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ABSTRACT

Images obtained from seismic data are used by the oil and gas industry for geophysical
exploration. Cutting-edge methods for transforming the data into interpretable images
are moving away from linear approximations and high-frequency asymptotics towards
Full Waveform Inversion (FWI), a nonlinear data-fitting procedure based on full data
modeling using the wave-equation. The size of the problem, the nonlinearity of the for-
ward model, and ill-posedness of the formulation all contribute to a pressing need for
fast algorithms and novel regularization techniques to speed up and improve inversion
results.
In this paper, we design a modified Gauss-Newton algorithm to solve the PDE-
constrained optimization problem using ideas from stochastic optimization and com-
pressive sensing. More specifically, we replace the Gauss-Newton subproblems by ran-
domly subsampled, �1 regularized subproblems. This allows us us significantly reduce
the computational cost of calculating the updates and exploit the compressibility of
wavefields in Curvelets.
We explain the relationships and connections between the new method and stochastic
optimization and compressive sensing (CS), and demonstrate the efficacy of the new
method on a large-scale synthetic seismic example.

INTRODUCTION

Seismic data can be used to image structures inside the earth on various scales, similar to
how a CT scan reveals images of the human body. Earthquake data are used to study the
structure of the earth’s crust and the core-mantle-boundary. Active seismic experiments,
conducted mainly by oil and gas companies, can be used to infer structural information
up to about 10 km deep with a typical resolution of 50 − 100 meters. In such experi-
ments, sources and receivers are placed on the surface or towed through the water. The
response of the sequentially detonated explosive sources is measured by as many as 106

channels covering areas of 100s of km2. These experiments produce enormous amounts of
data which then have to processed. Most of the data consists of reflected energy with a
frequency content of roughly [5 − 100]Hz. Current acquisition practice is moving towards
recording lower frequencies and using larger apertures to capture refracted (transmitted)
energy. When the underlying geological structure is simple, the reflection data may be
interpreted directly. However, with the ever increasing need for fossil fuels, the industry
is moving into geologically more complex areas. The data cannot be interpreted directly
and have to imaged using specialized algorithms. “Migration” is an example of such basic
imaging that is widely used in the geophysical community. The basic idea is to correct for
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the wavepaths along which the reflected data traveled. Most industry practice is still based
on a geometric optics approximation of wave propagation. Such algorithms need a smooth
“velocity model” that describes the propagation speed of the waves in the subsurface. In
general, little is known about the velocity variations on this scale (as opposed to the global
scale, where good models exist) and this has to be determined from the data as well.
In contrast to the geometric optics approach, Full-waveform inversion (FWI) relies on mod-
eling the data by solving the wave equation (with finite-differences, for example), and adapt-
ing the model parameters (i.e., the coefficients of the PDE) to minimize the least-squares
data misfit. This method, first proposed in the early ’80sTarantola (1984), tries to infer a
gridded model from the data directly, without making the distinction between the (smooth)
velocity model and the image. It quickly became apparent that this approach needs a very
good initial guess of the velocity structure to circumvent local minima in the misfit func-
tional that are related to “loop skipping” Tarantola (1984). The basic idea is that we have
to provide information on the low wavenumbers that are missing from the data. With
better data (lower frequencies, larger aperture) we need a less detailed initial model. Now
that such data is becoming available, waveform inversion may become a viable alternative
to more traditional imaging procedures. In order to make waveform inversion feasible for
industrial-scale applications, inversion formulations and algorithms must take advantage of
dimensionality reduction techniques for working with exceedingly large data volumes. In
this paper, we design a modified Gauss-Newton method for FWI that uses dimensionality
reduction techniques and ideas from stochastic optimization. The modification we propose
promotes transform-domain sparsity on the model updates. Consequently, we are able to
incorporate curvelet frames Candes and Demanet (2004); Candès et al. (2006); Hennen-
fent and Herrmann (2006) into our framework that offer a compressible representation for
wavefields, which improves FWI.

Full-waveform inversion

Full-waveform inversion is a data fitting procedure that relies on the collection of seismic
data volumes and sophisticated computing to create high-resolution models. The corre-
sponding nonlinear least squares (NLLS) optimization problem is as follows:

minimize
m

φ(m) :=
1
2

K�

i=1

�di −F [m;qi]�22 , (1)

where K is the batch size (number of sources), di represents the data corresponding to the
i
th (known) source qi, both organized as vectors, and F [m;qi] is the forward operator for

the i
th source. The vector of unknown medium parameters is denoted by m. The forward

operator F acts linearly on the sources qi; that is

F [m; aqi + bqj ] = aF [m;qi] + bF [m;qj ] . (2)

