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ABSTRACT

In this paper, we study the support recovery conditions of weighted �1 minimization for signal reconstruction
from compressed sensing measurements when multiple support estimate sets with different accuracy are available.
We identify a class of signals for which the recovered vector from �1 minimization provides an accurate support
estimate. We then derive stability and robustness guarantees for the weighted �1 minimization problem with
more than one support estimate. We show that applying a smaller weight to support estimate that enjoy higher
accuracy improves the recovery conditions compared with the case of a single support estimate and the case with
standard, i.e., non-weighted, �1 minimization. Our theoretical results are supported by numerical simulations on
synthetic signals and real audio signals.
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1. INTRODUCTION

A wide range of signal processing applications rely on the ability to realize a signal from linear and sometimes
noisy measurements. These applications include the acquisition and storage of audio, natural and seismic images,
and video, which all admit sparse or approximately sparse representations in appropriate transform domains.

Compressed sensing has emerged as an effective paradigm for the acquisition of sparse signals from significantly
fewer linear measurements than their ambient dimension.1–3 Consider an arbitrary signal x ∈ RN and let y ∈ Rn

be a set of measurements given by
y = Ax+ e,

where A is a known n × N measurement matrix, and e denotes additive noise that satisfies �e�2 ≤ � for some
known � ≥ 0. Compressed sensing theory states that it is possible to recover x from y (given A) even when
n � N , i.e., using very few measurements.

When x is strictly sparse, i.e. when there are only k < n nonzero entries in x, and when e = 0, one may
recover an estimate x∗ of the signal x as the solution of the constrained �0 minimization problem

minimize
u∈RN

�u�0 subject to Au = y. (1)

In fact, using (1), the recovery is exact when n ≥ 2k and A is in general position.4 However, �0 minimization
is a combinatorial problem and quickly becomes intractable as the dimensions increase. Instead, the convex
relaxation

minimize
u∈RN

�u�1 subject to �Au− y�2 ≤ � (2)

can be used to recover the estimate x∗. Candés, Romberg and Tao2 and Donoho1 show that if n � k log(N/k),
then �1 minimization (2) can stably and robustly recover x from inaccurate and what appears to be “incomplete”
measurements y = Ax+e, where, as before, A is an appropriately chosen n×N measurement matrix and �e�2 ≤ �.
Contrary to �0 minimization, (2), which is a convex program, can be solved efficiently. Consequently, it is possible
to recover a stable and robust approximation of x by solving (2) instead of (1) at the cost of increasing the number
of measurements taken.
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Several works in the literature have proposed alternate algorithms that attempt to bridge the gap between �0
and �1 minimization. For example, the recovery from compressed sensing measurements using �p minimization
with 0 < p < 1 has been shown to be stable and robust under weaker conditions that those of �1 minimization.5–9

However, the problem is non-convex and even though various simple and efficient algorithms were proposed and
observed to perform well empirically,7,10 so far only local convergence can be proved. Another approach for
improving the recovery performance of �1 minimization is to incorporate prior knowledge regarding the support
of the signal to-be-recovered. One way to accomplish this is to replace �1 minimization in (2) with weighted �1
minimization

minimize
u

�u�1,w subject to �Au− y�2 ≤ �, (3)

where w ∈ [0, 1]N and �u�1,w :=
�

i wi|ui| is the weighted �1 norm. This approach has been studied by several
groups11–14 and most recently, by the authors, together with Saab and Friedlander [15]. In this work, we proved
that conditioned on the accuracy and relative size of the support estimate, weighted �1 minimization is stable
and robust under weaker conditions than those of standard �1 minimization.

The works mentioned above mainly focus on a “two-weight” scenario: for x ∈ RN , one is given a partition
of {1, . . . , N} into two sets, say �T and �T c. Here �T denotes the estimated support of the entries of x that are
largest in magnitude. In this paper, we consider the more general case and study recovery conditions of weighted
�1 minimization when multiple support estimates with different accuracies are available. We first give a brief
overview of compressed sensing and review our previous result on weighted �1 minimization in Section 2. In
Section 3, we prove that for a certain class of signals it is possible to estimate the support of its best k-term
approximation using standard �1 minimization. We then derive stability and robustness guarantees for weighted
�1 minimization which generalizes our previous work to the case of two or more weighting sets. Finally, we
present numerical experiments in Section 4 that verify our theoretical results.

