Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2017 SLIM group @ The University of British Columbia.

Uncertainty quantification for inverse problems with a weak wave-equation constraint

Zhilong Fang^{*}, Curt Da Silva^{*}, Rachel Kuske^{**} and Felix J. Herrmann^{*} *Seismic Laboratory for Imaging and Modeling (SLIM), University of British Columbia **Department of Mathematics, Georgia Institute of Technology

Motivation Forward problem M

Motivation Inverse problem

d

\mathbf{m}

Motivation Statistical inverse problem

$F^{-1}(\mathbf{d})$

d noisy

m noisy

Motivation Statistical inverse problem

Bayesian inference Prior probability density function (PDF): $\mathbf{m} \longrightarrow \rho_{\mathrm{prior}}(\mathbf{m})$ Likelihood PDF: given data d $\mathbf{m} \longrightarrow \rho_{\text{like}}(\mathbf{d}|\mathbf{m})$ Posterior PDF (Bayes' rule): $ho_{ m post}(\mathbf{m}|\mathbf{d}) \propto ho_{ m like}(\mathbf{d}|\mathbf{m}) ho_{ m prior}(\mathbf{m})$

[A. Tarantola and B. Valette, 1982] [J. Kaipio and E. Somersalo, 2004]

S

Bayes w/ strong PDE constraints

d

 $F(\mathbf{m})$

[A. Tarantola and B. Valette, 1982]

Bayes w/ strong PDE constraints Posterior PDF w/ strong PDE constraints: $\rho_{\text{post}}(\mathbf{m}|\mathbf{d}) \propto \exp\left(-\frac{1}{2}\|\mathbf{PA}(\mathbf{m})^{-1}\mathbf{q} - \mathbf{d}\right)$

Challenges:

- high-dimensional model space and data space
- non-linear and expensive model-to-data map
- no closed form solution

$$\mathbf{n})^{-1}\mathbf{q} - \mathbf{d}\|_{\boldsymbol{\Sigma}_{\text{noise}}^{-1}}^2 - \frac{1}{2}\|\mathbf{m} - \mathbf{m}_{\text{prior}}\|_{\boldsymbol{\Sigma}_{\text{prior}}^{-1}}^2\right)$$

ce and data space odel-to-data map

Bayes w/ strong PDE constraints McMC type methods:

- Metropolis-Hasting method
 - draw samples with a proposal PDF
- Langevin method
 - construct the proposal PDF with a preconditioning matrix
- Newton type McMC method
 - construct the proposal PDF with local Hessian matrix

[J. Kaipio and E. Somersalo, 2004] [A. M. Stuart *et al.*, 2004] [J. Martin et al., 2012]

Bayes w/ strong PDE constraints

Low computational cost

Bayes w/ strong PDE constraints McMC type methods:

- Metropolis-Hasting method
 - draw samples with a proposal PDF
- Langevin method
 - construct the proposal PDF with a preconditioning matrix
- Newton type McMC method
 - construct the proposal PDF with local Hessian matrix
 - Hessian matrix and GN Hessian are dense and require additional PDE solves e.g. Gauss-Newton Hessian of $-\log \rho_{\text{like}}(\mathbf{d}|\mathbf{m})$:

$$\mathbf{H}_{\mathrm{GN}}(\mathbf{m}) = \omega^{4} \mathrm{diag}(\mathrm{conj}(\mathbf{u})) \mathbf{A}(\mathbf{m})^{-\top} \mathbf{P}^{\top} \mathbf{\Sigma}_{\mathrm{noise}}^{-1} \mathbf{P} \mathbf{A}(\mathbf{m})^{-1} \mathrm{diag}(\mathbf{u})$$

[J. Kaipio and E. Somersalo, 2004] [A. M. Stuart *et al.*, 2004] [J. Martin et al., 2012] [R. G. Pratt, 1999]

additional PDE solves

PDE constrained optimization problems

Original problem:

