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Abstract: Seismic imaging hinges on large-scale sparsity New paradigm " o » T
promoting solvers to remove artifacts caused by efforts to ) o _ o ’
reduce (computational) costs. Including “Onsager’s Tall “overdetermined Wide underdetermined- -l

message term” improves convergence by canceling
correlations between model iterates and linearized forward
models. Unfortunately, the asymptotic arguments of

approximate message passing are oftn violated in practice.

By using Montanari’s heuristic argument of “statistical
equivalence”, we break correlations by selecting
Independent experiments via randomized subsampling.

Current imaging paradigm
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Linear forward model: Imaging: T R S T S v P
A X0 = b X = AH b Model iterates (t=4) before (left) and after (r/ght) Recovery (t=500) of curvelet vector from CS with
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New imaging paradigm
reduces number of PDE solves.
*Improves convergence
*pOSSible because seismic imaging is “data rich’...

» uses Pareto trade-off curve
» suffers from harmful correlation buildup
» solvers need too many matvecs

Approximate Message passing

Recovery with (red) and without renewals.

Data deluge
Seismic imaging calls for:
» large data volumes (peta bytes)

: rlrf]vc\)/reersslngl)r;ss:i(e;?egfprl:;/as’:gged fitering Add “Onsager’”term to iterative thresholding Set b, = I§dependent dlménSIOnallty reduced data
. A,; = Lin. Born scattering operator
* multiple passes through all data | |
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Statistically equivalent to 2 S
Our solution: -
» work on small randomized subsets of data xtt1 = p, ( Arrt 4 Xt) % =
*go from data- to model—space parallelism t— b — A, xt 0 500 1000 1500 2000 2500 ) 5500 6000 6500 7000
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5 for each iteration. 5 =
» Onsager term cancels harmful correlations = &
= - renewals yield similar decorrelation .
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Image by touching all 350 source experiments once with “matched” filter.

* Improves convergence data-rich problems
Possibility to better & speedup imaging...

Curvelet-based recovery of seismic images from seismic experiments with 3 simultaneous sources
opposed to 350 sequential sources. Top: inverted image by sparsity promotion without renewals.
Bottom: the same but with renewals. Computational cost is the same for both.
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