fooling ourselves since proposed method

‣ defeats the premise of compressive sampling

Or, are there data-rich applications for this method?

‣ e.g. efficient imaging with random source encoding

{bt,At}

[Romero et. al., 2000; ]

[Montanari, 2012]

[Herrmann & Li, 2012]
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Conclusions
Message passing improves image quality

‣ computationally feasible one-norm regularization

Message passing via rerandomization

‣ small system size with small IO and memory imprints

Possibility to exploit new computer architectures that employ   
model space parallelism to speed up wavefield simulations...
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FWI results
FWI:

• 10 overlapping frequency bands with 10 frequencies
(2.9Hz-25Hz)

• 10 Gauss-Newton steps for each frequency band
(solved with max 20 spectral-projected gradient iterations)

[Bunks ‘95; Pratt ’98 ]
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Results GN-FWI

True model
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Results GN-FWI

Initial model
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Results GN-FWI

Modified GN 7 sim. shots without renewals 

25 times speedup compared to full GN
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Results GN-FWI

Modified GN 7 sim. shots with renewals

25 times speedup compared to full GN
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Results GN-FWI

Modified GN 7 seq. shots without renewals

25 times speedup compared to full GN
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Results GN-FWI

Modified GN 7 seq. shots with renewals

25 times speedup compared to full GN
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Results GN-FWI

Modified GN 7 sim. shots with renewals

25 times speedup compared to full GN
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