2. COMPRESSED SENSING WITH PARTIAL SUPPORT INFORMATION

Consider an arbitrary signal x ∈ RN and let xk be its best k-term approximation, given by keeping the k
largest-in-magnitude components of x and setting the remaining components to zero. Let T0 = supp(xk), where
T0 ⊆ {1, . . . , N} and |T0| ≤ k. We wish to reconstruct the signal x from y = Ax+ e, where A is a known n×N
measurement matrix with n � N , and e denotes the (unknown) measurement error that satisfies �e�2 ≤ � for
some known margin � > 0. Also let the set �T ⊂ {1, . . . , N} be an estimate of the support T0 of xk.

2.1 Compressed sensing overview

It was shown in [2] that x can be stably and robustly recovered from the measurements y by solving the
optimization problem (1) if the measurement matrix A has the restricted isometry property16 (RIP).

Definition 1. The restricted isometry constant δk of a matrix A is the smallest number such that for all
k-sparse vectors u,

(1− δk)�u�22 ≤ �Au�22 ≤ (1 + δk)�u�22. (4)

The following theorem uses the RIP to provide conditions and bounds for stable and robust recovery of x by
solving (2).

Theorem 2.1 (Candès, Romberg, Tao2). Suppose that x is an arbitrary vector in RN , and let xk be the
best k-term approximation of x. Suppose that there exists an a ∈ 1

kZ with a > 1 and

δak + aδ(1+a)k < a− 1. (5)

Then the solution x∗ to (2) obeys

�x∗ − x�2 ≤ C0�+ C1k
−1/2�x− xk�1. (6)



Remark 1. The constants in Theorem 2.1 are explicitly given by

C0 =
2(1+a−1/2)√

1−δ(a+1)k−a−1/2
√
1+δak

, C1 =
2a−1/2(

√
1−δ(a+1)k+

√
1+δak)√

1−δ(a+1)k−a−1/2
√
1+δak

. (7)

Theorem 2.1 shows that the constrained �1 minimization problem in (2) recovers an approximation to x with
an error that scales well with noise and the “compressibility” of x, provided (5) is satisfied. Moreover, if x is
sufficiently sparse (i.e., x = xk), and if the measurement process is noise-free, then Theorem 2.1 guarantees exact
recovery of x from y. At this point, we note that a slightly stronger sufficient condition compared to (5)—that
is easier to compare with conditions we obtain in the next section—is given by

δ(a+1)k <
a− 1

a+ 1
. (8)

2.2 Weighted �1 minimization

The �1 minimization problem (2) does not incorporate any prior information about the support of x. However,
in many applications it may be possible to draw an estimate of the support of the signal or an estimate of the
indices of its largest coefficients.

In our previous work,15 we considered the case where we are given a support estimate �T ⊂ {1, . . . , N} for
x with a certain accuracy. We investigated the performance of weighted �1 minimization, as described in (3),
where the weights are assigned such that wj = ω ∈ [0, 1] whenever j ∈ �T , and wj = 1 otherwise. In particular,
we proved that if the (partial) support estimate is at least 50% accurate, then weighted �1 minimization with
ω < 1 outperforms standard �1 minimization in terms of accuracy, stability, and robustness.

Suppose that �T has cardinality | �T | = ρk, where 0 ≤ ρ ≤ N/k is the relative size of the support estimate �T .
Furthermore, define the accuracy of �T via α :=

�T∩T0

|�T |
, i.e., α is the fraction of �T inside T0. As before, we wish to

recover an arbitrary vector x ∈ RN from noisy compressive measurements y = Ax+ e, where e satisfies �e�2 ≤ �.
To that end, we consider the weighted �1 minimization problem with the following choice of weights:

minimize
z

�z�1,w subject to �Az − y�2 ≤ � with wi =

�
1, i ∈ �T c,

ω, i ∈ �T .
(9)

Here, 0 ≤ ω ≤ 1 and �z�1,w is as defined in (3). Figure 1 illustrates the relationship between the support T0,

support estimate �T and the weight vector w.

Figure 1. Illustration of the signal x and weight vector w emphasizing the relationship between the sets T0 and �T .



Theorem 2.2 (FMSY15). Let x be in RN and let xk be its best k-term approximation, supported on T0. Let
�T ⊂ {1, . . . , N} be an arbitrary set and define ρ and α as before such that | �T | = ρk and | �T ∩T0| = αρk. Suppose
that there exists an a ∈ 1

kZ, with a ≥ (1− α)ρ, a > 1, and the measurement matrix A has RIP with

δak +
a

�
ω + (1− ω)

√
1 + ρ− 2αρ

�2 δ(a+1)k <
a

�
ω + (1− ω)

√
1 + ρ− 2αρ

�2 − 1, (10)

for some given 0 ≤ ω ≤ 1. Then the solution x∗ to (9) obeys

�x∗ − x�2 ≤ C �
0�+ C �

1k
−1/2

�
ω�x− xk�1 + (1− ω)�x�T c∩T c

0
�1
�
, (11)

where C �
0 and C �

1 are well-behaved constants that depend on the measurement matrix A, the weight ω, and the
parameters α and ρ.