Formulation (1) assumes a fixed receiver array.
If we organize the sources and the data as matrices: D = (d1,d2, . . . ,dK) and Q =
(q1,q2, . . . ,qK), we may write the objective in (1) as

φ(m) =
1
2
�D −F [m;Q]�2F , (3)
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where � · �F is the Frobenius norm.
We will pause to make several important observations about (3). First, the forward operator
F involves the solution of a PDE with multiple right-hand-sides, so the work load is directly
proportional to K. Since the sources and receivers may number in the millions, dimensional-
ity reduction techniques become essential for making any headway on the problem. Second,
the objective in (3) is nonlinear and non-convex. It is, however, convex-composite, meaning
that we can write

φ(m) = ρ(G(m)), (4)

with ρ convex, and G smooth (differentiable). Here, ρ(X) = 1
2�X�F , and G(m) = D −

F [m;Q] . This structure allows for natural design and analysis of algorithms to solve (3).
The natural approach to FWI motivated by this structure is the Gauss-Newton method,
which involves iterative linearization of G(m) and solution of least-squares problems of the
form

minimize
δm

�δD −∇F [m, Q]δm�2F , (5)

where δD = D − F [m, Q] and ∇F is the “Jacobian tensor” of F , which acts linearly
on δm and produces a matrix as output. This matrix has shot records, i.e, the single-
source experiments, organized in its columns. Throughout this paper we refer to the above
optimization problem as the Gauss-Newton (GN) subproblem.

Main contribution and relation to existing work

In earlier developments in seismic acquisition and imaging, several authors have proposed
reducing the computational cost of FWI by randomly combining sources Krebs et al. (2009);
Moghaddam and Herrmann (2010); Boonyasiriwat and Schuster (2010); Li and Herrmann
(2010); Haber et al. (2010). We follow the same approach, but focus the exposition on the
Gauss-Newton subproblem, setting the stage for further modifications. We replace (5) by

minimize
δm

�δDW −∇F [m, QW ]δm�2F , (6)

where W is a matrix with i.i.d. random entries with �K � K columns. The main compu-
tational cost lies in solving a wave-equation for each column of Q, and this strategy aims
to significantly reduce this number, replacing Q by QW . We may link this directly to
ideas from stochastic optimization by recognizing this modified subproblem as being the
GN subproblem of a modified misfit, given by:

�φ(m;W ) =
1
2
�DW −F [m;QW ]�2F . (7)

If we choose W with unit covariance (i.e., E{WW
H} = I) we find that

E{�φ(m;W )} = φ(m). (8)

Specialized algorithms to deal with such problems go back to the ’50s and a detailed overview
is given in a later section. The main idea of these algorithms is to make some progress
using random realizations of the gradient, relying on using sufficiently many realizations to
eventually converge.
We may also view the reduced GN subproblems from the vantage point of compressed
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sensing, which studies theory and algorithms for the recovery of sparse vectors from severely
undersampled systems. Herrmann et. al. Felix J. Herrmann (2011); Herrmann and Li.
(2011) successfully used this approach to make sparsity-promoting seismic imaging more
efficient.

Under certain assumptions on the matrix we can recover a sparse vector from such a
system by solving a sparsity promoting problem. This is promising, since we need not rely
on a Monte-Carlo type sampling strategy common to stochastic methods to recover the
solution. It does require, however, that we find a representation in which the solution is
sparse (or at least compressible) Donoho (2006). Fortunately, the curvelet frame offers a
very efficient (sparse) representation for waveields Candes and Demanet (2004); Candès
et al. (2006); Hennenfent and Herrmann (2006). Curvelets can be thought of as a higher di-
mensional generalization of wavelets, which capture local information at different directions
and scales. Motivated by the optimally sparse representation of wavefields in the curvelet
frame Candes and Demanet (2004), we regularize the reduced GN subproblem with an �1

constraint:
minimize

δx
�δDW −∇F [m, QW ]CH

δx�2F s.t. �δx�1 ≤ τ, (9)

where C represents the curvelet transform. The key point here is that the solution δm
to the Gauss-Newton subproblem may be interpreted as a wavefield, as we demonstrate in
section 4. The formulation (9) is a way to regularize the GN-subproblem to take advantage
of wavefield sparsity. Because of the convex composite structure of (7), the solution to (9)
is still a descent direction for �φ.
The final algorithm, then, combines ideas from both stochastic optimization and compressed
sensing and is shown to be highly effective for our particular application.

