
University	of	British	Columbia
SLIM

Philipp	A.	Witte,	Mathias	Louboutin	and	Felix	J.	Herrmann

Julia Devito: A scalable research framework for
seismic inversion

Friday, October 6, 2017

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).
Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Research goals

2

SLIM tomorrow:
0 5 10 15 20

Lateral position [km]

0

1

2

3

4

5

6

7

8

9

D
e

p
th

 [
km

]

SLIM today:

SLIM yesterday:

Friday, October 6, 2017

Research goals

3

SLIM tomorrow:

SLIM today:

SLIM yesterday:

3	orders	of	magnitude

0 5 10 15 20

Lateral position [km]

0

1

2

3

4

5

6

7

8

9

D
e

p
th

 [
km

]

2	more	to	go

Friday, October 6, 2017

Motivation

Academic	software	frameworks:
‣ only	for	small	2D/3D	problems	(Madagascar,	SeismicJulia)	or	
‣ unmaintainable	low-level	black-box	spaghetti	codes
‣ without	detailed	knowledge	of	code,	hard	to:

- change	a	line	search
- keep	history	of	gradients	(e.g	for	SPG)
- change	parallelization
- change	the	underlying	physics,	correct	adjoints

But	there	is	also	iWave:
‣ well	designed,	abstractions
‣ high	accuracy,	testing	framework,	correct	adjoints
‣ but:	written	in	C/C++,	not	primarily	designed	for	performance,	not	very	

intuitive	to	use

4
Friday, October 6, 2017

Motivation

Potential	applications	of	software:
‣ linear	least	squares	problems	such	as	LS-RTM

‣ non-linear	optimization	problems	such	as	FWI

Maintain	flexibility:
‣ change																			,	the	underlying	wave	equation	solver
‣ change	the	formulation	(different	misfits											,	constraints,	penalties)
‣ choose	from	large	variety	of	optimization	algorithms

5

minimize
m

�
⇣
F(m,q)� d

⌘
�(x) =

1

2
kxk22,	where

minimize
�m

1

2
|| rF(m0,q) �m� �d||22

F(m,q)
�(x)

Friday, October 6, 2017

Overview of Julia Devito

Julia	Devito	is	a	wave-equation	based	inversion	framework:

‣ non	proprietary	Julia	programming	language	(public	license)
‣ uses	Devito	to	express	and	solve	underlying	PDEs	
‣ matrix-free	linear	operators	and	out-of-core	SEG-Y	data	containers
‣ resilient	parallelization
‣ unified	2D-3D	environment
‣ can	interact	with	variety	of	general-purpose	optimization	libraries
‣ designed to push inversion to the next scale
‣ scalable but also flexible

6
Friday, October 6, 2017

Overview of Julia Devito

parallelization: distribute sources, data

interface to Devito (Python)

set up PDEs, discretization
generate code + JIT compilation

solve PDE

call code return results

generate code

serial modeling function

parallel modeling function

Python C

Julia

linear opeartors, data containers

Friday, October 6, 2017

Overview of Julia Devito

parallelization: distribute sources, data

interface to Devito (Python)

set up PDEs, discretization
generate code + JIT compilation

solve PDE

call code return results

generate code

serial modeling function

parallel modeling function

Python C

Julia

linear opeartors, data containers

Friday, October 6, 2017

Linear operators and data containers

Linear	algebra	notation	is	intuitive	for	seismic	operations:
‣ forward	modeling/time	reversal	modeling

‣ demigration/migration

‣ FWI	gradients,	Gauss-Newton	step,	etc.

9

c�m = J>�d�d = J �m,

d = Pr F P>
s q, bq = Ps F

> P>
r d

�m = (J>J)�1J>�d

g = J>(P
r

F P>
s

q� d
obs

)

Friday, October 6, 2017

Linear operators and data containers

Challenges	of	this	approach	for	time-domain	modeling/inversion:
‣ seismic	data	is	multidimensional	volume	with	meta	data
‣ simply	vectorizing	the	input	data	not	an	option
‣ data	typically	too	big	to	fit	in	memory

10

d = Pr F P>
s q

Friday, October 6, 2017

Linear operators and data containers

Challenges	of	this	approach	for	time-domain	modeling/inversion:
‣ seismic	data	is	multidimensional	volume	with	meta	data
‣ simply	vectorizing	the	input	data	not	an	option
‣ data	typically	too	big	to	fit	in	memory