Remark 2. The constants C �
0 and C �

1 are explicitly given by the expressions

C �
0 =

2
�
1 + ω+(1−ω)

√
1+ρ−2αρ√
a

�

�
1− δ(a+1)k − ω+(1−ω)

√
1+ρ−2αρ√
a

√
1 + δak

, C �
1 =

2a−1/2
��

1− δ(a+1)k +
√
1 + δak

�
�

1− δ(a+1)k − ω+(1−ω)
√
1+ρ−2αρ√
a

√
1 + δak

. (12)

Consequently, Theorem 2.2, with ω = 1, reduces to the stable and robust recovery theorem of [2], which we stated
above—see Theorem 2.1.

Remark 3. It is sufficient that A satisfies

δ(a+1)k < δ̂(ω) :=
a−

�
ω + (1− ω)

√
1 + ρ− 2αρ

�2

a+
�
ω + (1− ω)

√
1 + ρ− 2αρ

�2 (13)

for Theorem 2.2 to hold, i.e., to guarantee stable and robust recovery of the signal x from measurements y =
Ax+ e.

It is easy to see that the sufficient conditions of Theorem 2.2, given in (10) or (13), are weaker than their
counterparts for the standard �1 recovery, as given in (5) or (8) respectively, if and only if α > 0.5. A similar
statement holds for the constants. In words, if the support estimate is more than 50% accurate, weighted �1 is
more favorable than �1, at least in terms of sufficient conditions and error bounds.

The theoretical results presented above suggest that the weight ω should be set equal to zero when α ≥ 0.5
and to one when α < 0.5 as these values of ω give the best sufficient conditions and error bound constants.
However, we conducted extensive numerical simulations in [15] which suggest that a choice of ω ≈ 0.5 results in
the best recovery when there is little confidence in the support estimate accuracy. An heuristic explanation of
this observation is given in [15].

3. WEIGHTED �1 MINIMIZATION WITH MULTIPLE SUPPORT ESTIMATES

The result in the previous section relies on the availability of a support estimate set �T on which to apply the
weights ω. In this section, we first show that it is possible to draw support estimates from the solution of (2). We
then present the main theorem for stable and robust recovery of an arbitrary vector x ∈ RN from measurements
y = Ax+ e, y ∈ Rn and n � N , with multiple support estimates having different accuracies.

3.1 Partial support recovery from �1 minimization

For signals x that belong to certain signal classes, the solution to the �1 minimization problem can carry significant
information on the support T0 of the best k-term approximation xk of x. We start by recalling the null space
property (NSP) of a matrix A as defined in [17]. Necessary conditions as well as sufficient conditions for the
existence of some algorithm that recovers x from measurements y = Ax with an error related to the best k-term
approximation of x can be formulated in terms of an appropriate NSP. We state below a particular form of the
NSP pertaining to the �1-�1 instance optimality.



Definition 2. A matrix A ∈ Rn×N , n < N , is said to have the null space property of order k and constant c0
if for any vector h ∈ N (A), Ah = 0, and for every index set T ⊂ {1 . . . N} of cardinality |T | = k

�h�1 ≤ c0�hT c�1.

Among the various important conclusions of [17], the following (in a slightly more general form) will be
instrumental for our results.

Lemma 3.1 ([17]). If A has the restricted isometry property with δ(a+1)k < a−1
a+1 for some a > 1, then it has

the NSP of order k and constant c0 given explicitly by

c0 = 1 +

√
1 + δak√

a
�
1− δ(a+1)k

.

In what follows, let x∗ be the solution to (2) and define the sets S = supp(xs), T0 = supp(xk), and �T =
supp(x∗

k) for some integers k ≥ s > 0.

Proposition 3.2. Suppose that A has the null space property (NSP) of order k with constant c0 and

min
j∈S

|x(j)| ≥ (η + 1)�xT c
0
�1, (14)

where η = 2c0
2−c0

. Then S ⊆ �T .
The proof is presented in section A of the appendix.

Remark 4. Note that if A has RIP so that δ(a+1)k < a−1
a+1 for some a > 1, then η is given explicitly by

η =
2(
√
a
�

1− δ(a+1)k +
√
1 + δak)√

a
�
1− δ(a+1)k −

√
1 + δak

. (15)

Proposition 3.2 states that if x belongs to the class of signals that satisfy (14), then the support S of xs—i.e.,
the set of indices of the s largest-in-magnitude coefficients of x—is guaranteed to be contained in the set of
indices of the k largest-in-magnitude coefficients of x∗. Consequently, if we consider �T to be a support estimate
for xk, then it has an accuracy α ≥ s

k .

