Massive 3D seismic data compression \& interpolation w/ on-the-fly data extraction

Yiming Zhang, Curt Da Silva, Rajiv Kumar \& Felix J. Herrmann

SLIMe
University of British Columbia

Motivation

Motivation

- Enormous volumes of seismic data
~1TB

Motivation

- Challenging in inversion

Motivation

- Challenging in inversion

Motivation

- How about in this way
~1GB

Motivation

- Missing data scenarios
~1GB

Motivation

- can still in this way?
~1GB

Motivation

How to fight "curse of dimensionality" ?

Motivation

How to fight "curse of dimensionality" ?

Situation:

- seismic data is redundant
- low-rank format can be exploited at low frequencies

Motivation

How to fight "curse of dimensionality" ?

Situation:

- seismic data is redundant
- low-rank format can be exploited at low frequencies

Solution:

- represent in hierarchical Tucker (HT) format
- interpolate HT format when missing data
- work w/ full data volume w/o forming them for later downstream processes, e.g. FWI

Hierarchical Tucker representation

$$
X=n_{1} \times n_{2} \times n_{3} \times n_{4} \text { tensor }
$$

$$
X=n_{1} \times n_{2} \times n_{3} \times n_{4} \text { tensor }
$$

$$
X=n_{1} \times n_{2} \times n_{3} \times n_{4} \text { tensor }
$$

Hierarchical Tucker representation

This format is extremely storage-efficient

- not necessarily store intermediate matrices U_{12} and U_{34}
- storage $\leq d N k+(d-2) k^{3}+k^{2}$
- compare to N^{d} parameters needed to store for the full data
- computationally tractable for high-dimensional problem $(k \ll N)$

Hierarchical Tucker representation

- a $100 \times 100 \times 100 \times 100$ tensor, max HT rank 20
- full storage: $100^{4}=10^{8}$ parameters
- HT storage: 24400 values
- compression ratio: 99.97\%

Seismic hierarchical Tucker

Given a frequency slice with coordinate ($\operatorname{src} x, \operatorname{src} y, r e c x$, rec y), we introduce the non-canonical dimension tree for seismic data.

Seismic hierarchical Tucker

Given a frequency slice with coordinate $(\operatorname{src} x, \operatorname{src} y, r e c x, r e c y)$, we introduce the non-canonical dimension tree for seismic data.

Non-canonical vs. canonical
 $-396 \times 396 \times 50 \times 50$ volume ($\sim 5.8 G B$)

	Frequency (Hz)	Parameter Size	SNR	Compression Ratio
Non-canonical	3	71 MB	42.8	98.8%
canonical	3	501 MB	42.9	91.6%
Non-canonical	6	421 MB	43.0	92.9%
canonical	6	1194 MB	43.1	79.9%

Seismic hierarchical Tucker

We can compress low-frequency seismic data in HT in either case listed below

- full data

Seismic hierarchical Tucker

We can compress low-frequency seismic data in HT in either case listed below

- full data \longrightarrow HT truncation algorithm detail in Tobler, 2012

Seismic hierarchical Tucker

We can compress low-frequency seismic data in HT in either case listed below

- full data \longrightarrow HT truncation algorithm detail in Tobler, 2012
- missing data

Seismic hierarchical Tucker

We can compress low-frequency seismic data in HT in either case listed below

- full data \longrightarrow HT truncation algorithm detail in Tobler, 2012
- missing data \longrightarrow interpolate HT format described in Da Silva \& Herrmann, 2015

On-the-fly extraction of shots/receivers

Algorithm

$\mathbf{B}_{\text {src } \mathrm{x}, \text { rec } \mathrm{x}, \text { src } \mathrm{y}, \text { rec } \mathrm{y}}$

Step 1

Step 1

Step 2

$\mathbf{U}_{\text {src } \mathrm{x}}\left(i_{x},:\right) \times_{1} \mathbf{B}_{\text {src x,recx }}$

Step 2

$\mathbf{u}_{\text {src } \mathrm{x}, \mathrm{rec} \mathrm{x}} 1 \overbrace{k_{x_{\mathrm{rec}}}}$

$k_{\left(y_{\mathrm{src}}, y_{\mathrm{rec}}\right)}$

$\mathbf{B}_{\text {src } x, \text { rec } x, s r c ~ y, r e c ~ y ~}^{l}$

Step 2

$\mathbf{U}_{\text {rec } \times} \times_{2} \mathbf{u}_{\text {src } \mathrm{x}, \text { rec } \times}$
$k_{\left(y_{\mathrm{src}}, y_{\mathrm{rec}}\right)}$

Step 3

$k_{\left(y_{\text {src }}, y_{\mathrm{rec}}\right)}$

Step 4
$\mathbf{U}_{\text {src } x}\left(i_{y},:\right) \times_{1} \mathbf{U}_{\text {rec y }} \times_{2} \mathbf{B}_{\text {src y,rec y }}$