11

d = Pr F P>
s q

‣cannot	be	formed	explicitly
‣need	physical	information	(model,	source/receiver	locations)

Friday, October 6, 2017

Linear operators and data containers

Challenges	of	this	approach	for	time-domain	modeling/inversion:
‣ seismic	data	is	multidimensional	volume	with	meta	data
‣ simply	vectorizing	the	input	data	not	an	option
‣ data	typically	too	big	to	fit	in	memory

12

d = Pr F P>
s q

‣cannot	be	kept	in	memory
‣not	a	vector
‣contains	header	information

‣cannot	be	formed	explicitly
‣need	physical	information	(model,	source/receiver	locations)

Friday, October 6, 2017

Linear operators and data containers

Abstract	in-core	and	out-of-core	data	vectors:
‣ inspired	by	iWave,	RVL	and	others	
‣ can	be	formed	directly	from	single/multiple	SEG-Y	files
‣ parallel	read/write	chunks	of	data

(joint	work	with	Keegan	Lensink)(Symes,	Padula)

(Instructional	video	at:	https://www.youtube.com/watch?v=tx530QOPeZo)
Friday, October 6, 2017

https://www.youtube.com/watch?v=tx530QOPeZo
https://www.youtube.com/watch?v=tx530QOPeZo

Linear operators and data containers

Matrix-free	linear	operators
‣ read	necessary	meta	information	from	data	objects
‣ use	like	explicit	matrices

Friday, October 6, 2017

Overview of Julia Devito

parallelization: distribute sources, data

interface to Devito (Python)

set up PDEs, discretization
generate code + JIT compilation

solve PDE

call code return results

generate code

serial modeling function

parallel modeling function

Python C

Julia

linear opeartors, data containers

Friday, October 6, 2017

Parallelization

Modeling	multiple	shots	happens	in	parallel:

Same	for	adjoint	modeling:

16
Friday, October 6, 2017

Parallelization

Parallelization	in	our	framework:
‣ 2	levels	of	parallelization
‣ distribution	of	sources/shots	(shared/distributed	memory)
‣ parallelization	over	modeling	domain	via	OpenMP	(shared	memory)
‣ in	future	Devito	release:	domain	decomposition	for	distributed	memory

Julia’s	parallel	framework	has	built-in	resilience:
‣ in	case	of	worker/node	failure,	workload	is	redistributed	to	remaining	

processors
‣ program	is	not	interrupted

17
Friday, October 6, 2017

Overview of Julia Devito

parallelization: distribute sources, data

interface to Devito (Python)

set up PDEs, discretization
generate code + JIT compilation

solve PDE

call code return results

generate code

serial modeling function

parallel modeling function

Python C

Julia

linear opeartors, data containers

Friday, October 6, 2017

Interface to Devito

What	is	Devito?
‣ domain-specific	language	for	Python
‣ symbolically	set	up	variety	of	wave	equations	(acoustic,	anisotropic)
‣ Devito	compiler	automatically	generates	optimized	C	code
‣ optimizes	Flop	count,	loops,	memory	alignment,	etc.
‣ details	in	the	next	talk	by	Mathias

Interfacing	Devito	from	Julia:
‣ Julia	allows	direct	Python	and	C	function	calls
‣ call	Devito	functions	that	generate	optimized	C	code
‣ call	generated	C	code	directly	from	Julia	(no	data	copies)

19

(joint	work	with	Mathias	Louboutin)

Friday, October 6, 2017

Numerical case studies

Full-waveform	inversion:
‣ vanilla	FWI	w/	gradient	descent	and	line	search
‣ FWI	with	different	misfit	functions
‣ Interfacing	optimization	libraries	for	more	advanced	algorithms

Least-squares	migration:
‣ parallel	algorithms:	LS-RTM	w/	elastic	average	SGD
‣ strategies	for	large-scale	migration:	compressive	LS-RTM
‣ imaging	in	the	presence	of	salt

20
Friday, October 6, 2017

Example 1: FWI with a line search

Full-waveform	inversion	w/	least	squares	misfit:

Optimization:
‣ gradient	given	by
‣ implement	(stochastic)	gradient	descent	w/	approximate	line	search
‣ bound	constraints	for	velocity

21

minimize
m

1

2
k F(m,q)� dk2

g = J>�F(m,q)� d
�

Friday, October 6, 2017

Example 1: FWI with a line search

Runnable	Julia	code:

alternatively:	
‣	line	search	w/	(strong)	Wolfe	conditions
‣	Barzilai-Borwein	step	size
‣	constant	step	size
‣etc.