Note here that Proposition 3.2 specifies a class of signals, defined via (14), for which partial support informa-
tion can be obtained by using the standard �1 recovery method. Though this class is quite restrictive and does
not include various signals of practical interest, experiments suggest that highly accurate support estimates can
still be obtained via �1 minimization for signals that only satisfy significantly milder decay conditions than (14).
A theoretical investigation of this observation is an open problem.

3.2 Multiple support estimates with varying accuracy: an idealized motivating example

Suppose that the entries of x decay according to a power law such that |x(j)| = cj−p for some scaling constant
c, p > 1 and j ∈ {1, . . . , N}. Consider the two support sets T1 = supp(xk1) and T2 = supp(xk2) for k1 > k2,

T2 ⊂ T1. Suppose also that we can find entries |x(s1)| = cs−p
1 ≈ c(η + 1)k

1−p
1
p−1 and x(s2) = cs−p

2 ≈ c(η + 1)k
1−p
2
p−1

that satisfy (14) for the sets T1 and T2, respectively, where s1 ≤ k1 and s2 ≤ k2. Then

s1 − s2 =
�

p−1
η+1

�1/p �
k1−1/p
1 − k1−1/p

2

�

≤
�

p−1
η+1

�1/p
(k1 − k2).

which follows because 0 < 1− 1/p < 1 and k1 − k2 ≥ 1.



Consequently, if we define the support estimate sets �T1 = supp(x∗
k1
) and �T2 = supp(x∗

k2
), clearly the corre-

sponding accuracies α1 = s1
k1

and α2 = s2
k2

are not necessarily equal. Moreover, if

�
p− 1

η + 1

�1/p

< α1, (16)

s1 − s2 < α1(k1 − k2), and thus α1 < α2. For example, if we have p = 1.3 and η = 5, we get
�

p−1
η+1

�1/p
≈ 0.1.

Therefore, in this particular case, if α1 > 0.1, choosing some k2 < k1 results in α2 > α1, i.e., we identify two
different support estimates with different accuracies. This observation raises the question, “How should we deal
with the recovery of signals from CS measurements when multiple support estimates with different accuracies
are available?” We propose an answer to this question in the next section.

3.3 Stability and robustness conditions

In this section we present our main theorem for stable and robust recovery of an arbitrary vector x ∈ RN from
measurements y = Ax + e, y ∈ Rn and n � N , with multiple support estimates having different accuracies.
Figure 2 illustrates an example of the particular case when only two disjoint support estimate sets are available.
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Figure 2. Example of a sparse vector x with support set T0 and two support estimate sets �T1 and �T2. The weight vector
is chosen so that weights ω1 and ω2 are applied to the sets �T1 and �T2, respectively, and a weight equal to one elsewhere.

Let T0 be the support of the best k-term approximation xk of the signal x. Suppose that we have a support
estimate �T that can be written as the union of m disjoint subsets �Tj , j ∈ {1, . . . ,m}, each of which has cardinality

| �Tj | = ρjk, 0 ≤ ρj ≤ a for some a > 1 and accuracy αj =
|�Tj∩T0|

|�Tj |
.

Again, we wish to recover x from measurements y = Ax + e with �e�2 ≤ �. To do this, we consider the
general weighted �1 minimization problem

min
u∈RN

�u�1,w subject to �Au− y� ≤ � (17)



where �u�1,w =
N�
i=1

wi|ui|, and wi =






ω1, i ∈ �T1
...

ωm, i ∈ �Tm

1, i ∈ �T c

for 0 ≤ ωj ≤ 1, for all j ∈ {1, . . . ,m} and �T =
m�
j=1

�Tj .

Theorem 3.3. Let x ∈ Rn and y = Ax + e, where A is an n × N matrix and e is additive noise with
�e�2 ≤ � for some known � > 0. Denote by xk the best k-term approximation of x, supported on T0 and let
�T1, . . . , �Tm ⊂ {1, ..., N} be as defined above with cardinality | �Tj | = ρjk and accuracy αj =

|�Tj∩T0|
|�Tj |

, j ∈ {1, . . . ,m}.

For some given 0 ≤ ω1, . . . ,ωm ≤ 1, define γ :=
m�
j=1

ωj − (m − 1) +
m�
j=1

(1 − ωj)
�

1 + ρj − 2αjρj. If the RIP

constants of A are such that there exists an a ∈ 1
kZ, with a > 1, and

δak +
a

γ2
δ(a+1)k <

a

γ2
− 1, (18)

then the solution x# to (17) obeys

�x# − x�2 ≤ C0(γ)�+ C1(γ)k
−1/2




m�

j=1

ωj�x�Tj∩T c
0
�1 + �x�T c∩T c

0
�1



 . (19)

The proof is presented in section B of the appendix.

