Compressive sensing and sparse recovery in exploration seismology

Felix J. Herrmann

SLIM
Seismic Laboratory for Imaging and Modeling the University of British Columbia

Compressive sensing and sparse recovery in exploration seismology

Felix J. Herrmann
SLIM team

SLIM ${ }^{1}$
Seismic Laboratory for Imaging and Modeling the University of British Columbia

Drivers

Recent technology push calls for collection

- high-quality broad-band data volumes (>100k channels)
- larger offsets \& full azimuth

Exposes vulnerabilities in our ability to control

- acquisition costs / time
- processing costs / time

Drivers cont'd

Complexity of inversion algorithms exposes the "curse of dimensionality" in

- sampling: exponential growth of \# samples for high dimensions
- optimization: exponential growth of \# parameter combinations that need to be evaluated to minimize our objective functions

Today's agenda

Overview of

- basics of exploration seismology
- type of problems we encounter

Examples of CS \& convex optimization in seismic acquisition

- successes \& challenges

Dimensionality reduction in wave-equation based inversion

- "poor man's" approximate message passing

Basics seismic acquisition [Marine]

http://geomaticsolutions.com/seismic-surveys/

Geco Eagle over Oslo

Dynamite

Dynamite

VibroSeis

Examples of records

offset (m)

On land: Vibroseis
offset (m)
50010001500200025003000

At sea: airguns

What is in the subsurface?

Detail of seismic image containing faults

What is in the subsurface?

"Outcrop" with fault-blocks

3D seismic image interpretation

Common Shot Gather \# 7 I: Rx = 600, Ry = $\mathbf{6 0 0}$

Problems

Seismic acquisition is "costly"

Difficult to acquire complete data volumes in 4 spatial dimensions

Physical constraints, noise, obstacles...
Inversion codes call for more and higher quality data
Seismic data volumes are becoming excessively large
Exposes vulnerabilities in our ability to compute our way out of this ...

Migration output $12.5 \mathrm{~m} \times 30 \mathrm{~m}$ and $12.5 \mathrm{~m} \times 15 \mathrm{~m}$

WesternGeco

Migration output $12.5 \mathrm{~m} \times 30 \mathrm{~m}$ and $12.5 \mathrm{~m} \times 15 \mathrm{~m}$

Migration output at $25 \mathrm{~m} \times 30 \mathrm{~m}$ and $10 \mathrm{~m} \times 10 \mathrm{~m}$

Courtesy of BHP Billiton,Hess Corp,Repsol-

Migration output at $25 \mathrm{~m} \times 30 \mathrm{~m}$ and $10 \mathrm{~m} \times 10 \mathrm{~m}$

Courtesy of BHP Billiton,Hess Corp,Repsol-

Narrow Azimuth vs. Wide Azimuth

NAZ

WAZ

Subsalt imaging improvements from 2005 to 2010: GSMP, FWI, RTM

2005 technologies NAZ/SRME/WEM

2010 technologies WAZ/GSMPIFWIRTM

Subsalt imaging improvements from 2005 to 2010: GSMP, FWI, RTM

2005 technologies NAZISRME/WEM

2010 technologies
WAZ/GSMPIFWIRTM

Our contributions

Proposal to randomize acquisition

- random source/receiver locations
- jittered time dithering in (simultaneous) source marine acquisition
- recovery via curvelet-domain sparsity promotion or lowrank promotion

Coil shooting

Coil shooting

$W\left(t, x_{s}, y_{s}, x_{r}, y_{r}\right)$

Coil shooting

$W\left(t, x_{s}, y_{s}, x_{r}, y_{r}\right)$

Shot distribution for single vessel coil shooting

Regular center distribution

CN

Random center distribution

Coil center grid design

Coil center grid design

Regular center distribution

Coil center grid design

Regular center distribution
Random center distribution

WAZ vs. coil shooting comparison: the same processing sequence was applied qWazoth datasets