Outline of the paper

The main contribution of the paper is the development of a novel modified Gauss-Newton
method for FWI that combines ideas from stochastic optimization and compressed sensing
(CS). We therefore first give a brief overview of stochastic optimization and CS techniques
in sections and . In section , we formulate a modified GN method for a particular realization
of �φ(m,W ) and present a convergence proof for it. The practical implementation of both
the the modified GN method and the modeling operator is discussed in section . In the
practical version of the method we resample the matrix W (encoding the simultaneous
shots) at each realization, which significantly improves the quality of the recovery, but
precludes a rigorous convergence theory. Numerical results obtained using the new method
are presented in section , and conclusions follow in section .

STOCHASTIC OPTIMIZATION

Stochastic optimization deals with optimization problems of the form

minimize
m

�
φ(m) = E{�φ(m;W )}

�
. (10)

This approach does not require access to the full misfit and gradient, φ and ∇φ. Instead, we
have access to ‘noisy’ realizations �φ and ∇�φ, which are correct on average. In this section
we briefly outline two main approaches to essentially get rid of the “noise” in the approach,
called Stochastic Average (SA) and Sample Average Approximation (SAA).
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Sample Average Approximation (SAA)

A natural approach to pick a “large enough” batchsize �K (i.e., such that WW
H ≈ I),

effectively replacing the expectation by a sample average. This is often referred to in the
literature as the Sample Average Approximation (SAA)Nemirovski et al. (2009). Once
drawn, the batch W is fixed; the idea is simply replace the full objective φ(m) by the
subsampled variant �φ(m;W ). When some additional assumptions are satisfied, the optimal
value of �φ converges to the optimal value of φ with probability 1 ( see Shapiro (2003);
Shapiro and Nemirovsky (2005)) . From a practical point of view, the SAA approach is
appealing because it allows flexibility in the choice of algorithm for the solution of the
subsampled problem. In particular, we may directly use the GN method to minimize the
reduced misfit.

Stochastic Approximation

A second alternative is to apply specialized stochastic optimization methods to problem (10)
directly. This is often referred to as the Stochastic Approximation (SA). The main idea
of such algorithms is to pick a new random realization W

k for each iteration k. Notably,
some methods include averaging over past iterations to suppress the noise introduced by
the randomized source encoding. This approach yields an iterative algorithm of the form

mk+1 = mk
− γk∇sk

,

where the search direction is typically given by a realization of the gradient: sk = ∇�φ(mk;W k)
The batch size is typically very small (K = O(1)), and {γk} represent step sizes taken by
the algorithm, which are picked ahead of time.
(Betrsekas and Tsitsiklis, 2000,Propopsition 3) provides a convergence theory for a class of
SA algorithms for directions sk + ω

k, as long as several technical conditions hold:

1. φ is differentiable with ∇φ Lipshitz continuous.

2. E[ω] = 0.

3. The expected value of the search directions are descent directions for φ, i.e. ∇φ(mk)H
E[sk] <

0.

4. There exist positive constants c1, c2 and c3 so that

(a) c1�∇φ�2 ≤ −∇φ(mk)T∇(sk + ω
k),

(b) �sk + ω
k� ≤ c2(1 + �∇φ�), and

(c) E[�ω�2] ≤ c3(1 + �∇φ�2).

5.
�∞

ν=0 γν =∞ ,
�∞

ν=0 γ
2
ν <∞. A common example is γν ∝

1
ν
.

Even though the modified GN algorithm in section 4 has a convergence theory for a par-
ticular random realization W (i.e. for solving the SAA problem �φ(m,W )), the SA theory
presented here does not apply to the practical algorithm where the W ’s are redrawn (pre-
sented in Section 6). In particular we cannot guarantee that condition 3 above is satisfied
by the model update δm derived from the modified Gauss-Newton subproblem. However,
redrawing W ’s substantially improves our recovery, as shown in section 6.
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SPARSITY REGULARIZATION AND COMPRESSIVE SENSING

Compressed or Compressive Sensing (CS) provides theory centered around recoverability
of sparse signals using linear measurements Candes (2006); Donoho (2006). The basic
problem is to solve an underdetermined linear system RM f = b, where RM is a flat matrix
consisting of the measurement matrix M and the restriction matrix R, and f is known to
be sparse in some basis. This latter fact can be written as f = S

Hx, where S is the basis
(or frame) , and x is sparse or compressible. Denoting A = RMS

H , we now want to find
the sparsest solution of the system Ax = b, or

minimize
x

�x�0 s.t. Ax = b, (11)

where � · �0 denotes the �0 “norm” given by the number of nonzero elements of a vector.
Unfortunately, solutions of this type of non-convex optimization problems are nearly im-
possible to compute for large problems because they require a combinatorial search over all
possible subsets of columns of A to find the solution with the fewest nonzero elements. One
of the major findings of CS is that under some conditions on A and x, the solution can be
recovered by solving the convex optimization problem

minimize
x

�x�1 s.t. Ax = b . (12)