Remark 5. The constants C0(γ) and C1(γ) are well-behaved and given explicitly by the expressions

C0(γ) =
2
�
1 + γ√

a

�

�
1− δ(a+1)k − γ√

a

√
1 + δak

, C1(γ) =
2a−1/2

��
1− δ(a+1)k +

√
1 + δak

�
�

1− δ(a+1)k − γ√
a

√
1 + δak

. (20)

Remark 6. Theorem 3.3 is a generalization of Theorem 2.2 for m ≥ 1 support estimates. It is easy to see that
when the number of support estimates m = 1, Theorem 3.3 reduces to the recovery conditions of Theorem 2.2.
Moreover, setting ωj = 1 for all j ∈ {1, . . . ,m} reduces the result to that in Theorem 2.1.

Remark 7. The sufficient recovery condition (13) becomes in the case of multiple support estimates

δ(a+1)k < δ̂(γ) :=
a− γ2

a+ γ2
, (21)

where γ is as defined in Theorem 3.3. It can be shown that when m = 1, γ reduces to the expression in (13).

Remark 8. The value of γ controls the recovery guarantees of the multiple-set weighted �1 minimization problem.
For instance, as γ approaches 0, condition (21) becomes weaker and the error bound constants C0(γ) and C1(γ)
become smaller. Therefore, given a set of support estimate accuracies αj for all j ∈ {1 . . .m}, it is useful to find
the corresponding weights ωj that minimize γ. Notice that for all j, γ is a sum of linear functions of ωj with
αj controlling the slope. When αj > 0.5, the slope is positive and the optimal value of ωj = 0. Otherwise, when
αj ≤ 0.5, the slope is negative and the optimal value of ωj = 1. Hence, as in the single support estimate case, the
theoretical conditions indicate that when the αj are known a choice of ωj equal to zero or one should be optimal.
However, when the knowledge of αj is not reliable, experimental results indicate that intermediate values of ωj

produce the best recovery results.



0.1 0.2 0.3 0.4 0.5
6

7

8

9

10

11

12
 = 0.3

SN
R

 (d
B)

0.1 0.2 0.3 0.4 0.5
6

8

10

12

14

16

18

20
 = 0.5

SN
R

 (d
B)

0.1 0.2 0.3 0.4 0.5
5

10

15

20

25

30

35

40

45
 = 0.7

SN
R

 (d
B)

 

 

L1 min 2 set wL1 3 set wL1 ( 1 = 0.8, 1 = 0.01, 2 = )

Figure 3. Comparison between the recovered SNR (averaged over 100 experiments) using two-set weighted �1 with support

estimate �T and accuracy α, three-set weighted �1 minimization with support estimates �T1∪ �T2 = �T and accuracy α1 = 0.8
and α2 < α, and non-weighted �1 minimization.

4. NUMERICAL EXPERIMENTS

In what follows, we consider the particular case of m = 2, i.e. where there exists prior information on two
disjoint support estimates �T1 and �T2 with respective accuracies α1 and α2. We present numerical experiments
that illustrate the benefits of using three-set weighted �1 minimization over two-set weighted �1 and non-weighted
�1 minimization when additional prior support information is available.

To that end, we compare the recovery capabilities of these algorithms for a suite of synthetically generated
sparse signals. We also present the recovery results for a practical application of recovering audio signals using
the proposed weighting. In all of our experiments, we use SPGL118,19 to solve the standard and weighted �1
minimization problems.

4.1 Recovery of synthetic signals

We generate signals x with an ambient dimension N = 500 and fixed sparsity k = 35. We compute the (noisy)
compressed measurements of x using a Gaussian random measurement matrix A with dimensions n×N where
n = 100. To quantify the reconstruction quality, we use the reconstruction signal to noise ratio (SNR) average
over 100 realizations of the same experimental conditions. The SNR is measured in dB and is given by

SNR(x, x̃) = 10 log10

�
�x�22

�x− x̃�22

�
, (22)

where x is the true signal and x̃ is the recovered signal.

The recovery via two-set weighted �1 minimization uses a support estimate �T of size | �T | = 40 (i.e., ρ = 1)
where the accuracy α of the support estimate takes on the values {0.3, 0.5, 0.7}, and the weight ω is chosen from
{0.1, 0.3, 0.5}.

