Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Imaging with multiples in shallow water

Mengmeng Yang, Emmanouil Daskalakis, and Felix J. Herrmann

Thursday, October 5, 2017

Situation multiples in marine data

From Ning Tu, EAGE, 2013

Verschuur et al., 1992

How to get reliable images?

SRME relation $\mathcal{P}_j = \mathcal{G}_j(\mathcal{Q}_j + \mathcal{R}_j \mathcal{P}_j)$ $\mathcal{P}_{0j} = \mathcal{P}_j - \mathcal{R}_j \mathcal{Q}^{-1} \mathcal{P}_{0j} \mathcal{P}_j$ minimize energy misfit

- \mathcal{P} : total up-going wavefield
- \mathcal{G} : surface-free dipole Green's function
- Q: point-source wavefield = $\omega_j I$
- \mathcal{R} : surface reflectivity
- *j* : frequency index
- \mathcal{P}_0 : up-going primaries
- $\delta \mathbf{m}$: model perturbation

Problem in shallow water Shot gathers

Offset [km]

Primaries by SRME

Problem in shallow water Shot gathers

True primaries

Verschuur et al., 1992

How to get reliable images?

SRME relation $\mathcal{P}_j = \mathcal{G}_j(\mathcal{Q}_j + \mathcal{R}_j \mathcal{P}_j)$ minimize energy $\mathcal{P}_{0j} = \mathcal{P}_j - \mathcal{R}_j \mathcal{Q}^{-1} \mathcal{P}_{0j} \mathcal{P}_j$ misfit invert sparse Green function G_i 0.8 0.6 0.4 Time [s] 0.2 0 -0.2

> 1.1 2.3 3.4 Offset [km]

3.2

-0.4

-0.6

-0.8

6

Tu N, Herrmann F J. Fast imaging with surface-related multiples by sparse inversion[J]. Geophysical Journal International, 2015, 201(1): 304-317.

How to get reliable images?

Sorted Curvelet coefficients

7

Motivation

Challenges for primary prediction from shallow water multiples: SRME often fails to predict primaries because of "leakage"

- EPSI is too expensive

Other challenges:

- image artifacts from surface-related multiples
- computational costs
- time-domain implementation

How to get reliable images?

Migration of total data

Joint inversion w/ areal source

Solution

Incorporate surface-related multiples directly into imaging

- w/SRME relation
- WE solver does multi-D convolutions implicitly
- simple implementation via linearized Bregman projections (LBP)

Tu, N. & Herrmann, F. J. "Least-squares migration of full wavefield with source encoding", 74th EAGE Conference & Exhibition incorporating SPE EUROPEC 2012

Eliminating dense matrix-matrix products [SRME relation & wave-equation solver] Combine linearized modelling w/ free-surface physics: $\mathcal{P}_{j} \approx \nabla \mathcal{F}_{j} [\mathbf{m}_{0}, \delta \mathbf{m}; \mathcal{I}] (\mathcal{Q}_{j} - \mathcal{P}_{j})$ $= \nabla \mathcal{F}_{i}[\mathbf{m}_{0}, \delta \mathbf{m}; \mathcal{Q}_{i} - \mathcal{P}_{i}]$ $= \nabla \mathcal{F}_{i}[\mathbf{m}_{0}; \mathcal{Q}_{i} - \mathcal{P}_{i}] \delta \mathbf{m}.$

Dense matrix-matrix products

Wave-equation solves with total downgoing data injected as "areal" source

Eliminating dense matrix-matrix products [SRME relation & wave-equation solver]

Combine linearized time-domain modelling w/ free-surface physics:

 $\mathbf{P} \approx (\nabla \mathbf{F}_{\mathbf{m}}[\mathbf{m}_0, \boldsymbol{
ho}_0; \mathbf{Q} - \mathbf{P}]$ $pprox
abla \mathbf{F}_{\mathbf{m}}[\mathbf{m}_{0}, \boldsymbol{
ho}_{0}; \mathbf{Q} - \mathbf{P}] \delta \mathbf{m}'$

$$\nabla \mathbf{F}_{\boldsymbol{
ho}}[\mathbf{m}_0, \boldsymbol{
ho}_0; \mathbf{Q} - \mathbf{P}]) \begin{pmatrix} \delta \mathbf{m} \\ \delta \boldsymbol{
ho} \end{pmatrix}$$

Felix J. Herrmann, Ning Tu and Ernie Esser, "Fast 'online' migration with Compressive Sensing", EAGE Annual Conference Proceeding, 2015, vol. 60, p. 696-712, 2012 Lorenz, Dirk A. Wenger, Stephan, "A sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing", arXiv:1403.7543

Yang M, Witte P, Fang Z and Felix J. Herrmann, "Time-domain sparsity-promoting least-squares migration with source estimation", SEG Technical Program Expanded Abstracts, 2016. 4225-4229.