Whether solving this problem, known as Basis Pursuit (BP), recovers the correct sparse
signal depends on the sparsity level of x, the number of measurements, and the Restricted
Isometry Property (RIP) constant of the matrix A. Roughly speaking, the RIP constant
measures how far the matrix A is from a unitary matrix when acting on sparse vectors.
Again, checking this condition for arbitrary matrices requires a combinatorial search over
subsets of columns of A. To overcome this difficulty, the mutual coherence, which is the
maximum (normalized) inner product between any two columns of A (i.e., the maximum
off-diagonal entry of A

H
A), is an often-used heuristic. Low mutual coherence is necessary

for recovery guarantees of a sparse signal by solving a sparsity promoting program.
When noise is present in the data we may instead solve the Basis Pursuit Denoise (BPDN)
problem

minimize
x

�x�1 s.t. �Ax− b�2 ≤ σ , (13)

where σ is the expected noise level in the data van den Berg and Friedlander (2008). This
problem is hard to solve, but turns out to be equivalent to two related formulations

minimize
x

�Ax− b�22 + λ�x�1 (14)

and
minimize

x
�Ax− b�22 s.t. �x�1 ≤ τ (15)

known as the QP and LASSO problems, respectively. The equivalence is true in the sense
that for each σ, there are unique values for λ and τ so that the solutions of (13, 14,
15) all coincide. However, the values of these parameters are not known ahead of time.
Therefore, most algorithms that solve (13) do some sort of continuation either in λ (see
Kim et al. (2007)) or in τ (see van den Berg and Friedlander (2008)). In both cases, the
iterates start sparse and additional components are allowed to enter the solution to bring
down the residue. Even though continuation in parameters λ and τ for QP and LASSO
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subproblems can be used to solve (13), the LASSO-based approach offers two advantages:
the Spectral Projected Gradient method can be used to quickly solve (15) for very large
linear systems, and the continuation in τ can be naturally derived using the graph of
the value function for (15). The SPG method for (15) is detailed in ((van den Berg and
Friedlander, 2008,Algorithm1). SPG is an iterative method, with iterates taking the form

xk+1 = Pτ [xk + γksk] ,

where the search direction sk is the negative gradient of the objective (sk = −2A
T (Axk−b)),

Pτ is the projection operator onto the one-norm ball of radius τ (the set {x : �x�1 ≤ τ}),
and γk is a line search parameter chosen according to the Barzilai-Borwein scheme (see e.g.
(Birgin et al., 2010,Algorithm 2.1)). Since the SPG method has already been proven to be
very successful in solving large-scale CS problems in seismic exploration Hennenfent et al.
(2008), we use it as a subroutine in the current convex-composite formulation to solve the
modified Gauss-Newton LASSO subproblems.

MODIFIED GAUSS-NEWTON METHOD FOR SAA APPROACH

Recall the dimensionality reduced misfit function defined in (7):

�φ(m;W ) =
1
2
||DW −F [m;QW ]||2F .

This problem has the same convex composite structure (see (4)) as the full misfit, and
we exploit this structure to design an algorithm for solving (7). We begin with a basic
Gauss-Newton method, which is an iterative algorithm of the form

mk+1 = mk + γkδmk
,

where δmk solves
minimize

δm
�δD

k
W −∇F [mk;QW ]δm�2F ,

the quantity δD
k
W is the dimensionality-reduced linearized data residual DW−F [mk;QW ],

and γk is a line search parameter.
We adapt the Gauss-Newton method by using the following key observations:

• The scattering operator is diagonal in phase space, and thus has low mutual
coherence: The normal operator ∇F [mk;QW ]H∇F [mk;QW ] has a very special
structure in exploration seismology. Namely, in the high-frequency limit, this operator
is diagonal in phase space (more precisely, it is a pseudo-differential operator)Beylkin
(1984); ten Kroode et al. (1998); de Hoop and Brandsberg-Dahl (2000); Stolk and
Symes (2003) for point sources. More specifically, we can write

∇F [mk;Q]H∇F [mk;Q] = BL
1
2 ,

where B is a positive-definite scaling matrix and L is a discrete LaplacianSymes (2008);
Herrmann et al. (2008, 2009). From this factorization, we expect a very low mutual
coherence between the columns of the scattering operator. We do not expect either
the curvelet frame or the random mixing of the sources to increase mutual coherence,
since E[WW

H ] = I and CC
H = I.
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• The GN search direction is sparse in curvelets: The gradient of the misfit,
∇φ = ∇FH