Recovery via three-set weighted �1 minimization assumes the existence of two support estimates �T1 and �T2,
which are disjoint subsets of �T described above. The set �T1 is chosen such that it always has an accuracy α1 = 0.8
while �T2 = �T \ �T1. In all experiments, we fix ω1 = 0.01 and set ω2 = ω.

Figure 4.1 illustrates the recovery performance of three-set weighted �1 minimization compared to two-
set weighted �1 using the setup described above and non-weighted �1 minimization. The figure shows that
utilizing the extra accuracy of �T1 by setting a smaller weight ω1 results in better signal recovery from the same
measurements.



4.2 Recovery of audio signals

Next, we examine the performance of three-set weighted �1 minimization for the recovery of compressed sensing
measurements of speech signals. In particular, the original signals are sampled at 44.1 kHz, but only 1/4th of
the samples are retained (with their indices chosen randomly from the uniform distribution). This yields the
measurements y = Rs, where s is the speech signal and R is a restriction (of the identity) operator. Consequently,
by dividing the measurements into blocks of size N , we can write y = [yT1 , y

T
2 , ...]

T . Here each yj = Rjsj is the
measurement vector corresponding to the jth block of the signal, and Rj ∈ Rnj×N is the associated restriction
matrix. The signals we use in our experiments consist of 21 such blocks.

We make the following assumptions about speech signals:

1. The signal blocks are compressible in the DCT domain (for example, the MP3 compression standard uses
a version of the DCT to compress audio signals.)

2. The support set corresponding to the largest coefficients in adjacent blocks does not change much from
block to block.

3. Speech signals have large low-frequency coefficients.

Thus, for the reconstruction of the jth block, we identify the support estimates �T1 is the set corresponding
to the largest nj/16 recovered coefficients of the previous block (for the first block �T1 is empty) and �T2 is the
set corresponding to frequencies up to 4kHz. For recovery using two-set weighted �1 minimization, we define
�T = �T1 ∪ �T2 and assign it a weight of ω. In the three-set weighted �1 case, we assign weights ω1 = ω/2 on the
set �T1 and ω2 = ω on the set �T \ �T1. The results of experiments on an example speech signal with N = 2048,
and ω ∈ {0, 1/6, 2/6, . . . , 1} are illustrated in Figure 4. It is clear from the figure that three-set weighted �1
minimization has better recovery performance over all 10 values of ω spanning the interval [0, 1].
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Figure 4. SNRs of the two reconstruction algorithms two-set and three-set weighted �1 minimization for a speech signal
from compressed sensing measurements plotted against ω.



5. CONCLUSION

In conclusion, we derived stability and robustness guarantees for the weighted �1 minimization problem with
multiple support estimates with varying accuracy. We showed that incorporating additional support information
by applying a smaller weight to the estimated subsets of the support with higher accuracy improves the recovery
conditions compared with the case of a single support estimate and the case of (non-weighted) �1 minimization.
We also showed that for a certain class of signals—the coefficients of which decay in a particular way—it is
possible to draw a support estimate from the solution of the �1 minimization problem. These results raise
the question of whether it is possible to improve on the support estimate by solving a subsequent weighted �1
minimization problem. Moreover, it raises an interest in defining a new iterative weighted �1 algorithm which
depends on the support accuracy instead of the coefficient magnitude as is the case of the Candès, Wakin, and
Boyd20 (IRL1) algorithm. We shall consider these problems elsewhere.

APPENDIX A. PROOF OF PROPOSITION 3.2

We want to find the conditions on the signal x and the matrix A which guarantee that the solution x∗ to the �1
minimization problem (2) has the following property

min
j∈S

|x∗(j)| ≥ max
j∈�T c

|x∗(j)| = |x∗(k + 1)|.

Suppose that the matrix A has the Null Space property (NSP)17 of order k, i.e., for any h ∈ N (A), Ah = 0,
then

�h�1 ≤ c0�hT c
0
�1,

where T0 ⊂ {1, 2, . . . N} with |T0| = k, and N (A) denotes the Null-Space of A.

If A has RIP with δ(a+1)k < a−1
a+1 for some constant a > 1, then it has the NSP of order k with constant c0

which can be written explicitly in terms of the RIP constant of A as follows

c0 = 1 +

√
1 + δak√

a
�
1− δ(a+1)k

.

Define h = x∗ − x, then h ∈ N (A) and we can write the �1-�1 instance optimality as follows

�h�1 ≤ 2c0
2− c0

�xT c
0
�1,

with c0 < 2. Let η = 2c0
2−c0

, the bound on �hT0�1 is then given by

�hT0�1 ≤ (η + 1)�xT c
0
�1 − �x∗

T c
0
�1. (23)

The next step is to bound �x∗
T c
0
�1. Noting that �T = supp(x∗

k), then �x∗
�T
�1 ≤ �x∗

T c
0
�1, and

�x∗
T c
0
�1 ≥ �x∗

�T c�1 ≥ |x∗(k + 1)|.