1 # Main loop

2 for j=1:maxiter

3

4 # select current batch

5 idx = randperm(dobs.nsrc)[1:batchsize]

6 dsub = subsample(dobs,idx)

7 qsub = subsample(q,idx)

8

9 # get fwi objective function value and gradient

10 f, g = fwi_objective(model0,qsub,dsub)

11

12 # linesearch

13 step = backtracking_linesearch(vec(model0.m), g; varargs...)

14

15 # Update model and bound projection

16 model0.m = proj(model0.m + step)

17

18 # termination criteria

19 if f <= fTerm || norm(g) <= gradTerm

20 break

21 end

22 end

Friday, October 6, 2017

Example 1: FWI with a line search

23
Friday, October 6, 2017

Example 2: FWI with different misfit functions

24

Previous	example:
‣ objective	function	that	returns	function	value	and	gradient	for						-misfit

Change	to	different	misfit:
‣ if	observed	data	has	strong	outliers:	(pseudo-)	Huber	misfit

‣ gradient	given	by

`2

(Guitton	and	Symes,	2003;	van	Leeuwen	et	al.,	2013)�(x) = ✏2
p
1 + (x/✏)2 � 1

r�(x) =
xp

1 + (x/✏)2

Friday, October 6, 2017

Example 2: FWI with different misfit functions

1 # FWI with pseudo-huber misfit function

2 function fwi_objective_huber(model::Model,q::joData,d::joData)

3

4 # Set up operators

5 ...

6

7 # Data residual, function value and gradient

8 r = F*q - d

9 f = eps^2*sqrt(1 + dot(r,r)/eps^2) - eps^2 # e.g. eps=1

10 g = J’*r/sqrt(1 + dot(r,r)/eps^2)

11 return f,g

12 end

1 # FWI with least squares misfit function

2 function fwi_objective_l2(model::Model,q::joData,d::joData)

3

4 # Set up operators

5 nt = get_computational_nt(q.geometry,d.geometry,model)

6 info = Info(prod(model.n),d.nsrc,nt)

7 F = joModeling(info,model,q.geometry,d.geometry)

8 J = joJacobian(F,q)

9

10 # Data residual, function value and gradient

11 r = F*q - d

12 f = .5*norm(r,2)^2

13 g = J’*r

14 return f,g

15 end

Objective	function	w/							-misfit Objective	function	w/	pseudo-Huber	misfit:`2

change	misfit	independently	from	the	rest	of	the	code	

Friday, October 6, 2017

Example 3: FWI using optimization libraries

What	if	we	want	to	use	more	complicated	algorithms?
‣ previous	misfit	functions	can	be	passed	to	third-party	optimization	libraries
‣ access	to	large	variety	of	optimization	methods
‣ no	need	to	implement	everything	from	scratch

Tested	for	various	libraries:
‣ Julia	implementation	of	minConf	(included	in	software	release)
‣ Bas’	framework	for	constrained	optimization	w/	projections	onto	intersections	

of	convex	sets
‣ NLopt.jl	(native	Fortran	library)
‣ Optim.jl	(native	Julia	library)

26

(Schmidt	et	al.,	2009)

(Johnson	et	al.,	2017)
(White	et	al.,	2017)

(Peters	and	Herrmann,	2017)

Friday, October 6, 2017

Example 3: FWI using optimization libraries

Does	this	scale	to	3D?
‣ case	study	w/	3D	Overthrust	velocity	model
‣ 801	x	801	x	207	grid	points	+	PML	(222	million	unknowns)
‣ 				10k	shot	records,	8	km	max.	offset,	3	seconds	recording	time																																														
(100	billion	data	points,	over	1.2	TB	of	data)

‣ spectral-projected	gradient	algorithm	from	minConf	library
‣ backtracking	line	search
‣ 15	iterations	w/	1080	shot	records	per	iteration

27

⇠

Friday, October 6, 2017

Example 3: FWI using optimization libraries
1 # Optimization parameters

2 fevals = 15

3 batchsize = 1080

4

5 # Objective function that is passed to library

6 function objective_function(x)

7

8 # update model

9 model0.m = reshape(x,model0.n);

10

11 # select batch

12 idx = randperm(dobs.nsrc)[1:batchsize]

13 dsub = subsample(dobs,idx)

14 qsub = subsample(q,idx)

15

16 # fwi function value and gradient

17 fval, grad = fwi_misfit(model0,qsub,dsub;options=opt)

18

19 # reset gradient in water column to 0.