δD , can be computed by correlating two wavefields (see (27)), and this
correlation is again a wavefield. As already noted, curvelets give an optimally sparse
representation of wavefields, so we expect the gradient to be sparse in this frame.
Next, the solution to the standard Gauss-Newton method is given by

δm = −(∇FH [mk;Q]∇F [mk;Q])−1
∇φ. (16)

Using the special structure of the Hessian, outlined above, we argue that δm can be
interpreted as a scaled wavefield, and hence can also be sparsely represented with
curvelets. Note that this argument does not depend on a correct or nearly correct
velocity model mk, but only on the form of δm in (16). Thus updates are expected
to be sparse in curvelets even when mk is far away from the true solution, e.g. at the
beginning of FWI.

These observations motivate us to replace the standard GN subproblem by a sparsity pro-
moting LASSO variant

δxk = arg min
δx
�δD

k
W −∇F [mk;QW ]CH

δx�2F s.t. �δx�1 ≤ τk

δmk = C
H

δxk
,

(17)

where τk are parameters to be selected. Note that taking τk = 0 forces δmk = 0, while
taking τk to be very large gives us the ordinary Gauss-Newton solution update for �φ. As
discussed above, this subproblem can be solved using the SPG method. Denote by vk the
value function for the k-th subproblem (17):

vk(τk) = min
δx
�δD

k
W −∇F [mk;QW ]CH

δx�2F s.t. �δx�1 ≤ τk

= �δDk
W −∇F [mk;QW ]δmk

�2
F

.

(18)

The value function is carefully studied in van den Berg and Friedlander (2008) , where its
graph is dubbed the “Pareto trade-off curve”. The graph of the value function traces the
optimal trade-off between the two-norm of the residual and the one-norm of the solution.
Because the value function is continuously differentiable, convex and strictly decreasing, the
LASSO formulation (17) has a corresponding BPDN problem (13) for a unique σ. Hence,
our approach can be thought of as finding the sparse search direction for to the full problem
from subsampled measurements. The noise level in this formulation, however, refers to the
error in the linearization and the question is how to choose the magnitude of this mismatch
σ, or correspondingly, how to choose the right τ , for each subproblem. This question is
addressed in Section .

The above interpretation—where LASSO problems are argued to recover significant
transform-domain coefficients à la CS—has no rigorous justification, particularly due to
lack of CS results for frames and lack of RIP constants for ∇F in the seismic application.
Nonetheless, the point here is that the LASSO problem (17) is particularly well-tailored to
ideas related to sparsity promotion and CS.
To arrive at a convergence theory for the modified GN algorithm, the solution of the modified
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subproblem must be a descent direction of �φ. This condition is ensured by the convex-
composite structure of �φ. For any convex-composite function ρ(G(m)), the directional
derivative ρ

�(m, δx) exists and satisfies

ρ
�(m; δx) ≤ ρ(G(m) +∇GH

δx)− ρ(G(m)) (19)

from (Burke, 1990,Lemma 1.3.1). Because the subproblem (17) minimizes ρ(G(m)+∇GH
δx)

over the one norm ball of radius τk, we know that δmk satisfies

vk(τk) = �δDk
W −∇F [mk;QW ]δmk

�F ≤ �δD
k
W�F ,

with equality only if we have stationarity. Combining this with (19), we have

�φ�(mk; δmk) ≤ vk(τk)− �δDk
W�F < 0 ,

unless mk is a stationary point, in which case �φ�(mk; δmk) = 0 . Therefore, the k-th the
LASSO subproblem yields a descent direction for the full nonlinear SAA problem for any
τk > 0, unless we have already reached a local minimum. The full development is shown in
Algorithm 1. If we make the additional assumptions

1. The sequence {τk} is bounded, and

2. ∇F [m;QW ] is uniformly continuous on the convex closure of m satisfying �φ(m,W ) <

�φ(m0,W ),

where 2 above is a standard technical assumption, then hypotheses of (Burke, 1990,Theorem
2.1.2) and (Burke, 1990,Corollary 2.1.2) are satisfied, yielding a global convergence theory
for Algorithm 1.

