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ABSTRACT

Data collection, data processing, and imaging in exploration
seismology increasingly hinge on large-scale sparsity promot-
ing solvers to remove artifacts caused by efforts to reduce
costs. We show how the inclusion of a “message term“ in
the calculation of the residuals improves the convergence of
these iterative solvers by breaking correlations that develop
between the model iterate and the linear system that needs
to be inverted. We compare this message-passing scheme to
state-of-the-art solvers for problems in missing-trace interpo-
lation and in dimensionality-reduced imaging with phase en-
coding.

Index Terms— Exploration seismology, compressive
sensing, curvelets, sparsity promotion, seismic imaging

1. INTRODUCTION

Modern-day exploration seismology increasingly relies on
the solution of large-scale optimization problems that re-
quire multiple passes through the data. This leads to major
challenges because seismic imaging increasingly depends on
long-offset and full-azimuth sampling, which leads to ex-
ponential growing costs for seismic data collection, storage,
and processing. We discuss how recent insights from com-
pressive sensing, convex optimization, and statistical physics
can be used to reduce these processing costs by minimiz-
ing the number of required passes through the data. More
specifically, we look at the method of approximate message
passing (AMP, see e.g. [1]), which can lead to significant
improvements in the convergence of large-scale sparsity-
promoting solvers for specific sparsity promoting problems
that involve properly normalized matrices. The outline is as
follows. First, we briefly introduce ideas behind randomized
dimensionality reduction that include compressive sensing
for seismic acquisition, processing, and imaging. Second,
we discuss conventional solution strategies for large-scale
sparsity-promoting optimization problems. Third, we intro-
duce approximate message passing including a discussion of
its limitations and possible remedies. We conclude by apply-
ing this specialized framework to missing-trace interpolation

and imaging, which both represent significant excursions
from the original framework.

2. RANDOMIZED DIMENSIONALITY REDUCTION

By working on smaller randomized subproblems, while ex-
ploiting structure within signals, challenges related to the so-
called ’curse of dimensionality’ can be addressed in the field
of exploration seismology [2, 3]. This curse leads to ex-
ponential growth in data-collection and processing costs as
the survey area and desired resolution increase. Recent de-
velopments in randomized acquisition and efficient imaging
with source encoding are examples that address these chal-
lenges. However, in both examples cost reductions by ran-
domized subsampling create artifacts, such as aliasing and
source crosstalk. Therefore, the challenge has been to de-
vise acquisition techniques that render these interferences in-
coherent so they can be removed from the data by some sort
of processing. In exploration seismology, this processing typ-
ically involves a combination of matched and median filtering
(see e.g. [4, 5] for processing of simultaneous marine data).

3. COMPRESSIVE SENSING

Unfortunately, matched filtering techniques are of limited
value for high degrees of subsampling that lead to high
levels of subsampling related interferences. By recogniz-
ing recently introduced randomized seismic acquisitions
[6, 5], such as acquisition with missing or simultaneous
sources, as instances of compressive sensing (or compressive
sampling)—championed by Candès, Romberg, and Tao [7]
and Donoho [8]—transform-domain sparsity promotion can
be used to remove these artifacts. CS has emerged as a novel
paradigm for sensing such signals more efficiently as com-
pared to the classical approach based on Shannon-Nyquist
sampling theory. Signals that admit sparse approximations
can be acquired from significantly fewer measurements than
their ambient dimension using nonlinear recovery algorithms,
e.g., `1 minimization.

