Imaging with multiples in shallow water

Mengmeng Yang, Emmanouil Daskalakis, and Felix J. Herrmann
Situation multiples in marine data

From Ning Tu, EAGE, 2013
How to get reliable images?

SRME relation \[P_j = G_j (Q_j + \mathcal{R}_j P_j) \]

minimize energy misfit \[P_{0j} = P_j - \mathcal{R}_j Q^{-1} P_{0j} P_j \]

- \(P \): total up-going wavefield
- \(G \): surface-free dipole Green’s function
- \(Q \): point-source wavefield = \(\omega_j I \)
- \(\mathcal{R} \): surface reflectivity
- \(j \): frequency index
- \(P_0 \): up-going primaries
- \(\delta m \): model perturbation

Migration

Demigration

\(G \)

\(P \)

\(Q \)
Problem in shallow water

Shot gathers

Total data

Primaries by SRME
Problem in shallow water
Shot gathers

Total data
True primaries
How to get reliable images?

SRME relation
\[p_j = g_j (q_j + r_j p_j) \]

minimize energy misfit
\[p_{0j} = p_j - r_j q_j^{-1} p_{0j} p_j \]

invert sparse Green function \(g_j \)
How to get reliable images?

Sorted Curvelet coefficients
Motivation

Challenges for primary prediction from shallow water multiples:
 ▶ SRME often fails to predict primaries because of “leakage”
 ▶ EPSI is too expensive

Other challenges:
 ▶ image artifacts from surface-related multiples
 ▶ computational costs
 ▶ time-domain implementation
How to get reliable images?

Joint inversion w/ areal source

Migration of total data

Sparsity promotion

\(\delta m \)
Solution

Incorporate surface-related multiples directly into imaging
 ▶ w/ SRME relation
 ▶ WE solver does multi-D convolutions implicitly
 ▶ simple implementation via linearized Bregman projections (LBP)
Eliminating dense matrix-matrix products
[SRME relation & wave-equation solver]

Combine linearized modelling w/ free-surface physics:

\[
\mathcal{P}_j \approx \nabla \mathcal{F}_j [m_0, \delta m; \mathcal{I}] (Q_j - \mathcal{P}_j) \\
= \nabla \mathcal{F}_j [m_0, \delta m; Q_j - \mathcal{P}_j] \\
= \nabla \mathcal{F}_j [m_0; Q_j - \mathcal{P}_j] \delta m.
\]

Dense matrix-matrix products
Wave-equation solves
with total downgoing data
injected as “areal” source
Eliminating dense matrix-matrix products
[SRME relation & wave-equation solver]

Combine linearized time-domain modelling w/ free-surface physics:

\[P \approx (\nabla F_m[m_0, \rho_0; Q - P] \quad \nabla F_\rho[m_0, \rho_0; Q - P]) \begin{pmatrix} \delta m \\ \delta \rho \end{pmatrix} \]

\[\approx \nabla F_m[m_0, \rho_0; Q - P] \delta m' \]
LBP via randomized subsampling

Randomized subsets of A, b for linearized Bregman method:

1. \textbf{for} $k = 0, 1, \ldots$
2. $z_{k+1} = z_k - t_k A_r^*(A_r x_k - b_r)$
3. $x_{k+1} = S_\lambda(z_{k+1})$
4. \textbf{end for}

Joint SP-LSRTM w/ primaries & multiples

$$\min_{x} \lambda \|x\|_1 + \frac{1}{2} \|x\|_2^2$$

subject to $${\sum}_i \|\nabla F_i(m_0, \rho_0, Q_i - P_i)C^T x - P_i\|_2 \leq \sigma,$$

Areal source

1. Initialize $x_0 = 0, z_0 = 0, Q, \lambda$, batchsize $n'_s \ll n_s$
2. for $k = 0, 1, \ldots$
3. Randomly choose shot subsets $I \in [1 \cdots n_s], |I| = n'_s$
4. $A_k = \{\nabla F_i(m_0, \rho_0, Q_i - P_i)C^T\}_{i \in I}$
5. $b_k = \{P_i\}_{i \in I}$
6. $z_{k+1} = z_k - t_k A_k^T P_{\sigma}(A_k x_k - b_k)$
7. $x_{k+1} = S_\lambda(z_{k+1})$
8. end

note: $S_\lambda(z_{k+1}) = \text{sign}(z_{k+1}) \max\{0, |z_{k+1}| - \lambda\}$

$$P_{\sigma}(A_k x_k - b_k) = \max\{0, 1 - \frac{\sigma}{\|A_k x_k - b_k\|_2}\} \cdot (A_k x_k - b_k)$$

$$t_k = \|A_k x_k - b_k\|^2 / \|A_k^T (A_k x_k - b_k)\|^2$$
Experiment

Data:
- 261 sources and receivers
- Ricker wavelet centered at 15 Hz
- generated with free surface, $F[m, \rho] - F[m_0, \rho_0]$
- source-side deghost

Experiments:
- dipole source setting
- one pass through the data with batch sizes 2.5% data
- randomized subset of shots
- true source wavelet
RTM of primaries
RTM of total data
RTM of total data w/ areal source

Stronger at correct position

More artifacts
Joint SP-LSRTM w/ primaries & multiples
w/ areal source
Joint SP-LSRTM w/ primaries & multiples
w/o areal source
Joint SP-LSRTM w/ primaries & multiples w/ areal source, zoomed
Joint SP-LSRTM w/ primaries & multiples
w/o areal source, zoomed
Joint SP-LSRTM w/ primaries & multiples w/ areal source, zoomed
Joint SP-LSRTM w/ primaries & multiples
w/o areal source, zoomed
Shot gathers

- Total data
- Synthetic primaries

- Leakage from primaries into multiples
- Leakage from multiples into primaries
Shot gathers

Total data

Recovered primaries by inversion w/ areal source
Shot gathers

- Total data
- Errors in primaries
Shot gathers

Total data

Multiples
Conclusions

‣ Joint inversion w/ primaries & multiples via areal source gives reasonable images
 - w/ artifacts suppressed & no pre-processing
 - need only 1 data path thanks to rerandomization

‣ In shallow water
 - SRME always fails
 - our joint inversion succeeds
Future work

- Fix phase error in the image of joint SP-LSRTM w/ multiples & primaries
- Implement in 3D
- Accelerate convergence of SP-LSRTM
Accelerate and weight strategy on LB

Experiment set on SEG salt model
SEG salt model, linear data, 1 data pass

LB w/ weight strategy

LB w/o weight strategy
SEG salt model, linear data, 1 data pass

Accelerated LB w/ weight strategy

depth (km)

0 1 2 3

distance (km)

0 5 10 15

Accelerated LB w/o weight strategy

depth (km)

0 1 2 3

distance (km)

0 5 10 15
SEG salt model, nonlinear data, 1 data pass

LB w/ weight strategy

LB w/o weight strategy
SEG salt model, nonlinear data, 1 data pass

Accelerated w/ weight strategy

Accelerated LB w/o weight strategy
Acknowledgements

This research was carried out as part of the SINBAD project with the support of the member organizations of the SINBAD Consortium.
Thank you for your attention