LBP via randomized subsampling

Randomized subsets of A, b for linearized Bregman method:

$$_{k}\mathbf{A}_{r(k)}^{*}(\mathbf{A}_{r(k)}\mathbf{x}_{k} - \mathbf{b}_{r(k)})$$

+1)

Joint SP-LSRTM w/ primaries & multiples

$$\min_{\mathbf{x}} \lambda \|\mathbf{x}\|_{1} + \frac{1}{2} \|\mathbf{x}\|_{2}^{2}$$
subject to
$$\sum_{i} \|\nabla \mathbf{F}_{i}(\mathbf{m}_{0}, \rho_{0}, \mathbf{Q}_{i} - \mathbf{P}_{i})\mathbf{C}^{T}\mathbf{x} - \mathbf{P}_{i}\|_{2} \leq \sigma,$$

Initialize $\mathbf{x}_0 = \mathbf{0}, \mathbf{z}_0 = \mathbf{0}, \mathbf{Q}, \lambda$, batchsize $n'_s \ll n_s$ 1. 2. for $k = 0, 1, \cdots$ 3. Randomly choose shot subsets $\mathcal{I} \in [1 \cdots n_s], |\mathcal{I}| = n'_s$ $\mathbf{A}_{k} = \{\nabla \mathbf{F}_{i}(\mathbf{m}_{0}, \rho_{0}, \mathbf{Q}_{i} - \mathbf{P}_{i})\mathbf{C}^{T}\}_{i \in \mathcal{I}}$ 4. 5. $\mathbf{b}_k = \{\mathbf{P}_i\}_{i\in\mathcal{I}}$ $\mathbf{z}_{k+1} = \mathbf{z}_k - t_k \mathbf{A}_k^T \mathbb{P}_{\sigma} (\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k)$ 6. 7. $\mathbf{x}_{k+1} = S_{\lambda}(\mathbf{z}_{k+1})$ 8. end note: $S_{\lambda}(\mathbf{z}_{k+1}) = \operatorname{sign}(\mathbf{z}_{k+1}) \max\{0, |\mathbf{z}_{k+1}| - \lambda\}$ $\mathbb{P}_{\sigma}(\mathbf{A}_{k}\mathbf{x}_{k} - \mathbf{b}_{k}) = \max\{0, 1 - \frac{\sigma}{\|\mathbf{A}_{k}\mathbf{x}_{k} - \mathbf{b}_{k}\|_{2}}\} \cdot (\mathbf{A}_{k}\mathbf{x}_{k} - \mathbf{b}_{k})$ $t_k = \|\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k\|^2 / \|\mathbf{A}_k^T (\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k)\|^2$

Areal source

Experiment

Data:

- 261 sources and receivers
- Ricker wavelet centered at 15 Hz
- generated with free surface, $\mathbf{F}[\mathbf{m}, \rho] \mathbf{F}[\mathbf{m}_0, \rho_0]$
- source-side deghost

Experiments:

- dipole source setting
- one pass through the data with batch sizes 2.5% data
- randomized subset of shots
- true source wavelet

RTM of primaries

RTM of total data

RTM of total data w/ areal source

Stronger at correct position

Joint SP-LSRTM w/ primaries & multiples w/ areal source

Joint SP-LSRTM w/ primaries & multiples w/o areal source

Joint SP-LSRTM w/ primaries & multiples w/ areal source, zoomed

Joint SP-LSRTM w/ primaries & multiples w/o areal source, zoomed

Joint SP-LSRTM w/ primaries & multiples w/ areal source, zoomed

Joint SP-LSRTM w/ primaries & multiples w/o areal source, zoomed

leakage from primaries into multiples

leakage from multiples into primaries

Conclusions

- Joint inversion w/ primaries & multiples via areal source gives reasonable images
 - w/ artifacts suppressed & no pre-processing - need only 1 data path thanks to rerandomization
- In shallow water
 - SRME always fails
 - our joint inversion succeeds

Future work

- Fix phase error in the image of joint SP-LSRTM w/ multiples & primaries
- Implement in 3D
- Accelerate convergence of SP-LSRTM

Accelerate and weight strategy on LB

Experiment set on SEG salt model

Thursday, October 5, 2017

SEG salt model, linear data, 1 data pass

SEG salt model, linear data, 1 data pass

SEG salt model, nonlinear data, 1 data pass

SEG salt model, nonlinear data, 1 data pass

Acknowledgements

support of the member organizations of the SINBAD Consortium.

This research was carried out as part of the SINBAD project with the

Thank you for your attention