Algorithm 1 GN-Method for FWI with Sparse Updates
1: initialize m, k ← 0, ∆1 ← 1, �, c.
2: while ∆k > � do
3: k ← k + 1
4: Compute residual δD

k
W = D

k
W −F [mk;QW ]

5: δxk ← arg min
δx

�
�δDk

W −∇F [mk;QW ]CT
δx�2

F

s.t. �δx�1 ≤ τk

�

6: δmk = C
T
δxk

7: ∆k = �δDk
W −∇F [mk;Q]δmk�2

F
− �δDk

W�2
F

8: Pick λk to ensure �φ(mk + λkδmk;W ) < �φ(mk;W ) + cλk∆k (sufficient decrease con-
dition)

9: mk+1 ←mk + λkδmk

10: end while

PRACTICAL IMPLEMENTATION

Modified Gauss-Newton approach

We propose slight modifications to Algorithm 1. Motivated by the SA approach, we found
that resampling the matrix W at each linearization (i.e. using W

k instead of W ) improves
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recovery significantly. Intuitively, it makes sense that using several different realizations
may improve the result, as we remove the bias introduced by a particular random sampling.
As shown above, the direction δmk is a descent direction for �φ at mk for any positive τk,
with the requirement that the sequence {τk}’s are are bounded imposed by the convergence
theory for the SAA objective �φ. Nonetheless, practical implementation requires a systematic
way to select τk. A reasonable approach is to require vk(τk) = αvk(0) for some given α < 1.
Using a linear approximation of vk we find:

τk ≈ (α− 1)vk(0)/v
�
k
(0) . (20)

A closed-form expression for v
� is computed in (van den Berg and Friedlander, 2008,Theorem

2.1); in our context (20) is given by

v
�
k
(0) =

(α− 1)�δDk
W

k�2

�C∇F [mk;W k]HδDkW k�∞
. (21)

When sampling W
k at every iteration, it is not clear what linesearch criterion to use. In

FWI, we are typically interested in doing a fixed number of iterations (as much as com-
puting resources allow); motivated by SA algorithms which use prescribes fixed sequences
of steplengths, we picked the steplengths to be constant, and found this to work well in
practice.
The practical implementation with full details is given in Algorithm 2.

Algorithm 2 GN-Method for FWI in Practice
1: initialize m, k ← 0, ∆1 ← 1, �← 10−6.
2: while ∆k > � and k < kmax do
3: k ← k + 1
4: Sample to get W

k

5: Compute residual δD
k
W

k = DW
k −F [mk;QW

k]
6: τk = (α− 1)�δDk

W
k�2/�C∇F [mk;QW

k]T (δDk
W

k)�∞
7: δxk ← arg min

δx
�δD

k
W

k
−∇F [m;QW

k]CT
δx�2F s.t. �δx�1 ≤ τk

8: δmk = C
T
δxk

9: ∆k = �δDk
W

k −∇F [m;Q]δmk�2
F
− ||δDk

W
k||2

F

10: mk+1 ←mk + γkδmk

11: end while

Modeling operator

The modeling operator, F [m, Q] is implemented via a frequency-domain finite-difference
method. The wavefield for a single frequency ω is obtained by solving a discrete Helmholtz
system:

H[ω;m]U(ω) = Q(ω), (22)

where H is a 9-point, mixed-grid discretizationJo et al. (1996) of the Helmholtz operator
ω

2m + ∇2. The data for a single frequency are obtained by sampling the wavefield at
the receiver locations: D(ω) = PU(ω), where P is the sampling operator. The modeling
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operator, finally, produces data for several frequencies and stacks the results. The action of
the scattering operator on a vector δm for each frequency ω can be computed as follows:

Solve H[ω,m]U(ω) = Q (23)
Solve H[ω,m]HδU(ω) = ω

2diag(δm)U(ω) . (24)

The action of the adjoint for each frequency ω is calculated as follows:

Solve H[ω,m]U(ω) = Q (25)
Solve H[ω,m]HV (ω) = P

H
δD(ω) (26)

Compute δm =
�

ω

ω
2diag(UV

H) . (27)

These formulas can be derived via the adjoint-state methodLailly (1983); Tarantola (1984).
We refer to Plessix (2006) for a detailed overview of such techniques in geophysics.

Inversion strategy

A well-known strategy in full waveform inversion is to invert the data starting from low
frequencies and gradually moving to higher frequenciesBunks et al. (1995); Pratt et al.
(1996). This helps to mitigate some of the issues with local minima. In this case we simply
apply the proposed GN algorithm for a fixed number of iterations on a certain frequency
band and use the end result as initial guess for the next frequency band.

RESULTS

We test the proposed method on a part of the BG-Compass synthetic benchmark model.
The velocity is depicted in figure . The data are generated for 350 sources and 700 re-
ceivers, all regularly spaced along the top of the model. The initial model for the inversion
is depicted in figure . We used 7 simultaneous sources (columns in W ) for this experiment.
Hence, a single evaluation of the misfit is 50 times cheaper than an evaluation of the full
misfit. The subproblems are solved using 20 SPG iterations. The cost of calculating the
update in this case is then comparable to one evaluation of the full misfit.