Step 4

Step 5

$\mathbf{U}_{\text {src x, rec x }}^{\prime} \mathbf{B}_{\text {src x,rec x,src y,rec y }}\left(\mathbf{U}_{\text {src y,rec y }}^{\prime}\right)^{*} k_{\left(x_{\text {src }}, x_{\mathrm{rec}}\right)}$

$\mathbf{U}_{\text {Src x, rec x }}^{\prime} 1 \underbrace{}_{n_{x_{\mathrm{src}}, x_{\mathrm{rec}}}}$

On-the-fly extraction of shots/receivers

Once our data in HT representation

- Kronecker product or matrix-matrix multiplication
- intermediate qualities much smaller than ambient dimensionality
- extract common receiver gather in an analogous way
- compute simultaneous shots/receivers gathers

Case study 1: 3D FWI

FWI examples

3D FWI with stochastic optimization algorithm

- a subset of full shots per iteration
- partially minimize least-square objective function
- LBFGS w/ bound constrains, i.e. minimum \& maximum velocities allowed
- single freq. inverted at a time

FWI examples

For HT compressed data

- over 90\% reduced data volume in size
- cheaply store compressed form of the full data on every node
- automatically determine indices for shots per iteration
- query-based access to the data volume on-the-fly w/ our proposed algorithm

FWI examples

Computational environment:

- SENAI Yemoja cluster
- 50 nodes, 256GB RAM each, 20 CPU cores
- 8 Parallel Matlab workers per node
- modeling code, WAVEFORM (Da Silva and Herrmann, 2016)

FWI examples on Overthrust model

Model 1:

- 3D Overthrust model
- $20 \mathrm{~km} \times 20 \mathrm{~km} \times 4.6 \mathrm{~km}$, adding 500m water
- $50 \mathrm{~m} \times 50 \mathrm{~m} \times 50 \mathrm{~m}$ spacing

Data:

- 50×50 sources, 200 m interval
- 396×396 receivers, 50 m interval
- Ricker wavelet, 10 Hz peak frequency
- $3 \mathrm{~Hz}-6 \mathrm{~Hz}$ ranging, 1 Hz interval
- remove 80% of random receivers

FWI examples on Overthrust model

True data

Missing 80\% data

FWI examples on Overthrust model

Extract from compressed data

Residual

FWI examples on Overthrust model

Stochastic FWI results inverted w/

- full data
- compressed HT parameters recovered from interpolation

Same source indices for two examples

- same number of PDE solves
- three passes through the data

Z = 1000m depth slice

True model

Initial model

Z = 1000m depth slice

True model

Full data

Z = 1000m depth slice

True model

Compressed data

$x=12.5 k m$ lateral slice

$x=12.5 \mathrm{~km}$ lateral slice

$x=12.5 \mathrm{~km}$ lateral slice

True model

Compressed data

FWI examples on BG model

Model 2:

- 3D BG model
- $10 \mathrm{~km} \times 10 \mathrm{~km} \times 1.8 \mathrm{~km}$
- $50 \mathrm{~m} \times 50 \mathrm{~m} \times 12 \mathrm{~m}$ spacing

Data:

- 49×49 sources, 200 m interval
- 196×196 receivers, 50m interval
- Ricker wavelet, 10 Hz peak frequency
- $3 \mathrm{~Hz}-6 \mathrm{~Hz}$ ranging, 0.25 Hz interval
- remove 75\% of random receivers

FWI examples on BG model

Stochastic FWI results inverted w/

- full data
- compressed HT via truncation
- subsampled data
- compressed HT recovered from interpolation

Same source indices for four examples

- same number of PDE solves
- three passes through the data

Full data \& Compressed data

x = 4900m lateral slice

x = 4900m lateral slice

x = 4900m lateral slice

$y=5650 m$ lateral slice

True model

$y=5650 m$ lateral slice

True model

Full data

$y=5650 m$ lateral slice

True model

Compressed data

z = 1200m depth slice

z = 1200m depth slice

z = 1200m depth slice

Subsampled data \& Interpolated data

x = 4900m lateral slice

x = 4900m lateral slice

True model

Subsampled data

x = 4900m lateral slice

$y=5650 m$ lateral slice

True model

$y=5650 m$ lateral slice

True model

Subsampled data

$y=5650 m$ lateral slice

True model

Interpolated data

z = 1200m depth slice

z = 1200m depth slice

z = 1200m depth slice

Case study 2: Extended Images

Extended images

Given two way wave equations, we define the source wavefield U and receiver wavefield V as

$$
\begin{gathered}
H(\mathbf{m}) U=P_{s}^{T} Q \\
H(\mathbf{m})^{*} V=P_{r}^{T} D
\end{gathered}
$$

where

$$
\begin{aligned}
& \mathbf{m}: \text { slowness } \\
& H(\mathbf{m}): \\
& Q D: \text { discretization of the Helmholtz operator } \\
& P_{s}^{T} P_{r}^{T}: \text { samples function and data matrix } \\
& \text { wavefield at the source and receiver positions }
\end{aligned}
$$