Coil

34 \% of samples

Challenge

SPGL1_SLIM V. 46 (Tue, 14 Jun 2011) based on v.1017							
No. rows	: 103672320	No. colu	nns	: 145	253760		
Initial tau	: $0.00 \mathrm{e}+00$	Two-norm	of b	: 3.92	+05		
Optimality tol	: 1.00e-04	Target ob	jective	: 0.00	+00		
Basis pursuit tol	: 1.00e-06	Maximum i	erations		110		
Iter Objective	Relative Gap	Rel Error	gNorm	stepG	nnzX	nnzG	tau
$03.9236638 \mathrm{e}+05$	$0.0000000 \mathrm{e}+00$	$1.00 \mathrm{e}+00$	$6.903 e+03$	0.0	0	0	$2.2303101 e+07$
$13.9219958 \mathrm{e}+05$	$1.9364118 e+00$	$1.00 e+00$	$6.677 e+03$	-0.3	2	0	
$23.4192692 e+05$	$2.1884194 \mathrm{e}+00$	$1.00 \mathrm{e}+00$	$5.147 e+03$	0.0	14452	0	
3 3.2859582e+05	$4.1722491 e-01$	$1.00 e+00$	$1.373 e+03$	0.0	48295	0	
108 1.5609476e+03	$1.6347854 \mathrm{e}+04$	$1.00 \mathrm{e}+00$	$7.335 e+00$	0.0	356264726		0
109 1.5850938e+03	$9.3198454 e+04$	$1.00 \mathrm{e}+00$	4.283e+01	0.0	346355398		0
110 1.5641524e+03	$6.9308202 e+04$	$1.00 e+00$	$3.104 e+01$	0.0	345144021		0
ERROR EXIT -- Too many iterations							
Products with A	125	Total tim	(secs)	34838.			
Products with A'	112	Project ti	me (secs)	2875.2			
Newton iterations	26	Mat-vec ti	me (secs)	25882 .			
Line search its	23	Subspace i	terations	0			

Input data

Open questions

Sparse recovery gives encouraging results
Able to scale sparse recovery to "large" problem sizes

- true 3D remains a big challenge

Sparsity-promoting program far from reaching convergence

- what are good criteria to measure performance
- how can we improve convergence \& scale

Problem statement

Solve an underdetermined system of linear equations:

Sampling matrix (RM)

"IDEAL"' SIMULTANEOUS ACQUISITION

RANDOM TIME-DITHERING

PERIODIC TIME-DITHERING

Measurements (b)

"IDEAL', SIMULTANEOUS ACQUISITION

RANDOM TIME-DITHERING

Periodic TIME-DITHERING

Sparse recovery

Solve the convex optimization problem
(one-norm minimization):

$$
\tilde{\mathbf{x}}=\arg \min _{\mathbf{x}}\|\mathbf{x}\|_{1} \quad \text { subject to } \underbrace{\mathbf{A x}=\mathbf{b}}_{\begin{array}{c}
\text { data-consistent } \\
\text { amplitude recovery }
\end{array}}
$$

Sparsity-promoting solver: $\mathrm{SPG} \ell_{1}$ [van den Berg and Friedlander, 2008]

Recover single-source prestack data volume: $\tilde{\mathbf{d}}=\mathbf{S}^{\mathbf{H}} \tilde{\mathbf{x}}$
"Ideal" simultaneous acquisition Sparsity-promoting recovery : I 0.5 dB

RECOVERED

RESIDUAL

RECOVERED

RESIDUAL

Periodic time-dithering Sparsity-promoting recovery : 4.80 dB

RECOVERED

RESIDUAL

Gram matrices

Figure 3: Gram matrices of randomized and constant time shifting operators, top and bottom left, respectively, coupled with a curvelet transform. The top and bottom right plots show column 300 of the Gram matrices.