The inversion is carried out in 10 partially overlapping frequency bands with 10 fre-
quencies each, starting at 2.9 Hz and going up to 25 Hz. We perform 10 GN iterations for
each frequency band and use the end result as starting model for the next band. The result
with and without renewals are shown in figure . As a benchmark, we also show the result
obtained with L-BFGS on the full data.
The convergence history in terms of the model mistmatch is also shown. The renewals
clearly benefit the inversion, giving a less noisy final result as well as a smaller �2 model
mismatch. The renewals appear to be especially beneficial in the later stage of the inversion.
The modified GN method outperforms L-BFGS in this example.

DISCUSSION

In this paper, we designed a modified Gauss-Newton algorithm for seismic waveform in-
version using ideas from stochastic optimization and compressive sensing. Stochastic opti-
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mization techniques and dimensionality reduction are used to yield a method that makes
fast progress on the whole problem but works only on small randomized subsets of the
data at a time. The randomsubsampling weights are periodically redrawn, to remove any
bias introduced by a particular weighting matrix and further speed up the progress of the
method.
The randomly subsampled Gauss-Newton subproblems may be seen as Compressive Sensing
experiments, where a sparse vector is reconstructed from randomly undersampled measure-
ments. Together with the compressibility of seismic imagesHerrmann and Li. (2011) and
wavefieldsSmith (1998); Demanet and Peyré (2011) in Curvelets, this motivated the pro-
posed modification of the Gauss-Newton subproblem to include curvelet transform-domain
sparsity of the updates.

The main innovation of the new method is a rigorous way to exploit the compressibility
of seismic wavefields and images in the curvelet domain in the context of a large-scale
application with a nonlinear forward model. Specifically, the Gauss-Newton subproblems
are subsampled using randomization techniques and then regularized by a constraint on the
one-norm of the curvelet representation of the update, turning them into LASSO problems.
The purpose of this regularization is to “fill in” the null space of the wave-equation Hessian,
using curvelet-domain sparsity promotion. While the LASSO problems are are harder to
solve, they remain feasible when dimensionality reduction techniques are used.

The sparse regularization of the updates may also be a way to get around the problem
of “loop skipping” (local minima). While good starting models and multiscale continuation
methods have successfully mitigated some of the ill effects of these local minima, curvelets
and sparsity promotion may be an additional safeguard for getting trapped in a local min-
imum. This is because strict constraints on the �1-norm of the updates forces components
to enter the solution slowly, and as a result curvelets in model space map to “curvelets
images” in the data space that share characteristics of the scale and direction of the corre-
sponding curvelet in the model space. As a consequence, the misfit functional is calculated
over relatively small subsets of “curvelet images” that have some support and direction and
this reduces the effects of “loop skipping”.

CONCLUSIONS

We present a modified Gauss-Newton algorithm for seismic waveform inversion. Using
random source superposition, we reduce the computational cost involved in solving Gauss-
Newton subproblems. Our approach can be seen as an instance of the Sample Average
Approximation method, which introduces random noise as source crosstalk in the updates.
The noise level is controlled by the batch size (the number of randomized sources); with
larger batch size corresponding to lower noise level. To regularize the subproblems and to
suppress the noisy source-cross talk, we add an �1 constraint on the curvelet coefficients of
the updates. The rationale for adding this constraint lies in curvelet-domain compressibility
of seismic wavefields, which is due to the special representation of updates as correlations
of source and residual wavefields. This argument in combination with curvelet-domain
compressibility of seismic images motivated us to develop and implement a modified Gauss-
Newton method with LASSO subproblems.
Using the convex-composite structure of the problem, we provide a global convergence
theory for this algorithm for a single fixed random realization (batch) of simultaneous shots.
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We supplemented this theoretical proof with a heuristic argument justifying the redrawing
of random source weights after solving each Gauss-Newton subproblem. Even though the
convergence theory does not extend to this case, we argue that these renewals remove bias
introduced by a particular realization of the random weights, and show that incorporating
renewals leads to better results.
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Demanet, L., and G. Peyré, 2011, Compressive wave computation: Found. Comput. Math.,
11, no. 3, 257–303.

Donoho, D. L., 2006, Compressed sensing: IEEE Transactions on Information Theory, 52,
1289–1306.

Felix J. Herrmann, X. L., 2011, Efficient least-squares migration with sparsity promotion:
Presented at the , EAGE, EAGE Technical Program Expanded Abstracts.

Haber, E., M. Chung, and F. J. Herrmann, 2010, An effective method for parameter estima-

The University of British Columbia Technical Report, TR-2011-05, 01-09-2011



14

tion with pde constraints with multiple right hand sides: Technical Report TR-2010-4,
UBC-Earth and Ocean Sciences Department.