During sparsity promotion incoherent artifacts, such as
spectral leakage or source crosstalk, are mapped back to co-



herent signal. This is done via a iterative procedure during
which we transform the data to separate the significant trans-
form coefficients from incoherent interference “noise”. Math-
ematically, this approach corresponds to solving the convex
sparsity-promoting program (Basis Pursuit):

BP : minimize
x

‖x‖1 subject to Ax = b. (1)

During recent years, a tremendous body of work has been
developed in support of this convex-optimization program
where sparse vectors x ∈ CN are recovered from incomplete
measurements b = Ax0 with x0 sparse and b ∈ Cn with
n � N . So far, focus has been on (i) recovery guarantees of
k-sparse vectors with sparsity levels ρ = k/n from measure-
ments by sampling matrices A with aspect ratios δ = n/N ;
(ii) designing sampling schemes that favour recovery, e.g.,
the design of randomized acquisition or phase encoding;
(iii) implementing fast (O(N logN)) sparsifying transforms
that exploit structure, e.g. curvelets in seismic exploration;
(iv) developing algorithms that are frugal in the number of
matrix-vector multiplies they require to solve BP.

3.1. Solutions by cooling

Even though the framework of compressive sensing has let to
major breakthroughs in many research areas including MRI,
the application of its principles to exploration seismology has
been challenging because of the large scale of problems that
easily involve vectors with billions of unknowns. In addition,
BP corresponds to solving the limiting case (λ ↓ 0) of the
quadratic problem:

BPλ : minimize
x

1

2
‖b−Ax‖2 + λ‖x‖1, (2)

which is known to converge slowly as a function of the num-
ber of matvec’s as the trade-off parameter λ ↓ 0. To overcome
this problem, ’optimizers’ use continuation methods that em-
ploy properties of the Pareto tradeoff curve that traces the
one-norm of the solution against the two-norm of the resid-
ual. This leads to approaches were series of subproblems are
solved that allow components to enter the solution contollably
by slowly increasing the one-norm of the solution. Each sub-
problem involves gradient updates, xt+1 = xt + AH(b −
Axt) with t the iteration number, in combination with a non-
linear projection promoting sparsity. Not withstanding the
success of these continuation methods, which undergird state-
of-the-art versatile solvers such as SPG`1 [9], convergence for
large systems remains challenging in particular when given
memory limitations and a small budget (O(50)) of matvecs.
However, this type of solvers provably solve BP, and the re-
lated problems BPDN and LASSO [9].

3.2. Solutions by approximate message passing
To understand the performance of solvers for BP, consider
the second row of Fig. 1 that includes the first two model
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Fig. 1. Model iterates after one (left) and and two (right) iterations
before and after soft thresholding. Notice the spurious spiky artifacts
that develop after the first iteration in the second row. These corre-
lations are removed by the message term (top row) or by drawing a
new sampling matrix and data for each iteration (bottom row).

iterates before and after soft thresholding for A a Gaussian
10 × 105 matrix and x a vector with two ones at random
locations. (Remember that soft thresholding is an elemen-
twise operation that jointly minimizes the two-norm on the
residual and the absolute value of the output and is given by
η(x, τ) = sgn(x) max(|x| − τ, 0), with τ > 0 the threshold
value.) We use Gaussian matrices because they lead to Gaus-
sian interferences, i.e., AHAx0 = x0 +w with w zero-mean
Gaussian noise with variance n−1‖x0‖22 [10]. This property,
which is common amongst compressive-sensing matrices that
favor recovery by BP, reduces the recovery problem to a sim-
ple “denoising” problem, which can be solved by soft thresh-
olding with the proper threshold level. Unfortunately, this
property no longer holds after the first iteration because de-
pendencies emerge between the model iterate xt and the ma-
trix A for iterations t > 1. These dependencies cause spuri-
ous artifacts and this leads to slow convergence and the algo-
rithm spends many iterations to remove these wrongly identi-
fied entries.

Suppose now that we select a new matrix A and corre-
sponding measurement vector b at each iteration as suggested
by [10]. In that case, correlations can no longer develop be-
tween the model iterate and the matrix rendering soft thresh-
olding effective for each iteration (juxtapose the second and
third row of Fig. 1). While this idea has been used success-
fully in situations where data is abundant, e.g., in seismic
imaging where different independent randomized subsets of
fully-sampled data volumes are drawn to speed up conver-
gence [2], this solution is unworkable in data-scarse situa-
tions, such as during the recovery from incomplete field data.