 $\min_{\mathbf{u},\mathbf{m}} \frac{1}{2} \|\mathbf{P}\mathbf{u} - \mathbf{d}\|^2$ s.t. $\mathbf{A}(\mathbf{m})\mathbf{u} = \mathbf{q}$

Adjoint-state method – strong constraint: $\min_{\mathbf{m}} \frac{1}{2} \|\mathbf{P}\mathbf{A}^{-1}(\mathbf{m})\mathbf{q} - \mathbf{d}\|^2$

Penalty method – weak constraint:

$$\min_{\mathbf{u},\mathbf{m}} \frac{1}{2} \|\mathbf{P}\mathbf{u} - \mathbf{d}\| + \frac{\lambda}{2}$$

[M. Fisher *et al*, 2004]

[T. van Leeuwen and F. J. Herrmann, 2013]

[T. van Leeuwen and F. J. Herrmann, 2015]

 $\frac{\sqrt{2}}{2} \|\mathbf{A}(\mathbf{m})\mathbf{u} - \mathbf{q}\|^2$

Extend the search space

Larger # of degrees of freedom

[T. van Leeuwen and F. J. Herrmann, 2013][T. van Leeuwen and F. J. Herrmann, 2015]

"more convex" less local minima

 \mathbf{m}

Extend the search space

Introduce auxiliary variable: $\rho_{\text{post}}(\mathbf{u}, \mathbf{m} | \mathbf{d}) \propto \rho(\mathbf{d} | \mathbf{u}, \mathbf{m}) \rho(\mathbf{u}, \mathbf{m})$ $\rho(\mathbf{u}, \mathbf{m}) = \rho(\mathbf{u} | \mathbf{m}) \rho_{\text{prior}}(\mathbf{m})$

Strong PDE constraints: $\rho(\mathbf{d}|\mathbf{u}, \mathbf{m}) \propto \exp\left(-\frac{1}{2}\|\mathbf{P}\mathbf{u} - \mathbf{d}\|_{\boldsymbol{\Sigma}_{\text{noise}}}^{2}\right)$ $\rho(\mathbf{u}|\mathbf{m}) = \delta\left(\mathbf{A}(\mathbf{m})\mathbf{u} - \mathbf{q}\right)$

Extend the search space

Weaken PDE constraints:

 $\rho(\mathbf{u}|\mathbf{m}) = \delta(\mathbf{A}(\mathbf{m})\mathbf{u} - \mathbf{q})$

 $\rho(\mathbf{u}|\mathbf{m}) \propto \exp\left(-\frac{\lambda^2}{2}\|\mathbf{A}(\mathbf{m})\mathbf{u}-\mathbf{q}\|^2\right)$

Bayes w/ weak PDE constraints Joint posterior PDF: $ho_{
m post}({f u},{f m}|{f d})$ $\propto \exp\left(-\frac{1}{2}\|\mathbf{Pu}-\mathbf{d}\|_{\mathbf{\Sigma}_{noise}}^{2}-\frac{\lambda^{2}}{2}\right)$

This is a bi-Gaussian PDF!!

$$\frac{\lambda^2}{2} \|\mathbf{A}(\mathbf{m})\mathbf{u} - \mathbf{q}\|^2 - \frac{1}{2} \|\mathbf{m} - \mathbf{m}_{\text{prior}}\|_{\boldsymbol{\Sigma}_{\text{prior}}^{-1}}^2 \right)$$

Bayes w/ weak PDE constraints Joint posterior PDF: $ho_{\mathrm{post}}(\mathbf{u},\mathbf{m}|\mathbf{d})$ linear operators

• For fixed m

Conditional PDF

For fixed m:

with

[T. van Leeuwen and F. J. Herrmann, 2013]

$\mathbf{u} \sim \mathcal{N}(\overline{\mathbf{u}}, \mathbf{H}_{\mathbf{u}}^{-1})$