Hennenfent, G., and F. J. Herrmann, 2006, Seismic denoising with non-uniformly sampled
curvelets: Computing in Science and Engineering, 8, no. 3.

Hennenfent, G., E. van den Berg, M. P. Friedlander, and F. J. Herrmann, 2008, New insights
into one-norm solvers from the pareto curve: Geophysics, 73, A23–26.

Herrmann, F. J., C. R. Brown, Y. A. Erlangga, and P. P. Moghaddam, 2009, Curvelet-based
migration preconditioning and scaling: Geophysics, 74, A41.

Herrmann, F. J., and X. Li., 2011, Efficient least-squares imaging with sparsity promotion
and compressive sensing.: Tech. rep., University of British Columbia, University of British
Columbia, Vancouver.

Herrmann, F. J., P. P. Moghaddam, and C. C. Stolk, 2008, Sparsity- and continuity-
promoting seismic image recovery with curvelet frames: Applied and Computational
Harmonic Analysis, 24, no. 2, 150–173.

Jo, C.-H., C. Shin, and J. H. Suh, 1996, An optimal 9-point, finite-difference, frequency-
space, 2-d scalar wave extrapolator: Geophysics, 61, 529–537.

Kim, S. J., K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, 2007, An interior-point method
for large-scale l1-regularized least squares: IEEE J. Sel. Top. Signal. Process., 606–617.

Krebs, J. R., J. E. Anderson, D. Hinkley, R. Neelamani, S. Lee, A. Baumstein, and M.-D.
Lacasse, 2009, Fast full-wavefield seismic inversion using encoded sources: Geophysics,
74, WCC177–WCC188.

Lailly, P., 1983, The seismic inverse problem as a sequence of before stack migrations: Proc.
Conf. Inverse Scattering, Theory and Applications.

Li, X., and F. J. Herrmann, 2010, Full waveform inversion from compressively recovered
model updates: SEG Expanded Abstracts, 29, 1029–1033.

Moghaddam, P. P., and F. J. Herrmann, 2010, Randomized full-waveform inversion: a
dimenstionality-reduction approach: SEG Technical Program Expanded Abstracts, 29,
977–982.

Nemirovski, A., A. Juditsky, G. Lan, and A. Shapiro, 2009, Robust stochastic approximation
approach to stochastic programming: Siam J. Optim., 19, 1574–1609.

Plessix, R.-E., 2006, A review of the adjoint-state method for computing the gradient of a
functional with geophysical applications: Geophysical Journal International, 167, 495–
503.

Pratt, R., Z. Song, P. Williamson, and M. Warner, 1996, Two-dimensional velocity models
from wide-angle seismic data by wavefield inversion: Geophysical Journal International,
124, 232–340.

Shapiro, A., 2003, Monte carlo sampling methods, in Stochastic Programming, Volume 10
of Handbooks in Operation Research ad Management Science: North-Holland.

Shapiro, A., and A. Nemirovsky, 2005, On complexity of stochastic programming problems,
in Continuous Optimization: Current Trends and Applications: Springer, New York.

Smith, H. F., 1998, A Hardy space for Fourier integral operators.: J. Geom. Anal., 8,
629–653.

Stolk, C. C., and W. W. Symes, 2003, Smooth objective functionals for seismic velocity
inversion: Inverse Problems, 19, 73–89.

Symes, W., 2008, Approximate linearized inversion by optimal scaling of prestack depth
migration: Geophysics, 73, R23–R35.

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation:
Geophysics, 49, 1259–1266.

The University of British Columbia Technical Report, TR-2011-05, 01-09-2011



15

ten Kroode, A., D.-J. Smit, and A. Verdel, 1998, A microlocal analysis of migration: Wave
Motion, 28, 149–172.

van den Berg, E., and M. P. Friedlander, 2008, Probing the pareto frontier for basis pursuit
solutions: SIAM Journal on Scientific Computing, 31, 890–912.

The University of British Columbia Technical Report, TR-2011-05, 01-09-2011



16

Figure 1: Schematic depiction of pareto curve used to select τ for the GN subproblems.
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Figure 2: Compass Benchmark model with velocities ranging from 1480 - 4500 m/s (top)
and initial model used for the inversion (bottom). Note the total lack of lateral variation
in the initial model.
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Figure 3: Inversion result for the modified Gauss-Newton algorihtm without (top) and with
(middle) renewals. The result obtained with a standard Quasi-Newton approach is depicted
in (c). The latter approach does not include dimensionaility reduction techniques.
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Figure 4: Convergenve in terms of the reconstruction error of the modified GN approach
(with and without renewals) and the Quasi-Newton approach.
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