Using the reverse triangle inequality, we have ∀j, |x(j)− x∗(j)| ≥ |x(j)|− |x∗(j)| which leads to

min
j∈S

|x∗(j)| ≥ min
j∈S

|x(j)|−max
j∈S

|x(j)− x∗(j)|.

But max
j∈S

|x(j)− x∗(j)| = �hS�∞ ≤ �hS�1 ≤ �hT0�1, so combining the above three equations we get

min
j∈S

|x∗(j)| ≥ |x∗(k + 1)|+min
j∈S

|x(j)|− (η + 1)�xT c
0
�1. (24)

Equation (24) says that if the matrix A has δ(a+1)k-RIP and the signal x obeys

min
j∈S

|x(j)| ≥ (η + 1)�xT c
0
�1,

then the support �T of the largest k entries of the solution x∗ to (2) contains the support S of the largest s entries
of the signal x.



APPENDIX B. PROOF OF THEOREM 3.3

The proof of Theorem 3.3 follows in the same line as our previous work in [15] with some modifications. Recall

that the sets �Tj and disjoint and �T =
m�
j=1

�Tj , and define the sets �Tjα = T0 ∩ �Tj , for all j ∈ {1, . . . ,m}, where

| �Tjα| = αjρjk.

Let x# = x+ h be the minimizer of the weighted �1 problem (17). Then

�x+ h�1,w ≤ �x�1,w.

Moreover, by the choice of weights in (17), we have

ω1�x�T1
+ h�T1

�1 + . . .ωm�x�Tm
+ h�Tm

�1 + �x�T c + h�T c�1 ≤ ω1�x�T1
�1 · · ·+ ωm�x�Tm

�1 + �x�T c�1.

Consequently,

�x�T c∩T0
+ h�T c∩T0

�1 + �x�T c∩T c
0
+ h�T c∩T c

0
�1 +

m�
j=1

�
ωj�x�Tj∩T0

+ h�Tj∩T0
�1 + ωj�x�Tj∩T c

0
+ h�Tj∩T c

0
�1
�

≤ �x�T c∩T0
�1 + �x�T c∩T c

0
�1 +

m�
j=1

�
ωj�x�Tj∩T0

�1 + ωj�x�Tj∩T c
0
�1
�
.

Next, we use the forward and reverse triangle inequalities to get

m�

j=1

�
ωj�h�Tj∩T c

0
�1
�
+ �h�T c∩T c

0
�1 ≤ �h�T c∩T0

�1 +
m�

j=1

ωj�h�Tj∩T0
�1 + 2



�x�T c∩T c
0
�1 +

m�

j=1

ωj�x�Tj∩T c
0
�1



 .

Adding
m�
j=1

(1− ωj)�h�T c
j ∩T c

0
�1 on both sides of the inequality above we obtain

m�
j=1

�h�Tj∩T c
0
�1 + �h�T c∩T c

0
�1 ≤

m�
j=1

ωj�h�Tj∩T0
�1 +

m�
j=1

(1− ωj)�h�Tj∩T c
0
�1 + �h�T c∩T0

�1

+ 2

�
�x�T c∩T c

0
�1 +

m�
j=1

ωj�x�Tj∩T c
0
�1

�
.

Since �hT c
0
�1 = �h�T∩T c

0
�1 + �h�T c∩T c

0
�1 and �h�T∩T c

0
�1 =

m�
j=1

�h�Tj∩T c
0
�1, this easily reduces to

�hT c
0
�1 ≤

m�

j=1

ωj�h�Tj∩T0
�1 +

m�

j=1

(1− ωj)�h�Tj∩T c
0
�1 + �h�T c∩T0

�1 + 2



�x�T c∩T c
0
�1 +

m�

j=1

ωj�x�Tj∩T c
0
�1



 . (25)

Now consider the following term from the left hand side of (25)

m�

j=1

ωj�h�Tj∩T0
�1 +

m�

j=1

(1− ωj)�h�Tj∩T c
0
�1 + �h�T c∩T0

�1

Add and subtract
�m

j=1(1−ωj)�h�T c
j ∩T0

�1, and since the set �Tjα = T0∩ �Tj , we can write �h�T c
j ∩T0

�1+�h�Tj∩T c
0
�1 =

�hT0∪�T\�Tjα
�1 to get

m�
j=1

ωj

�
�h�Tj∩T0

�1 + �h�T c
j ∩T0

�1
�
+

m�
j=1

(1− ωj)
�
�h�Tj∩T c

0
�1 + �h�T c

j ∩T0
�1
�
+ �h�T c∩T0

�1 −
m�
j=1

�h�T c
j ∩T0

�1

=

�
m�
j=1

ωj

�
�hT0�1 + �h�T c∩T0

�1 −
m�
j=1

�h�T c
j ∩T0

�1 +
m�
j=1

(1− ωj)�hT0∪�T\�Tjα
�1

=

�
m�
j=1

ωj −m+ 1

�
�hT0�1 +

m�
j=1

(1− ωj)�hT0∪�T\�Tjα
�1.