$\overline{\mathbf{u}} = \mathbf{H}_{\mathrm{u}}^{-1} \left(\mathbf{P}^{\top} \mathbf{\Sigma}_{\mathrm{noise}}^{-1} \mathbf{d} + \lambda^{2} \mathbf{A}^{\top} (\mathbf{m}) \mathbf{q} \right)$ $\mathbf{H}_{\mathrm{u}} = \mathbf{P}^{\top} \boldsymbol{\Sigma}_{\mathrm{noise}}^{-1} \mathbf{P} + \lambda^{2} \mathbf{A}^{\top} (\mathbf{m}) \mathbf{A}(\mathbf{m})$

Bayes w/ weak PDE constraints Joint posterior PDF: $\rho_{\rm post}({f u},{f m}|{f d})$

• For fixed m

• For fixed u

Conditional PDF

For fixed **u**:

with

$$\overline{\mathbf{m}} = \mathbf{H}_{\mathrm{m}}^{-1} \Big(\lambda^2 \omega^2 \mathrm{diag} \big(\mathrm{conj} \big) \Big)$$

$$\mathbf{H}_{\mathrm{m}} = \lambda^2 \omega^4 \mathrm{diag}(\mathrm{conj}(\mathbf{u}))$$

Diagonal matrix

[T. van Leeuwen and F. J. Herrmann, 2013]

$\mathbf{m} \sim \mathcal{N}(\overline{\mathbf{m}}, \mathbf{H}_{\mathrm{m}}^{-1})$

$\mathbf{j}(\mathbf{u}))(\mathbf{q} - \Delta \mathbf{u}) + \mathbf{\Sigma}_{\text{prior}}^{-1} \mathbf{m}_{\text{prior}})$ $\operatorname{diag}(\mathbf{u}) + \Sigma_{\operatorname{prior}}^{-1}$

Gibbs sampling

Gibbs sampling

Bayes w/ weak PDE constraints

Gibbs sampling: 1. start with \mathbf{m}_0 2. for k = 1 : n_{smp} 3. compute $\overline{\mathbf{u}}(\mathbf{m}_k)$ and \mathbf{F}_k 4. draw \mathbf{u}_k from $\mathcal{N}(\overline{\mathbf{u}}(\mathbf{m}_k))$ 5. compute $\overline{\mathbf{m}}(\mathbf{u}_k)$ and \mathbf{F}_k 6. draw \mathbf{m}_{k+1} from $\mathcal{N}(\overline{\mathbf{m}}_k)$ 7. end

$$egin{aligned} \mathbf{H}_{\mathrm{u}}(\mathbf{m}_k)\ \mathbf{h}_{\mathrm{u}}^{-1}(\mathbf{m}_k))\ \mathbf{H}_{\mathrm{u}}(\mathbf{u}_k)\ \mathbf{H}_{\mathrm{m}}(\mathbf{u}_k)\ \mathbf{H}_{\mathrm{m}}(\mathbf{u}_k), \mathbf{H}_{\mathrm{m}}^{-1}(\mathbf{u}_k) \end{aligned}$$

Main computational cost

Computational cost

Drawing $\mathbf{u}_k \sim \mathcal{N}(\overline{\mathbf{u}}(\mathbf{m}_k), \mathbf{H}_{\mathrm{u}}^{-1})$

$\mathbf{H}_{\mathrm{u}}(\mathbf{m})$	Step I
$\overline{\mathbf{u}}(\mathbf{m}_k) = \mathbf{R}^{-1} \mathbf{R}^{-\top} \left(\mathbf{I}_k \right)$	Step 2
$\mathbf{u}_k = \overline{\mathbf{u}}(\mathbf{m}_k) +$	Step 3

Cost per each source = solving one PDE

$$(\mathbf{m}_k)$$
):

$$\mathbf{P}^{k} = \mathbf{R}^{\top} \mathbf{R} \qquad \qquad \mathcal{O}(n_{\text{grid}}^{3})$$
$$\mathbf{P}^{\top} \mathbf{\Sigma}_{\text{noise}}^{-1/2} \mathbf{d} + \lambda^{2} \mathbf{A}^{\top}(\mathbf{m}_{k}) \mathbf{q} \qquad \qquad \mathcal{O}(n_{\text{grid}}^{2})$$
$$- \mathbf{R}^{-1} \epsilon, \epsilon \sim \mathcal{N}(0, \mathbf{I}) \qquad \qquad \mathcal{O}(n_{\text{grid}}^{2})$$