Different transforms

Figure 4: Gram matrices of randomized and constant time shifting operators, top and bottom left, respectively, coupled with a Fourier transform. The top and bottom right plots show the center columns of the Gram matrices.

RIP constants

(b)

Figure 5: Comparison between the histograms of $\hat{\delta}_{\Lambda}$ from 1000 realizations of \mathbf{A}_{Λ}, the random time-shift sampling matrices $\mathbf{A}=\mathbf{R M S}^{H}$ restricted to a set Λ of size k, the size support of the largest transform coefficients of a real (Gulf of Suez) seismic image. The transform \mathbf{S} is (a) the curvelet transform and (b) the nonlocalized 2D Fourier transform. The histograms show that randomized time-shifting coupled with the curvelet transform has better behaved RIP constant $\left(\hat{\delta}_{\Lambda}=\max \left\{1-\sigma_{\min }, \sigma_{\max }-1\right\}<1\right)$ and therefore promotes better recovery.

Random time-dithering

1 SOURCE VESSEL
2 SOURCE VESSELS

Random time-dithering with I source vessel Recovery : $\mathbf{8 . 0 6} \mathrm{dB}$

RECOVERED

RESIDUAL

Random time-dithering with 2 source vessels Recovery : $\mathbf{1 0 . 3} \mathbf{~ d B}$

RECOVERED

RESIDUAL

Challenges

Extension to 3D seismic (5-D data) exposes vulnerabilities

- redundancy of directional spasifying transforms
- cost of matvecs and \# of matvecs for convex optimization

Explore a different kind of structure
"low-rank" of matrix / tensor representations

- seismic data may not be low-rank but we have seen encouraging results

Nuclear Norm

- Given any matrix $X=U S V^{T}$, the nuclear norm is $\|X\|_{*}=\sum(\operatorname{diag}(S))$.
- Just like the I -norm approximates the 0 -norm, so the nuclear norm approximates the rank.
- Therefore, to find a low rank solution, solve:

$$
\begin{aligned}
& \min _{X}\|X\|_{*} \\
& \text { such that }\|b-\mathcal{F}(X)\|_{2} \leq \sigma .
\end{aligned}
$$

Bring on the Pareto!

$$
\begin{aligned}
& \min _{X}\|X\|_{*} \\
& \text { such that }\|b-\mathcal{F}(X)\|_{2} \leq \sigma .
\end{aligned}
$$

- We can use SPGLI to solve such problems if
- It is easy to project onto $\mathbb{B}_{*}^{\tau}:=\left\{X:\|X\|_{*} \leq \tau\right\}$
- It is easy to evaluate the dual norm.
- Dual norm is simply maximum singular value (op norm)
- But just computing the nuclear norm requires SVDs. Fortunately, we can use a clever trick...

Facłorization Approach

- The Nuclear norm has a convenient property:

$$
\|X\|_{*}=\inf _{X=L R^{*}} \frac{1}{2}\left(\|L\|_{F}^{2}+\|R\|_{F}^{2}\right)
$$

- We can work with L, R rather than X :

$$
\begin{aligned}
& \min _{L, R} \frac{1}{2}\left(\|L\|_{F}^{2}+\|R\|_{F}^{2}\right) \\
& \text { such that }\left\|b-\mathcal{F}\left(L R^{*}\right)\right\|_{2} \leq \sigma .
\end{aligned}
$$

- Advantages: no SVD required; trivial projection; potential to use factors L, R downstream.

Rank Optimization in Midpoint-Offset

- Seismic data have faster singular value decay in midpoint-offset domain
- We recover 50\% missing data by solving the rank optimization problem for high (70) and low (20) frequencies.
- $\mathrm{nr}=\mathrm{ns}=354$.

Complete data before and after transformation

Work flow:

- Convert data with missing traces to M-O domain.
- Initialize L, R factors of pre-selected rank.
- Run rank optimization algorithm (SPGLI+).
- Form dense solution $X=L R^{*}$
- Convert solution back to source-receiver domain.