20 grad = reshape(grad,model0.n)

21 grad[:,:,1:21] = 0.f0

22

23 return fval, vec(grad)

24 end

25

26 # Bound projection

27 Proj(x) = median([mmin x mmax],2)

28

29 # FWI with spectral projected gradient from minConf library

30 x,fval = minConf_SPG(objective_function,vec(model0.m),Proj,opt)

Set	up	3D	FWI	in	<	50	lines	of	code:
‣ possible	to	work	w/	subset	of	shots
‣ still	access	to	gradient	(mute,	scale	etc.)
‣ change	from	SPG	to	L-BFGS	by	modifying	

2	lines	of	code
‣ works	with	out-of-core	data	containers	

(handle	arbitrary	sized	data	sets)
‣ 4	minutes	per	gradient	(1	node,	20	

threads)

Friday, October 6, 2017

Example 3: FWI using optimization libraries

29

x	=	4	km y	=	4	km

Friday, October 6, 2017

Example 3: FWI using optimization libraries

30

z	=	400	m

z	=	800	m

Friday, October 6, 2017

Example 4: Serial and parallel SGD

What	about	parallel	algorithms?
‣ parallel	version	of	stochastic	gradient	descent:	elastic	average	SGD
‣ change	from	serial	to	parallel	version	in	few	lines	of	code

Case	study	for	LS-RTM	(but	could	be	used	for	FWI	as	well):

‣ 																								are	left-	and	right	preconditioners	(model-,	data-topmute,	scaling,	etc.)

31

(Zhang	et	al.,	2015)

minimize
c�m

1

2
|| M�1

l JM�1
r

c�m�M�1
l �d||22

M�1
l ,M�1

r

(e.g.	Herrmann	et	al.,	2008;	Dai	et	al.,	2012)

Friday, October 6, 2017

Example 4: LS-RTM w/ serial and parallel SGD

32

Algorithm 1 Preconditioned LS-RTM with SGD

for j = 1 to n do

rj = M

�1
l Jr(j)M

�1
r xj �M

�1
l �dr(j)

gj = M

�>
r J

>
r(j)M

�>
l rj

tj =
krjk2
kgjk2

xj+1 = xj � tjgj

end for

1 # Stochastic gradient descent

2 batchsize = 10

3 niter = 32

4

5 for j=1:niter

6 # Select batch

7 idx = randperm(dD.nsrc)[1:batchsize]

8 Jsub = subsample(J,idx)

9 dsub = subsample(dD,idx)

10

11 # Compute residual and gradient

12 r = Ml*Jsub*Mr*x - Ml*dsub

13 g = Mr’*Jsub’*Ml’*r

14

15 # Step size and update variable

16 t = norm(r)^2/norm(g)^2

17 x -= t*g

18 end

Friday, October 6, 2017

Example 4: LS-RTM w/ serial and parallel SGD

33

Algorithm 2 Preconditioned LS-RTM with elastic average SGD

for j = 1 to n do

for k = 1 to p do

rj = M

�1
l JjkM

�1
r x

k
j �M

�1
l �djk

gj = M

�>
r J

>
jkM

�>
l rj and

x

k
j+1 = x

k
j � ⌘gk

j (x
k
j)� ↵(xk

j � x̃j)

end for

x̃j+1 = (1� �)x̃j + �(1p
Pp

i=1 x
i
j)

end for

1 # Gradient function

2 @everywhere function update_x(Ml,J,Mr,x,d,eta,alpha,xav)

3 r = Ml*J*Mr*x - Ml*d

4 g = Mr’*J’*Ml’*r

5 return x - eta*g - alpha*(x - xav)

6 end

7 update_x_par = remote(update_x) # Parallel function wrapper

8

9 for j=1:niter

10 @sync begin

11 for k=1:p

12

13 # Select batch

14 idx = randperm(dD.nsrc)[1:batchsize]

