Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Massive 3D seismic data compression & interpolation w/ on-the-fly data extraction

Yiming Zhang, Curt Da Silva, Rajiv Kumar & Felix J. Herrmann

SLM University of British Columbia

• Enormous volumes of seismic data

~1TB

• Challenging in inversion

~1TB

• Challenging in inversion

• How about in this way

• Missing data scenarios

• can still in this way?

How to fight "curse of dimensionality" ?

How to fight "curse of dimensionality"? Situation:

- seismic data is redundant
- low-rank format can be exploited at low frequencies

How to fight "curse of dimensionality"? Situation:

- seismic data is redundant
- low-rank format can be exploited at low frequencies

Solution:

- represent in hierarchical Tucker (HT) format
- interpolate HT format when missing data
- processes, e.g. FWI

work w/ full data volume w/o forming them for later downstream

Da Silva, C., and F. J. Herrmann, 2015, Optimization on the hierarchical tucker manifold—applications to tensor completion: Linear Algebra and its Applications, 481, 131–173.

Hierarchical Tucker representation

 $X = n_1 \times n_2 \times n_3 \times n_4$ tensor

"SVD-like" factorization

Da Silva, C., and F. J. Herrmann, 2015, Optimization on the hierarchical tucker manifold—applications to tensor completion: Linear Algebra and its Applications, 481, 131–173.

Hierarchical Tucker representation

 $X = n_1 \times n_2 \times n_3 \times n_4$ tensor

Da Silva, C., and F. J. Herrmann, 2015, Optimization on the hierarchical tucker manifold—applications to tensor completion: Linear Algebra and its Applications, 481, 131–173.

Hierarchical Tucker representation

 $X = n_1 \times n_2 \times n_3 \times n_4$ tensor

Hierarchical Tucker representation

This format is extremely storage-efficient • not necessarily store intermediate matrices U_{12} and U_{34}

- storage $\leq dNk + (d-2)k^3 + k^2$
- compare to N^d parameters needed to store for the full data
- computationally tractable for high-dimensional problem $(k \ll N)$

Hierarchical Tucker representation

- a $100 \times 100 \times 100 \times 100$ tensor, max HT rank 20
- full storage: $100^4 = 10^8$ parameters
- HT storage: 24400 values
- compression ratio: 99.97%

Kumar, R., Da Silva, C., Akalin, O., Aravkin, A. Y., Mansour, H., Recht, B., & Herrmann, F. J. (2015). Efficient matrix completion for seismic data reconstruction. Geophysics, 80(5), V97-V114.

Da Silva, C., and F. J. Herrmann, 2015, Optimization on the hierarchical tucker manifold—applications to tensor completion: Linear Algebra and its Applications, 481, 131–173.

Seismic hierarchical Tucker

Given a frequency slice with coordinate (src x, src y, rec x, rec y), we introduce the **non-canonical dimension tree** for seismic data.

Kumar, R., Da Silva, C., Akalin, O., Aravkin, A. Y., Mansour, H., Recht, B., & Herrmann, F. J. (2015). Efficient matrix completion for seismic data reconstruction. Geophysics, 80(5), V97-V114.

Da Silva, C., and F. J. Herrmann, 2015, Optimization on the hierarchical tucker manifold—applications to tensor completion: Linear Algebra and its Applications, 481, 131–173.

Seismic hierarchical Tucker

Given a frequency slice with coordinate (src x, src y, rec x, rec y), we introduce the **non-canonical dimension tree** for seismic data.

Non-canonical vs. canonical - 396 x 396 x 50 x 50 volume (~5.8 GB)

	Frequency (Hz)	Parameter Size	SNR	Compression Ratio
Non-canonical	3	71MB	42.8	98.8%
canonical	3	501MB	42.9	91.6%
Non-canonical	6	421MB	43.0	92.9%
canonical	6	1194MB	43.1	79.9%

We can compress low-frequency seismic data in HT in either case listed below

• full data

We can compress low-frequency seismic data in HT in either case listed below

• **full data** → HT **truncation** algorithm detail in *Tobler, 2012*

We can compress low-frequency seismic data in HT in either case listed below

- missing data

• **full data** → HT **truncation** algorithm detail in *Tobler, 2012*

We can compress low-frequency seismic data in HT in either case listed below

• **full data** → HT **truncation** algorithm detail in *Tobler, 2012*

 missing data —— interpolate HT format described in Da Silva & Herrmann, 2015

On-the-fly extraction of shots/receivers

On-the-fly extraction of shots/receivers

Once our data in HT representation

- Kronecker product or matrix-matrix multiplication
- intermediate qualities **much smaller** than ambient dimensionality
- extract common **receiver gather** in an analogous way
- compute **simultaneous** shots/receivers gathers

Case study 1: 3D FWI

FWI examples

3D FWI with stochastic optimization algorithm • a **subset** of full shots per iteration

- partially minimize least-square objective function
- LBFGS w/ bound constrains, i.e. minimum & maximum velocities allowed
- **single freq.** inverted at a time

FWI examples

For HT compressed data

- over 90% reduced data volume in size
- cheaply store compressed form of the full data on every node
- automatically determine indices for shots per iteration
- query-based access to the data volume on-the-fly w/ our proposed algorithm

FWI examples

Computational environment:

- SENAI Yemoja cluster
- 50 nodes, 256GB RAM each, 20 CPU cores
- 8 Parallel Matlab workers per node
- modeling code, WAVEFORM (Da Silva and Herrmann, 2016)