Using arguments from statistical physics, [1] addresses
this issue by including a ’message-passing’ term in iterative
soft thresholding schemes that solve BP. We iterate the fol-
lowing approximate message-passing scheme (AMP):

xt+1 = η
(
AHrt + xt; θt

)
rt = b−Axt + It

n rt−1, (3)

with x0 = 0, r0 = b. Here, η(·; θt) is a iteration-dependent
soft thresholding, and It is the number of entries that survived



the threshold of the previous iteration. As we can see from
the first row in Fig. 1, inclusion of this extra term in Eq. 3
cancels the correlations and corresponds to adding the ’resid-
ual’ of the previous iteration scaled by the ratio of the num-
ber of elements that survived the threshold and the number
of measurements. This extra term clearly breaks the spuri-
ous interferences and guarantees that each iteration becomes
a simple denoising problem ideally suited for soft threshold-
ing. Clearly, the implication of including this extra term is
profound because it leads to much faster convergence of the
algorithm as illustrated in Fig. 1. These improvements prove
to be important if we want to solve large scale (order of bil-
lions unknowns ) sparse recovery problems.

3.3. Large dimensionality: a blessing in disguise

The theory explaining the improved performance by adding
the message term in Eq. 3 is involved but can be summarized
as follows. First, the message term leads to asymptotic can-
cellation of the damaging correlations and is valid for system
sizes going to infinity (N → ∞) for recovery problems with
Gaussian matrices. In that limit, [10] argues that the linear
system of equations decouples such that the recovery for each
entry of the model iterate boils down to estimating xti using
the property

(
xt + AHrt

)
i

= (x + w̃)i for i = 1 · · ·N . This
can be done effectively by soft thresholding using the fact that
the {w̃i}i=1···N are asymptotically Gaussian in the large-scale
limit. Second, and this is somewhat of a hand waiving ar-
gument, large matrices tend to behave as Gaussian matrices
even if their entries are not Gaussian or if they are obtained
by some other randomization such as random phase encoding
or random restriction. For example, the randomly restricted
Fourier matrix behaves approximately as a Gaussian matrix.
Third, the iterative procedure with the message-passing term
solves BP and therefore recovers k-sparse vectors with high
probability if certain conditions are met on the aspect ratio of
A and the sparsity level of the vector x0 (see e.g., [1] for a de-
tailed overview on phase diagrams that predict the transition
from recoverable to non-recoverable combinations of (ρ, δ)).
Now, if these large-scale limit asymptotic arguments indeed
hold then the message-passing algorithm is truly remarkable
because we may be able to improve the performance of highly
sophisticated one-norm solvers for exceedingly large prob-
lem sizes. Evidently, this promise comes with the caveat that
message-passing algorithms are specifically designed to solve
sparse-recovery problems for Gaussian matrices while meth-
ods such as SPG`1 are versatile and solve BP for any A and
b as long one is willing to spend a sufficient number of itera-
tions to bring the residual down.

4. AMP IN EXPLORATION SEISMOLOGY

Unfortunately, physical constraints of seismic acquisition and
imaging lead to matrices that do not meet assumptions of ap-
proximate message passing. Because these matrices are ex-

tremely large they can not be formed explicitly, which makes
simple operations such as scaling of the columns challenging.
We discuss two possibilities that allow us to still benefit from
AMP even though we are outside the scope where the theory
applies. Aside from requiring a Gaussian sensing matrix A,
AMP also requires the column norm of A to be approximately
normalized to one, which is accomplished by generating the
entries from 1/

√
n ·N(0, 1). Suppose now, that we are given

A → AΓ1/2 with Γ a diagonal matrix with unknown posi-
tive entries. The questions we can ask ourselves now are: (i)
how much can the entries of Γ deviate from unity, (ii) how
accurate do we need to estimate these entries from the actions
of A, and (iii) are there situations in exploration seismology
where the ideas from AMP can still be used but where correc-
tions for the diagonal are infeasible.