Gulf of Suez: Least Squares + Low Rank

Frequency Slice : 70 Hz , Rank : 20

Gulf of Suez: Least Squares + Low Rank

Frequency Slice : 70 Hz , Rank : 40

50\% Missing data, before interpolation

Data after interpolation, $\mathbf{S N R}=\mathbf{2 9 . 3} \mathbf{~ d b}$

- 150 SPGLI iterations; sigma $=1 \mathrm{e}-6, \mathrm{nr}=\mathrm{ns}=354$.

Wave-equation based inversion

PDE constrained inversion

- Batching techniques that exploit separable structure \& linearity in the sources
- CS techniques to reduce size of GN subproblems \& linearity in the sources
- AMP techniques to speed up convergence by using redundancy in data

Full-waveform inversion

We model the data in the acoustic approximation $\left(\omega^{2} \mathbf{m}+\nabla^{2}\right) \mathbf{u}=\mathbf{q}$

Full-waveform inversion

Realistic scale (3D):

- $\mathbf{m} \sim \mathcal{O}\left(10^{9}\right)$ unknowns
- $\mathbf{d} \sim \mathcal{O}\left(10^{15}\right)$ measurements
- 3D Helmholtz equation is nontrivial to solve.

Batched optimization $\min _{\mathbf{m}} \Phi[\mathbf{m}]=\frac{1}{K} \sum_{i=1}^{K} \phi_{i}[\mathbf{m}]$

Quasi-Newton approach

$$
\begin{aligned}
\mathbf{s}_{k} & =-B_{k} \nabla \Phi\left[\mathbf{m}_{k}\right] \\
\mathbf{m}_{k+1} & =\mathbf{m}_{k}+\lambda_{k} \mathbf{s}_{k}
\end{aligned}
$$

But: evaluation of full misfit and gradient is very expensive.

Full waveform inversion

The gradient can be calculated via the adjoint state method

$$
\begin{aligned}
\frac{\partial \phi_{i}}{\partial m_{k}} & =\mathbf{u}_{i}^{H}\left(\frac{\partial A[\mathbf{m}]}{\partial m_{k}}\right)^{H} \mathbf{v}_{i} \\
A[\mathbf{m}] \mathbf{u}_{i} & =\mathbf{q}_{i} \\
A[\mathbf{m}]^{H} \mathbf{v}_{i} & =P^{T}\left(\mathbf{d}_{i}-F[\mathbf{m}] \mathbf{q}_{i}\right)
\end{aligned}
$$

Optimization

The gradient is the average

$$
\nabla \Phi=\frac{1}{K} \sum_{i=1}^{K} \nabla \phi_{i}
$$

which we can approximate by

$$
\nabla \Phi \approx \nabla \widetilde{\Phi}=\frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} \nabla \phi_{i}
$$

Optimization

Grow the sample by adding elements

- in a pre-scribed order
- chosen at random without replacement
- chosen at random with replacement

Optimization

Error in the gradient

Optimization

10 x speedup

[van Leeuwen et al '11]

FWI with compressive sensing

Work on small subsets of data and use sparsity promotion to control errors of Gauss-Newton updates
works for simultaneous \& sequential (marine) data
Use separable structure of FWI and use techniques from

- stochastic optimization \& compressive sensing [Bertsekas, '96, Nemirovsky, '08, Candes et.al., '06, Donoho, '06]
- approximate message passing [Donoho et. al. '09, Montanari, '12]
- phase encoding [Krebs et.al., '09, Operto et. al., '09, Herrmann et.al., '08-10']