Model 1:

- 3D **Overthrust** model
- 20km x 20km x 4.6 km, adding 500m water
- 50m x 50m x 50 m spacing

Data:

- 50 x 50 sources, 200m interval
- 396 x 396 receivers, 50m interval
- Ricker wavelet, 10Hz peak frequency
- 3Hz 6Hz ranging, 1Hz interval
- **remove 80%** of random receivers

Stochastic FWI results inverted w/

- full data
- compressed HT parameters recovered from interpolation

Same source indices for two examples

- same number of PDE solves
- three passes through the data

True model

Initial model

True model

Full data

True model

Compressed data

x = 12.5km lateral slice

True model

Initial model

x = 12.5km lateral slice

True model

Full data

x = 12.5km lateral slice

True model

Compressed data

FWI examples on BG model

Model 2:

- 3D **BG** model
- 10km x 10km x 1.8 km
- 50m x 50m x 12 m spacing

Data:

- 49 x 49 sources, 200m interval
- 196 x 196 receivers, 50m interval
- Ricker wavelet, 10Hz peak frequency
- 3Hz 6Hz ranging, 0.25Hz interval
- **remove 75%** of random receivers

FWI examples on BG model

Stochastic FWI results inverted w/

- full data
- compressed **HT** via **truncation**
- subsampled data
- compressed **HT** recovered from **interpolation**

Same source indices for four examples

- same number of PDE solves
- three passes through the data

Full data & Compressed data

Subsampled data & Interpolated data

Case study 2: Extended Images

Extended images

Given two way wave equations, we define the source wavefield U and **receiver** wavefield V as

 $H(\mathbf{m})U = P_s^T Q$ $H(\mathbf{m})^* V = P_r^T D$

where

- m : slowness
- $H(\mathbf{m})$: discretization of the Helmholtz operator
 - Q D: source function and data matrix

 $P_s^T P_r^T$: samples the wavefield at the source and receiver positions

Extended images

Organize wavefields in monochromatic data **matrices** where each column represents a common shot gather

Express image volume tensor for single frequency as a matrix

$E = VU^*$

Extended images

Image volume too large to form and too expensive

Instead, probe volume with tall matrix $W = [\mathbf{w}_1, \ldots, \mathbf{w}_\ell]$ $\widetilde{E} = EW = H^{-*}P_r^{\top}DQ^*P_sH^{-*}W$

- where $\mathbf{w}_i = [0, \dots, 0, 1, 0, \dots, 0]$ represents single scattering points

$\tilde{E} = H^{-*} P_r^T D Q^* P_s H^{-*} w$

Single common shot gather extraction technique

Single common shot gather extraction technique

Input: $\mathbf{v} = Q^* P_s \mathbf{H}^{-*} \mathbf{w}$ Output: $\mathbf{z} = \mathbf{D}\mathbf{v}$ For each source index $\mathbf{i} = (i_{\mathrm{src}_x}, i_{\mathrm{src}_y})$ 1. Extract the common shot gather from the data using our proposed, resulting in D_i ; 2. Scale $\mathbf{D}_{\mathbf{i}}$ by a scalar $\mathbf{v}_{\mathbf{i}}$ to produce \mathbf{z} ;

3. Update **z** with addition of previous **z**.

Simultaneous common shot gathers extraction technique

Simultaneous common shot gathers extraction technique

Input: $\mathbf{v} = Q^* P_s \mathbf{H}^{-*} \mathbf{w}$ Output: $\mathbf{z} = \mathbf{D} \mathbf{v}$ For source indices $\mathbf{i} = (i_{\operatorname{src}_x}, \operatorname{src}_y)$ 1. Extract simultaneous common shot gathe

- 2. Multiply $\mathbf{D}_{\mathbf{i}}$ with $\mathbf{v}(i,:)$ to produce \mathbf{z}
- 3. Update ${\bf z}$ with addition of previous ${\bf z}$

1. Extract simultaneous common shot gathers from the data using our proposed, resulting in $\mathbf{D}_{\mathbf{i}}$

Common Image-point gather

Model:

- 3D BG model
- 1.25km x 1.25km x 0.39 km
- 25m x 25m x 6 m spacing

Experiment details:

- OBN acquisition
- 1156 sources (75m spacing), 2601 receivers (50m spacing)
- Ricker wavelet, 15 peak frequency
- 5-12 Hz, 0.5Hz interval

2601 receivers (50m spacing) uency

Full data

Compressed data

Along lateral offset direction

Difference x 100

Along lateral offset direction

Compressed data

Difference x 100

Along vertical offset direction

Compressed data

Full data

Difference x 100

Conclusions

- high compression ratio is achievable
- reduces memory & computational costs when combined w/ stochastic optimization/ probing technique
- codes easily embedded into other processing frameworks
- leads to major reduction in IO for low-frequency full waveform inversion & extended images
- suitable for both fully sampled data and missing random receivers/shots

Acknowledgements

support of the member organizations of the SINBAD Consortium.

This research was carried out as part of the SINBAD project with the

Acknowledgements

The authors wish to acknowledge the SENAI CIMATEC Supercomputing Center for Industrial Innovation, with support from BG Brasil, Shell, and the Brazilian Authority for Oil, Gas and Biofuels (ANP), for the provision and operation of computational facilities and the commitment to invest in Research & Development.

Thank you for your attention