4.1. Randomized estimation of the diagonal

We experimented with matrices A with a random Γ drawn
from a uniform distribution with mean one. In this case, AMP
fails to solve recovery problem for A ∈ R200×104

and k = 20
nonzeros. Following [11], we estimate the diagonal via

Γ̂ =
[∑K

i=1 wi ⊗AHAwi

]
�
[∑K

i=1 wi ⊗wi

]
, (4)

with wi random vectors and ⊗ and � elementwise multipli-
cation and devision. With this estimate for Γ obtained with
K trial vectors, we are able to solve for x by replacing the
single-threshold soft thresholding operator in Equation 3 by
varying thresholding η(·; diag(Γ̂)θt) with the threshold mul-
tiplied by the estimate for Γ. While this procedure works in
principle, the convergence of the estimator in Equation 4 is
slow and deteriorates for fat matrices A (n� N ) requiring a
prohibitively large number of matvecs.

4.2. Curvelet-based sparse recovery

While AMP is strictly speaking designed for Gaussian ma-
trices and strictly sparse vectors only, we examine its perfor-
mance for the recovery of a seismic line from 50% randomly
missing sources using roughly 100 matvec’s. We use the re-
stricted 3D curvelet transform for the recovery. Output shot
records for SPG`1 and AMP are plotted in Fig. 2 and show
clear improvements for AMP despite violations of the un-
derlying assumptions. (The restricted 3D curvelet transform
matrix is not a Gaussian matrix and the vector is not strictly
sparse but compressible.) The SNRs, 7.75dB for SPG`1 and
9.75dB for AMP, confirm this observation. Aside from this
remarkable improvement, the residue is significantly smaller
after 50 iterations and the solution paths for AMP points to the
`1-norm of the curvelet coefficient vector obtained by solving
SPG`1 for 300 matvecs on the complete data. This is remark-
able and highly encouraging because this is a very large-scale
problem (N = 1.12× 109) with a matrix that is remote from
a Gaussian matrix.
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Fig. 2. Recovery from 50% missing shots with SPG`1(left) and
AMP (middle). Solution paths (right).

4.3. Efficient imaging

Aside from improvements in the recovery of missing data,
message-passing ideas also provide an explanation for effi-
cient sparsity-promoting imaging where new subsets of si-
multaneous shots are drawn each time one of the subproblems
of SPG`1 is solved [2]. Following Herrmann and Li [2], we
replace the overdetermined least-squares imaging problem

minimize
∆x

1

2K

K∑
i=1

‖∆bi −Ai∆x‖22 (5)

with K the number of sources, by the more efficient underde-
termined sparsity-promoting program with K ′ � K sources:

minimize
∆x

‖x‖1 subject to ∆bi = Ai∆x, (6)

i = 1 · · ·K ′. Here, ∆bi and ∆bi are the vectorized se-
quential and simultaneous shot records with linearized data
(residue), Ai and Ai are the linearized Born scattering ma-
trices for sequential and simultaneous sources, and ∆x is the
unknown seismic image (or its curvelet representation). The
sparsity-promoting formulation is more efficient because (i)
we work with fewer numer of simultaneous sources or super
shots (K ′ � K) and (ii) we can use the fact that

xt+1 = η
(
AH(t)rt + xt; θt

)
rt = b(t)−A(t)xt, (7)

is statistically equivalent to Equation 2 . New ’sensing’ ma-
trices A(t) and data b(t) are drawn for each iteration, which
motivated us [2] to adapt SPG`1 by selecting new simulta-
neous shots after solving each LASSO subproblem. Fig. 3
shows that these renewals have a similar positive effect as the
message term in Eq. 3. The renewals break correlations that
build up between the model iterate and the ’sensing’ matrix.
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