Random sourceencoded imaging

Replace GN update with all data (overdetermined system)
$\widetilde{\mathbf{x}}_{\text {mig }}=\mathbf{A}^{*} \mathbf{b} \quad$ approximating $\underset{\mathbf{x}}{\operatorname{minimize}} \frac{1}{2 K} \sum_{i=1}^{K}\left\|\mathbf{b}_{i}-\mathbf{A}_{i} \mathbf{x}\right\|_{2}^{2}$
with K large by sparsity-promoting GN (underdetermined)
$\underset{\mathbf{x}}{\operatorname{minimize}}\|\mathbf{x}\|_{1} \quad$ subject to $\quad \underline{\mathbf{b}}_{i}=\underline{\mathbf{A}}_{i} \mathbf{x}, \quad i=1 \cdots K^{\prime}$
with $K^{\prime} \ll K$ and $\left\{\underline{\mathbf{b}}_{i}, \underline{\mathbf{A}}_{i}\right\}$ supershots \& linearized Born scattering operators

Continuation methods

Versatile large-scale sparsity-promoting solvers limit the number of matrix-vector multiplies by cooling, which

- slowly allows components to enter into the solution
- solves an intelligent series of LASSO subproblems for decreasing sparsity levels
\downarrow uses convexity \& smoothness of Pareto curves with Newton root finding

Supercooled

spectral-projected gradients

[Hennefent et. al., '08]
[Lin \& FJH, '09-]

Problems

One-norm solvers suffer from:

- first-order spectral-gradient methods need many iterations
- second-order quasi-Newton need to store multiple model vectors
- correlation buildup that slows down convergence

Can insights from AMP be used to accelerate current state-of-the art one-norm solvers?

Compressive imaging [with message passing]

Select independent random source encodings after each LASSO subproblem is solved

- calculate corresponding supershots
- redefine Jacobian operator (and its adjoint) (select independent simultaneous sources \& supershots)

Promote sparsity in the curvelet domain

Supercooling

Break correlations between the model iterate and matrix \mathbf{A} by rerandomization

- draw new independent $\left\{\mathbf{b}_{t}, \mathbf{A}_{t}\right\}$ after each LASSO subproblem is solved
- brings in "extra" information without growing the system
- minimal extra computational \& memory cost

Supercooled

spectral-projected gradients

[Hennefent et. al., '08]
[Lin \& FJH, '09-]

Supercooled

spectral-projected gradients

Supercooled

spectral-projected gradients

Supercooled

spectral-projected gradients

Compressive imaging [with message passing]

Result: Estimate for the model \mathbf{x}^{t+1}
$\mathbf{1} \mathbf{x}^{0}, \widetilde{\mathbf{x}} \longleftarrow \mathbf{0}$ and $t, \tau^{0} \longleftarrow 0$;
2 while $t \leq T$ do
$\mathbf{W} \longleftarrow \mathbf{W} \in \mathbb{R}^{K \times K^{\prime}}$ with $W_{i j} \sim N\left(0,1 / \sqrt{K^{\prime}}\right) ; \quad / /$ Random encoding $\{\underline{\mathbf{b}}, \underline{\mathbf{q}}\} \longleftarrow\{\mathbf{D W}, \mathbf{Q W}\} ; \quad / /$ Draw sim sources and data $\underline{\mathbf{A}} \longleftarrow \nabla \mathcal{F}\left[\mathbf{m}_{0} ; \underline{\mathbf{q}}\right] ; \quad / /$ New demigration operator $\mathbf{x}^{t+1} \longleftarrow \operatorname{spgl} 1\left(\underline{\mathbf{A}}, \underline{\mathbf{b}}, \tau^{t}, \sigma=0, \mathbf{x}^{t}\right) ; \quad / /$ Reach Pareto $\tau^{t} \longleftarrow\left\|\mathrm{x}^{t+1}\right\|_{1} ; \quad / /$ New initial τ value $t \longleftarrow t+\Delta T ;$ // Add \# of iterations of spgl1

Algorithm 1: Supercooled sparsity-promoting migration.

