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Abstract

In this work, we present a new posterior dis-
tribution to quantify uncertainties in solutions
of wave-equation based inverse problems. By
introducing an auxiliary variable for the wave-
fields, we weaken the strict wave-equation con-
straint used by conventional Bayesian approaches.
With this weak constraint, the new posterior
distribution is a bi-Gaussian distribution with
respect to both model parameters and wave-
fields, which can be directly sampled by the
Gibbs sampling method.
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1 Introduction
In wave-equation based inverse problems, the
goal is to infer the unknown model parame-
ters from the observed data using the wave-
equation as a constraint. Conventionally, the
wave-equation is treated as a strict constraint in
a Bayesian inverse problem. After eliminating
this constraint, the problem involves the follow-
ing forward modeling operator mapping model
to predicted data:

f(m) = PA(m)−1q, (1)

where the vectors m ∈ Rngrid and q ∈ Cngrid

represent the discretized ngrid-dimensional un-
known model parameters and known source term,
respectively. The matrix A ∈ Cngrid×ngrid rep-
resents the discretized wave-equation operator
and the operator P ∈ Rnrcv×ngrid projects the
solution of the wave-equation u = A(m)−1q
onto the nrcv receivers.

In the Bayesian framework, the solution of
an inverse problem given observed data d is
a posterior probability density function (PDF)
ρ(m|d) expressed as [1]:

ρ(m|d) ∝ ρ(d|m)ρ(m), (2)

where the likelihood PDF ρ(d|m) describes the
probability of observing data d given model pa-
rameters m and the prior PDF ρ(m) describes

one’s prior knowledge about the model param-
eters. Under the assumption that the noise in
the data is Gaussian with zero mean and co-
variance matrix Γn, and the prior distribution
is also Gaussian with a mean model m̃ and co-
variance matrix Γp, the posterior PDF can be
written as:

ρ(m|d) ∝ exp(−1

2
(‖f(m)−d‖2

Γ−1
n

+‖m−m̃‖2
Γ−1
p

)).

(3)
Due to the non-linear map f(m) and the high
dimensionality of the model parameters (ngrid ≥
105), applying Markov chain Monte Carlo (McMC)
methods to sample the posterior PDF (3) faces
a difficult challenge of constructing a proposal
PDF that provides a reasonable approximation
of the target density with reasonable computa-
tional costs [2].

2 Posterior PDF with weak constraint
As the exact constraint A(m)u = q leads to the
difficulty of studying the corresponding poste-
rior PDF, we weaken the constraint and arrive
at a more generic posterior PDF with an auxil-
iary variable – wavefields u as follows:

ρ(m,u|d) ∝ ρ1(d|u)ρ2(u|m)ρ(m), with

ρ1(d|u) ∝ exp(−1

2
‖Pu− d‖2

Γ−1
n

), and

ρ2(u|m) ∝ exp(−λ
2

2
‖A(m)u− q‖2).

(4)

Here the penalty parameter λ controls the trade
off between the wave-equation and the data-
fitting terms. As λ grows, the wavefields are
more tightly constrained by the wave-equation.
It is readily observed that the posterior PDF (2)
is a special case of the posterior PDF (4) with
ρ2(u|m) = 1 and A(m)u = q.

The new posterior PDF (4) has two impor-
tant properties. First, the conditional PDF ρ(u
|m,d) of u on m is Gaussian. Second, if the
matrix A(m) linearly depends on m, the con-
ditional PDF ρ(m|u,d) of m on u is also Gaus-
sian. Therefore, the posterior PDF (4) is bi-
Gaussian with respect to u and m.
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3 Gibbs sampling
The bi-Gaussian property of the posterior PDF (4)
provides a straight-forward intuition of applying
Gibbs sampling method by alternatively draw-
ing samples u and m from the conditional PDFs
ρ(u|m,d) and ρ(m|u,d). At the kth iteration of
the Gibbs sampling, starting from the point mk,
the conditional PDF ρ(u|mk,d) = N (u,H−1

u )
with the Hessian matrix Hu and the mean wave-
fields u given by:

Hu = P>Γ−1
p P + λ2A(mk)>A(mk),

u = H−1
u (A(mk)>q + P>Γ−1

p d).
(5)

To draw a sample uk+1 ∼ N (u,H−1
u ), we first

compute the Cholesky factorization of Hu =
L>u Lu, where Lu is an upper triangular matrix.
Then we apply Lu to compute u and uk+1 by:

u = L−1
u L−>u (A(mk)>q + P>Γ−1

p d),

uk+1 = u + L−1
u ru, ru ∼ N (0, I).

(6)

With uk+1, the conditional PDF ρ(m|uk+1,d)
= N (m,H−1

m ). The mean m = mk − H−1
m gm

with gradient and Hessian expressed as:

gm = G>(A(mk)uk+1 − q) + Γ−1
p (mk − m̃),

Hm = G>G + Γ−1
p ,

(7)

where G =
∂A(m)uk+1

∂m is the sparse Jacobian
matrix. The new sample mk+1 can be com-
puted by:

mk+1 = m + L−1
m rm, rm ∼ N (0, I), (8)

where Lm = H
1/2
m .

4 Numerical experiment
We apply our proposal method to an inverse
problem constrained by the Helmholtz equation.
We use single source, single frequency data to
invert a 1D gridded squared slowness profile
m(z) = 1/(v0 + αz)2 for values v0 = 2000 m/s
and α = 0.75. We use frequency increments of
1 Hz, a grid spacing of 50 m, a maximum offset
of 10000 m, and a maximum depth of 5000 m.
Both source and receivers are located at the sur-
face of the model. Gaussian noise with covari-
ance matrix Γn = I is added to the data. The
mean model of the prior distribution is selected
to have v0 = 2000 m/s and α = 0.65. The co-
variance matrix is set to Γp = 2 × 10−8I. We
use the Gibbs sampling method to generate 106

samples with λ = 105. We compare the true
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Figure 1: (a) Comparison of true model (solid),
mean model of prior PDF (dotted) and poste-
rior PDF (dashed); (b) Comparison of STDs of
prior (dotted) and posterior (dashed) PDFs.

model, the prior mean model, and the posterior
mean model in Figure 1a, and the prior and pos-
terior standard deviations (STD)in Figure 1b.
The 90% confidence interval of the posterior
distribution is also shown in Figure 1a (gray
background). Compared to the prior distribu-
tion, the posterior mean model has a smaller
error in the shallow part but a larger error in
the deep part. Meanwhile, the posterior STD
in the shallow part has a larger decrease from
the prior STD than that in the deep part. Both
facts implies that data has a larger influence on
the squared slowness in the shallow part than
that in the deep part.

5 Conclusion
By weakening the wave-equation constraint in a
controlled manner, we arrive at a novel formula-
tion of posterior PDF for wave-equation inver-
sion. This new posterior PDF is bi-Gaussian
with respect to model parameters and wave-
fields. Numerical experiment demonstrates that
this posterior PDF can be successfully and effi-
ciently sampled by the Gibbs sampling method.

6 Acknowledgements
This research was carried out as part of the SIN-
BAD project with the support of the member
organizations of the SINBAD Consortium.

References
[1] A. Tarantola, and B. Valette, Inverse Prob-

lems = Quest for Information, Journal of
Geophysics 50 (1982), pp. 159-170.

[2] J. Martin, L. C. Wilcox, C. Burstedde, and
O. Ghattas, A stochastic newton MCMC
method for large-scale statistical inverse
problems with application to seismic inver-
sion SIAM Journal on Scientific Comput-
ing 34 (2012), pp. A1460-A1487


