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Motivation 

• Enormous	volumes	of	seismic	data	
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Motivation 

• Challenging	in	inversion
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Motivation 

• Challenging	in	inversion
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Motivation 

• How	about	in	this	way
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Motivation 

• Missing	data	scenarios	
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Motivation 

• can	still	in	this	way?	
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Motivation 

How	to	fight	“curse	of	dimensionality”	?
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Motivation 

How	to	fight	“curse	of	dimensionality”	?
Situation:	

• seismic	data	is	redundant	
• low-rank	format	can	be	exploited	at	low	frequencies	
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Motivation 

How	to	fight	“curse	of	dimensionality”	?
Situation:	

• seismic	data	is	redundant	
• low-rank	format	can	be	exploited	at	low	frequencies	

Solution:
• represent	in	hierarchical	Tucker	(HT)	format	
• interpolate	HT	format	when	missing	data
• work	w/	full	data	volume	w/o	forming	them	for	later	downstream	
processes,	e.g.	FWI	
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Hierarchical Tucker representation 
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Da	Silva,	C.,	and	F.	J.	Herrmann,	2015,	Optimization	on	the	hierarchical	tucker	manifold–applications	to	tensor	completion:	Linear	Algebra	and	its	Applications,	481,	131–173.
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Hierarchical Tucker representation 

This	format	is	extremely	storage-efficient
• not	necessarily	store	intermediate	matrices									and	

• storage	

• compare	to									parameters	needed	to	store	for	the	full	data	

• computationally	tractable	for	high-dimensional	problem		
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Hierarchical Tucker representation 

• a																																										tensor,	max	HT	rank	

• full	storage:																							parameters	

• HT	storage:															values	

• compression	ratio:	99.97%
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Seismic hierarchical Tucker 

Given	a	frequency	slice	with	coordinate	(src	x,	src	y,	rec	x,	rec	y),	
we	introduce	the	non-canonical	dimension	tree	for	seismic	data.	
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Seismic hierarchical Tucker 

Given	a	frequency	slice	with	coordinate	(src	x,	src	y,	rec	x,	rec	y),	
we	introduce	the	non-canonical	dimension	tree	for	seismic	data.	
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Non-canonical vs. canonical 
– 396 x 396 x 50 x 50 volume (~5.8 GB)

Frequency	(Hz) Parameter	Size SNR Compression	Ratio

Non-canonical

Non-canonical

canonical

canonical

3

6

3

6

71MB

501MB

421MB

1194MB

42.871MB

42.9

43.0

43.1

98.8%

91.6%

92.9%

79.9%
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Seismic hierarchical Tucker 

We	can	compress	low-frequency	seismic	data	in	HT	in	either	case	
listed	below

• full	data																		
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Seismic hierarchical Tucker 

We	can	compress	low-frequency	seismic	data	in	HT	in	either	case	
listed	below

• full	data																	HT	truncation	algorithm	detail	in	Tobler,	2012
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Seismic hierarchical Tucker 

We	can	compress	low-frequency	seismic	data	in	HT	in	either	case	
listed	below

• full	data																	HT	truncation	algorithm	detail	in	Tobler,	2012

• missing	data	
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Seismic hierarchical Tucker 

We	can	compress	low-frequency	seismic	data	in	HT	in	either	case	
listed	below

• full	data																	HT	truncation	algorithm	detail	in	Tobler,	2012

• missing	data															interpolate	HT	format	described	in	Da	Silva	&
																																							Herrmann,	2015
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On-the-fly extraction of shots/receivers  
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On-the-fly extraction of shots/receivers  

Once	our	data	in	HT	representation
• Kronecker	product	or	matrix-matrix	multiplication

• intermediate	qualities	much	smaller	than	ambient	dimensionality

• extract	common	receiver	gather	in	an	analogous	way

• compute	simultaneous	shots/receivers	gathers	
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Case study 1: 3D FWI
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FWI examples

3D	FWI	with	stochastic	optimization	algorithm	
• a	subset	of	full	shots	per	iteration	

• partially	minimize	least-square	objective	function

• LBFGS	w/	bound	constrains,	i.e.	minimum	&	maximum	velocities	
allowed	

• single	freq.	inverted	at	a	time	
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FWI examples

For	HT	compressed	data
• over	90%	reduced	data	volume	in	size

• cheaply	store	compressed	form	of	the	full	data	on	every	node

• automatically	determine	indices	for	shots	per	iteration

• query-based	access	to	the	data	volume	on-the-fly	w/	our	proposed	
algorithm	
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FWI examples 

Computational	environment:	
• SENAI	Yemoja	cluster	

• 50	nodes,		256GB	RAM	each,	20	CPU	cores	

• 8	Parallel	Matlab	workers	per	node	

• modeling	code,	WAVEFORM	(Da	Silva	and	Herrmann,	2016)
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FWI examples on Overthrust model 

Model	1:
• 3D	Overthrust	model	
• 20km	x	20km	x	4.6	km,	adding	500m	water	
• 50m	x	50m	x	50	m	spacing	