Weak constraint v.s. Strong constraint

Weak constraint w/ Gibbs sampling method

- joint bi-Gaussian distribution
- sparse Hessian matrix
- constructing Hessian matrix does not require additional PDE solves
- draw samples in a straight-forward manner from the Gaussian conditional distributions

Strong constraint w/ M-H type method

- no special structure
- dense Hessian matrix
- constructing Hessian matrix requires additional PDE solves
- draw samples from certain proposal distribution with accept-reject criteria
- constructing the proposal distribution may require more PDE solves

Numerical example - transmission case

True model

Model size: 1000m x 1000m Grid size: 20m x 20m Frequency: [2, 6, 10, 14] Hz Number of sources: 51 Number of receivers: 51 Number of samplers: 1e6

Numerical example - transmission case

Prior mean model

$\Sigma_{\text{prior}} = \sigma_{\text{prior}}^2 \mathbf{I}, \sigma_{\text{prior}} = 1e - 8\text{s}^2/\text{m}^2$ $\Sigma_{\text{noise}} = \sigma_{\text{noise}}^2 \mathbf{I}, \sigma_{\text{noise}} = 1e0$ $\lambda = 1e4$

Posterior mean and STD

Posterior mean model

Posterior STD

Distribution

95% Confidence interval

95% Confidence interval

z = 180m

z = 500m

z = 780m

x = 180m z = 500m

x = 500m z = 500m

Numerical example - reflection case

True model

Model size: 1500m x 3000m Grid size: 30m x 30m Frequency: [2, 4, 6, 8] Hz Number of sources: 21 Number of receivers: 101 Number of samplers: 5e5

Numerical example - reflection case

Prior mean model

Posterior mean and STD

Posterior mean model

Posterior STD

Distribution

95% Confidence interval

95% Confidence interval

x = 1500m z = 270m

x = 1500m z = 750m

Conclusion

Posterior distribution for weak PDE constraints inverse problems:

- joint distribution with respect to the model parameters and wavefields
- conditional distributions Gaussian distributions with sparse covariance matrices
- Gibbs sampling method sample model parameters and wavefields from the corresponding conditional distributions alternatively
- Computational cost one PDE solve per each source per each iteration

Reference

method." *Communications in Mathematical Sciences* 2.4 (2004): 685-697.

Large-scale Statistical Inverse Problems with Application to Seismic Inversion. SIAM Journal on Scientific *Computing*, 34(3):A1460–A1487, 2012.

Jean Virieux and Stéphane Operto. An overview of full-waveform inversion in exploration geophysics. *GEOPHYSICS*, 74(6):WCC1–WCC26, 2009.

search space. Geophysical Journal International, 195:661–667, 10 2013.

Tristan van Leeuwen and Felix J. Herrmann. A penalty method for PDE-constrained optimization in inverse problems. *Inverse Problems*, 32(1):015007, 12 2015.

131.613 (2005): 3235-3246.

- Albert Tarantola, and Bernard Valette. "Inverse problems= quest for information." J. geophys 50.3 (1982): 150-170.
- Andrew M. Stuart, Jochen Voss, and Petter Wilberg. "Conditional path sampling of SDEs and the Langevin MCMC
- James Martin, Lucas C. Wilcox, Carsten Burstedde, and OMAR Ghattas. A Stochastic Newton MCMC Method for
- Tristan van Leeuwen and Felix J. Herrmann. Mitigating local minima in full-waveform inversion by expanding the
- Michael Fisher, Mand Leutbecher, and G. A. Kelly. "On the equivalence between Kalman smoothing and weakconstraint four-dimensional variational data assimilation." Quarterly Journal of the Royal Meteorological Society

Acknowledgements

support of the member organizations of the SINBAD Consortium.

This research was carried out as part of the SINBAD project with the