Extended images

Organize wavefields in monochromatic data matrices where each column represents a common shot gather

Express image volume tensor for single frequency as a matrix

$$
E=V U^{*}
$$

Extended images

Image volume too large to form and too expensive

Instead, probe volume with tall matrix $W=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{\ell}\right]$

$$
\widetilde{E}=E W=H^{-*} P_{r}^{\top} D Q^{*} P_{s} H^{-*} W
$$

where $\mathbf{w}_{i}=[0, \ldots, 0,1,0, \ldots, 0]$ represents single scattering points

Proposed method

$$
\tilde{E}=H^{-*} P_{r}^{T} D Q^{*} P_{s} H^{-*} w
$$

Proposed method

$$
\tilde{E}=H^{-*} P_{r}^{T} D Q^{*} P_{s} H^{-*} w
$$

Proposed method

Proposed method

$$
\begin{gathered}
\tilde{E}=H^{-*} P_{r}^{T} D Q^{*} P_{s} H^{-*} w \\
\downarrow \\
\tilde{E}=H^{-*} P_{r}^{T} D v
\end{gathered}
$$

Algorithm 1
 $$
\tilde{E}=H^{-*} P_{r}^{\mathrm{T}} \overparen{D v}
$$

Single common shot gather extraction technique

Algorithm 1

$\tilde{E}=H^{-*} P_{r}^{T}(D v$

Single common shot gather extraction technique

Input: $\mathbf{v}=Q^{*} P_{s} \mathbf{H}^{-*} \mathbf{w}$
Output: $\mathbf{z}=\mathbf{D v}$
For each source index $\mathbf{i}=\left(i_{\mathrm{src}_{x}}, i_{\mathrm{src}_{y}}\right)$

1. Extract the common shot gather from the data using our proposed, resulting in $\mathbf{D}_{\mathbf{i}}$;
2. Scale $\mathbf{D}_{\mathbf{i}}$ by a scalar $\mathbf{v}_{\mathbf{i}}$ to produce \mathbf{z};
3. Update \mathbf{z} with addition of previous \mathbf{z}.

Algorithm 2

$$
\tilde{E}=H^{-*} P_{r}^{T} \triangle D
$$

Simultaneous common shot gathers extraction technique

Algorithm 2

$\tilde{E}=H^{-*} P_{r}^{T}(D v$

Simultaneous common shot gathers extraction technique

Input: $\mathbf{v}=Q^{*} P_{s} \mathbf{H}^{-*} \mathbf{w}$
Output: z = Dv
For source indices $\mathbf{i}=\left(i_{\operatorname{src}_{x}}, \operatorname{src}_{y}\right)$

1. Extract simultaneous common shot gathers from the data using our proposed, resulting in $\mathbf{D}_{\mathbf{i}}$
2. Multiply $\mathbf{D}_{\mathbf{i}}$ with $\mathbf{v}(i,:)$ to produce \mathbf{z}
3. Update \mathbf{z} with addition of previous \mathbf{z}

Common Image-point gather

Model:

- 3D BG model
- $1.25 \mathrm{~km} \times 1.25 \mathrm{~km} \times 0.39 \mathrm{~km}$
- $25 \mathrm{~m} \times 25 \mathrm{~m} \times 6 \mathrm{~m}$ spacing

Experiment details:

- OBN acquisition
- 1156 sources (75 m spacing), 2601 receivers (50 m spacing)
- Ricker wavelet, 15 peak frequency
- $5-12 \mathrm{~Hz}, 0.5 \mathrm{~Hz}$ interval

Common-point gather at (1250m, 1250m, 390m)

Full data

Compressed data

Along lateral offset direction

Full data

Compressed data

Difference x 100

Along lateral offset direction

Full data

Compressed data

Difference x 100

Full data

Compressed data

Difference x 100

Conclusions

- high compression ratio is achievable
- reduces memory \& computational costs when combined w/ stochastic optimization/ probing technique
- codes easily embedded into other processing frameworks
- leads to major reduction in IO for low-frequency full waveform inversion \& extended images
- suitable for both fully sampled data and missing random receivers/shots

Acknowledgements

This research was carried out as part of the SINBAD project with the support of the member organizations of the SINBAD Consortium.

Acknowledgements

The authors wish to acknowledge the SENAI CIMATEC Supercomputing Center for Industrial Innovation, with support from BG Brasil, Shell, and the Brazilian Authority for Oil, Gas and Biofuels (ANP), for the provision and operation of computational facilities and the commitment to invest in Research \& Development.

Thank you for your attention