The last equality comes from �hT0∩�T c
j
�1 = �h�T c∩T0

�1+�hT0∩(�T\�Tj)�1 and
m�
j=1

�hT0∩(�T\�Tj)�1 = (m−1)�hT0∩�T �1.

Consequently, we can reduce the bound on �hT c
0
�1 to the following expression:

�hT c
0
�1 ≤




m�

j=1

ωj −m+ 1



 �hT0�1 +
m�

j=1

(1− ωj)�hT0∪�T\�Tjα
�1 + 2



�x�T c∩T c
0
�1 +

m�

j=1

ωj�x�Tj∩T c
0
�1



 . (26)

Next we follow the technique of Candès et al.2 and sort the coefficients of hT c
0
partitioning T c

0 it into disjoint
sets Tj , j ∈ {1, 2, . . .} each of size ak, where a > 1. That is, T1 indexes the ak largest in magnitude coefficients
of hT c

0
, T2 indexes the second ak largest in magnitude coefficients of hT c

0
, and so on. Note that this gives

hT c
0
=

�
j≥1 hTj , with

�hTj�2 ≤
√
ak�hTj�∞ ≤ (ak)−1/2�hTj−1�1. (27)

Let T01 = T0 ∪ T1, then using (27) and the triangle inequality we have

�hT c
01
�2 ≤

�
j≥2

�hTj�2 ≤ (ak)−1/2
�
j≥1

�hTj�1

≤ (ak)−1/2�hT c
0
�1.

(28)

Next, consider the feasibility of x# and x. Both vectors are feasible, so we have �Ah�2 ≤ 2� and

�AhT01�2 ≤ 2�+ �AhT c
01
�2 ≤ 2�+

�
j≥2

�AhTj�2

≤ 2�+
√
1 + δak

�
j≥2

�hTj�2.

From (26) and (28) we get

�AhT01�2 ≤ 2�+ 2
√
1+δak√
ak

�
�x�T c∩T c

0
�1 +

m�
j=1

ωj�x�Tj∩T c
0
�1

�

+
√
1+δak√
ak

�
(

m�
j=1

ωj −m+ 1)�hT0�1 +
m�
j=1

(1− ωj)�hT0∪�T\�Tjα
�1

�
.

Noting that |T0 ∪ �T \ �Tjα| = (1 + ρj − 2αjρj)k,

�
1− δ(a+1)k�hT01�2 ≤ 2�+ 2

√
1+δak√
ak

�
�x�T c∩T c

0
�1 +

m�
j=1

ωj�x�Tj∩T c
0
�1

�

+
√
1+δak√

a

�
(

m�
j=1

ωj −m+ 1)�hT0�2 +
m�
j=1

(1− ωj)
�

1 + ρj − 2αjρj�hT0∪�T\�Tjα
�2

�
.

Since for every j we have �hT0∪�Tj\�Tjα
�2 ≤ �hT01�2 and �hT0�2 ≤ �hT01�2, thus

�hT01�2 ≤
2�+ 2

√
1+δak√
ak

�
�x�T c∩T c

0
�1 +

m�
j=1

ωj�x�Tj∩T c
0
�1

�

�
1− δ(a+1)k −

m�
j=1

ωj−m+1+
m�

j=1
(1−ωj)

√
1+ρj−2αjρj

√
a

√
1 + δak

. (29)

Finally, using �h�2 ≤ �hT01�2+�hT c
01
�2 and let γ =

m�
j=1

ωj −m+1+
m�
j=1

(1−ωj)
�
1 + ρj − 2αjρj , we combine

(26), (28) and (29) to get

�h�2 ≤
2
�
1 + γ√

a

�
�+ 2

√
1−δ(a+1)k+

√
1+δak√

ak

�
�x�T c∩T c

0
�1 +

m�
j=1

ωj�x�Tj∩T c
0
�1

�

�
1− δ(a+1)k − γ√

a

√
1 + δak

, (30)



with the condition that the denominator is positive, equivalently δak + a
γ2 δ(a+1)k < a

γ2 − 1.
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