Data:
• 50	x	50	sources,	200m	interval	
• 396	x	396	receivers,	50m	interval	
• Ricker	wavelet,	10Hz	peak	frequency	
• 3Hz	-	6Hz	ranging,	1Hz	interval	
• remove	80%	of	random	receivers	
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FWI examples on Overthrust model
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FWI examples on Overthrust model 
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FWI examples on Overthrust model 

Stochastic	FWI	results	inverted	w/	
• full	data	
• compressed	HT	parameters	recovered	from	interpolation

Same	source	indices	for	two	examples
• same	number	of	PDE	solves	
• three	passes	through	the	data	
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Z = 1000m depth slice 
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Z = 1000m depth slice 
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Z = 1000m depth slice 
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x = 12.5km lateral slice 

True	model Initial	model
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x = 12.5km lateral slice 

True	model Full	data
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x = 12.5km lateral slice 

True	model Compressed	data
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FWI examples on BG model

Model	2:
• 3D	BG	model	
• 10km	x	10km	x	1.8	km	
• 50m	x	50m	x	12	m	spacing	

Data:
• 49	x	49	sources,	200m	interval	
• 196	x	196	receivers,	50m	interval	
• Ricker	wavelet,	10Hz	peak	frequency	
• 3Hz	-	6Hz	ranging,	0.25Hz	interval	
• remove	75%	of	random	receivers	
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FWI examples on BG model

Stochastic	FWI	results	inverted	w/	
• full	data	
• compressed	HT	via	truncation	
• subsampled	data	
• compressed	HT	recovered	from	interpolation

Same	source	indices	for	four	examples
• same	number	of	PDE	solves	
• three	passes	through	the	data	
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Full data & Compressed data
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x = 4900m lateral slice 

True	model Initial	model
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x = 4900m lateral slice 

True	model Full	data
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x = 4900m lateral slice 

Full	data Compressed	data
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y = 5650m lateral slice 

True	model Initial	model
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y = 5650m lateral slice 

True	model Full	data
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y = 5650m lateral slice 

True	model Compressed	data
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z = 1200m depth slice 

True	model Initial	model

Thursday, October 5, 2017



z = 1200m depth slice 

True	model Full	data
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z = 1200m depth slice 

True	model Compressed	data	
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Subsampled data & Interpolated data
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x = 4900m lateral slice 

True	model Initial	model
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x = 4900m lateral slice 

True	model Subsampled	data
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x = 4900m lateral slice 

Full	data Interpolated	data
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y = 5650m lateral slice 

True	model Initial	model
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y = 5650m lateral slice 

True	model Subsampled	data
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y = 5650m lateral slice 

Interpolated	dataTrue	model
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z = 1200m depth slice 

True	model Initial	model
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z = 1200m depth slice 

True	model Subsampled	data

Thursday, October 5, 2017



z = 1200m depth slice 

True	model Interpolated	data	
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Case study 2: Extended Images
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Extended images 

Given	two	way	wave	equations,	we	define	the	source	wavefield	
and	receiver	wavefield						as	

where																														
																																													slowness	
																																													discretization of the Helmholtz operator								
																																													source	function	and	data	matrix										
																																													samples the wavefield at the source and receiver positions
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Extended images 

Organize wavefields in monochromatic data matrices where each 
column represents a common shot gather

    Express image volume tensor for single frequency as a matrix
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E = V U⇤
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Extended images 

Image	volume	too	large	to	form	and	too	expensive	

Instead, probe volume with tall matrix 

    where                                      represents single scattering points
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Proposed method 
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Proposed method 
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Proposed method 
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Proposed method 
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Algorithm 1
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Ẽ = H�⇤PT
r Dv

Single	common	shot	gather	extraction	technique
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Algorithm 1
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Ẽ = H�⇤PT
r Dv

Single	common	shot	gather	extraction	technique
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Algorithm 2
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Ẽ = H�⇤PT
r Dv

Simultaneous	common	shot	gathers	extraction	technique
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Algorithm 2
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Simultaneous	common	shot	gathers	extraction	technique
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Common Image-point gather 

Model:
• 3D	BG	model	
• 1.25km	x	1.25km	x	0.39	km
• 25m	x	25m	x	6	m	spacing	

Experiment	details:
• OBN	acquisition	
• 1156	sources	(75m	spacing),	2601	receivers	(50m	spacing)
• Ricker	wavelet,	15	peak	frequency	
• 5-12	Hz,	0.5Hz	interval	
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Common-point gather at (1250m, 1250m, 390m)

Full	data Compressed	data
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Along lateral offset direction 

Full	data Compressed	data Difference	x	100	
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Along lateral offset direction 

Full	data Compressed	data Difference	x	100	
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Along vertical offset direction 

Full	data Compressed	data Difference	x	100	
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Conclusions

• high	compression	ratio	is	achievable	

• reduces	memory	&	computational	costs	when	combined	w/	
stochastic	optimization/	probing	technique

• codes	easily	embedded	into	other	processing	frameworks

• leads	to	major	reduction	in	IO	for	low-frequency	full	waveform	
inversion	&	extended	images	

• suitable	for	both	fully	sampled	data	and	missing	random	
receivers/shots	
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