Imaging results

Time-harmonic Helmholtz:

- $409 \times 140 \mathrm{I}$ with mesh size of 5 m
- 9 point stencil [c. jo et.al., 96]
- absorbing boundary condition with damping layer with thickness proportional to wavelength
- solve wavefields on the fly with direct solver

Imaging results [background model]

Migration results [true perturbation]

Imaging results

Split-spread surface-free 'land' acquisition:

- 350 sources with sampling interval 20 m
- 701 receivers with sampling interval 10 m
- maximal offset 7 km ($3.5 \times$ depth of model)
- Ricker wavelet with central frequency of 30 Hz
- recording time for each shot is 3.6 s

Migration results [migration with all data]

Imaging results

Reduced setup:

- 10 random frequencies (versus 300 frequencies) (20Hz-50Hz)
- 3 random simultaneous shots (versus 350 sequential shots)

Significant dimensionality reduction of

$$
\frac{K^{\prime}}{K}=0.0003
$$

Imaging results

Least-squares migration with randomized supershots:
$\delta \widetilde{\mathbf{m}}=\mathbf{S}^{*} \underset{\delta \mathbf{x}}{\arg \min }\|\delta \mathbf{x}\|_{\ell_{2}} \quad$ subject to $\quad\|\delta \underline{\mathbf{d}}-\overbrace{\nabla \mathcal{F}\left[\mathbf{m}_{0} ; \underline{\mathbf{Q}}\right]}^{\text {demigration }} \mathbf{S}^{*} \delta \mathbf{x}\|_{2} \leq \sigma$
$\delta \mathrm{x}=$ Sparse curvelet-coefficient vector
$\mathrm{S}^{*}=$ Curvelet synthesis
$\underline{\mathrm{Q}}=$ Simultaneous sources
$\delta \underline{\mathrm{d}}=$ Super shots

Imaging results

Sparsity-promoting migration with randomized supershots:

$\delta \mathrm{x}=$ Sparse curvelet-coefficient vector
$\mathbf{S}^{*}=$ Curvelet synthesis
$\underline{\mathrm{Q}}=$ Simultaneous sources
$\delta \underline{\mathbf{d}}=$ Super shots

Migration results [ℓ_{2} without renewals]

Imaging results [ℓ_{1} without renewals]

Migration results [ℓ_{2} with renewals]

Migration results [ℓ_{1} with renewals]

Migration results [true perturbation]

Migration results [migration with all data]

Migration results [solution paths ℓ_{2}]

without renewals

with renewals

Migration results [solution paths ℓ_{1}]

without renewals

with renewals

Imaging results

Migration results [model errors]

Why does this work?

Physicist's perspective:
We are dealing with extremely large systems that mix for

- large enough system sizes and long enough times
- large enough complexity in the velocity model

Linear systems start to behave like 'Gaussian’ matrices

- show 'phase-transitions' for simple recovery algorithms
- approximations become better when systems get larger

Approximate

message passing

Add a term to iterative soft thresholding, i.e.,

$$
\begin{aligned}
\mathbf{x}^{t+1} & =\eta_{t}\left(\mathbf{A}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right) \\
\mathbf{r}^{t} & =\mathbf{b}-\mathbf{A} \mathbf{x}^{t}+\frac{\left\|\mathbf{x}^{t+1}\right\|_{0}}{n} \mathbf{r}^{t-1}
\end{aligned}
$$

Holds for

- normalized Gaussian matrices $\mathbf{A}_{i j} \in n^{-1 / 2} N(0,1)$
- large-scale limit and for specific thresholding strategy

Approximate

message passing

Statistically equivalent to

$$
\begin{aligned}
\mathbf{x}^{t+1} & =\eta_{t}\left(\mathbf{A}_{t}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right) \\
\mathbf{r}^{t} & =\mathbf{b}_{t}-\mathbf{A}_{t} \mathbf{x}^{t}
\end{aligned}
$$

by drawing new independent pairs $\left\{\mathbf{b}_{t}, \mathbf{A}_{t}\right\}$ for each iteration
Changes the story completely

- breaks correlation buildup
- faster convergence

$$
\mathbf{r}^{t}=\mathbf{b}-\mathbf{A} \mathbf{x}^{t}+\left\|\mathbf{x}^{t+1}\right\|_{0} \mathbf{r}^{t-1} \quad \eta_{t}\left(\mathbf{A}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right)
$$

Iteration $t=2$
$\mathbf{r}^{t}=\mathbf{b}-\mathbf{A} \mathbf{x}^{t}+\frac{\left\|\mathbf{x}^{t+1}\right\|_{0}}{n} \mathbf{r}^{t-1} \quad \eta_{t}\left(\mathbf{A}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right)$

Iteration $t=3$
$\mathbf{r}^{t}=\mathbf{b}-\mathbf{A} \mathbf{x}^{t}+\left\|\mathbf{x}^{t+1}\right\|_{0} \mathbf{r}^{t-1} \quad \eta_{t}\left(\mathbf{A}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right)$

Iteration $\dagger=4$

$\mathbf{r}^{t}=\mathbf{b}-\mathbf{A} \mathbf{x}^{t}+\xlongequal{\left\|\mathbf{x}^{t+1}\right\|_{0}} \mathbf{r}^{t-1} \quad \eta_{t}\left(\mathbf{A}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right)$

Observations

Message-pass term has the same effect as drawing independent experiments $\left\{\mathbf{b}_{t}, \mathbf{A}_{t}\right\}$

- 'Gaussian’ matrices
- delicate normalization and thresholding strategy
- renders proposed method impractical
- can lead to dramatically improved convergence

Sparse example [$\mathrm{n}=500$; $\mathrm{N}=10000$; k=35; $\mathrm{T}=50$]

Ideal 'Seismic' example [$\mathrm{n} / \mathrm{N}=0.13 ; \mathrm{N}=248759 ; \mathrm{T}=500$]

solution path

Cooled

Ideal 'Seismic' example [$\mathrm{n} / \mathrm{N}=0.13 ; \mathrm{N}=248759 ; \mathrm{T}=500$]
 10 X

recovery
supercooled SPGI1 error

error

solution path

Supercooled

Solution paths

Independent redraws of $\left\{\mathbf{b}_{t}, \mathbf{A}_{t}\right\}$ lead to improved recovery

MCC experiments

Observations

Independent redraws of $\left\{\mathbf{b}_{t}, \mathbf{A}_{t}\right\}$ get rid of small difficult to remove interferences

- working only with subsets of the data

But, aren't we fooling ourselves since proposed method

- defeats the premise of compressive sampling

Or, are there data-rich applications for this method?

- e.g. efficient imaging with random source encoding

Conclusions

Message passing improves image quality

- computationally feasible one-norm regularization

Message passing via rerandomization

- small system size with small IO and memory imprints

Possibility to exploit new computer architectures that employ model space parallelism to speed up wavefield simulations...

FWI results

FWI:

- 10 overlapping frequency bands with 10 frequencies $(2.9 \mathrm{~Hz}-25 \mathrm{~Hz})$
- 10 Gauss-Newton steps for each frequency band (solved with max 20 spectral-projected gradient iterations)

Results GN-FWI

True model

Results GN-FWI

Initial model

Results GN-FWI

Modified GN 7 sim. shots without renewals

25 times speedup compared to full GN

Results GN-FWI

Modified GN 7 sim. shots with renewals

25 times speedup compared to full GN

Results GN-FWI

Modified GN 7 seq. shots without renewals

25 times speedup compared to full GN

Results GN-FWI

Modified GN 7 seq. shots with renewals

25 times speedup compared to full GN

Results GN-FWI

Modified GN 7 sim. shots with renewals

25 times speedup compared to full GN