15 Jsub = subsample(J,idx)

16 dsub = subsample(dD,idx)

17

18 # Calculate x update in parallel

19 xnew[:,k] = update_x_par(Ml,Jsub,Mr,x[:,k],

20 dsub,eta,alpha,xav)

21 end

22 end

23

24 # Update average variable

25 xav = (1 - beta)*xav + beta*(1/p *sum(x,2))

26 x = copy(xnew)

27 end

Friday, October 6, 2017

Example 4: LS-RTM w/ serial and parallel SGD

34

‣ marine	streamer	acquisition
‣ 320	shots
‣ 4	km	maximum	offset
‣ 32	iterations	w/	10	shots	per	iteration
‣ 1	pass	through	data

Friday, October 6, 2017

Example 5: Compressive inversion

35

Challenges	of	large-scale	3D	inversion:
‣ save	forward	wavefields	for	gradient
‣ domain	decomposition,	checkpointing,	boundary	reconstruction
‣ on-the-fly	DFT	for	frequency	domain	gradients

Devito	allows	to	easily	implement:
‣ boundary	reconstruction
‣ on-the-fly	DFT
‣ domain	decomposition	+	checkpointing	require	more	effort	(w.i.p.)

(Sirgue	et	al.,	2010)

Friday, October 6, 2017

Example 5: Compressive inversion

36

Implement	inversion	with	on-the-fly	DFT	in	Devito:
‣ sum	wavefields	in	the	forward	time	loop
‣ two	extra	lines	of	Python	code

‣ similar	change	for	gradients

Run	FWI	or	LS-RTM	at	any	scale:
‣ only	save	few	frequency-domain	wavefields
‣ integrates	seamlessly	into	Julia	framework
‣ applications:	source	encoded/simultaneous	source	FWI	and	LS-RTM

(e.g.	Romero	et	al.,	2000;	Krebs	et	al.,	2009;	Herrmann	et	al.,	2009;	Dai	et	al.,	2013)

Friday, October 6, 2017

Example 5a: Compressive FWI

37

FWI	example	revisited 					FWI	revisited:
‣ same	data	and	script	as	before	
‣ SGD	w/	line	search
‣ overlapping	frequency	bands	from	3-15	Hz	
‣ only	save	5	wavefields	in	memory

Friday, October 6, 2017

Example 5b: Compressive imaging

Imaging	with	frequency	subsampling	more	challenging:
‣ subsampling	creates	noisy	images
‣ want	sharp	image	(broad	frequency	band)	from	few	frequencies

Sparsity-promoting	“compressive”	LS-RTM:
‣ frequency-domain	imaging	w/	time-domain	modeling
‣ work	with	subsets	of	random	shots	and	frequencies
‣ sparsity-promotion	to	address	artifacts

38

minimize

�m
�kC �mk1 +

1

2

kC �mk22

subject to: FJ �m = F�d

(Herrmann	and	Li,	2012;	Dai	et	al.,	2013)

Friday, October 6, 2017

Example 5b: Compressive imaging

39

Iteration	2

‣ per	iteration:	20	randomly	select	
shots	w/	10	random	frequencies	each

Friday, October 6, 2017

Example 5b: Compressive imaging

40

Iteration	5

‣ per	iteration:	20	randomly	select	
shots	w/	10	random	frequencies	each

Friday, October 6, 2017

Example 5b: Compressive imaging

41

Iteration	10

‣ per	iteration:	20	randomly	select	
shots	w/	10	random	frequencies	each

Friday, October 6, 2017

Example 5b: Compressive imaging

42

Iteration	15

‣ per	iteration:	20	randomly	select	
shots	w/	10	random	frequencies	each

Friday, October 6, 2017

Example 5b: Compressive imaging

43

Iteration	20

‣ per	iteration:	20	randomly	select	
shots	w/	10	random	frequencies	each

Friday, October 6, 2017

Example 5b: Compressive imaging

44

Iteration	25

‣ per	iteration:	20	randomly	select	
shots	w/	10	random	frequencies	each

Friday, October 6, 2017

Example 5b: Compressive imaging

45

Iteration	30

‣ per	iteration:	20	randomly	select	
shots	w/	10	random	frequencies	each

Friday, October 6, 2017

Example 6: Imaging in the presence of salt

Imaging	with	salt	models:
‣ backscattered	energy	from	salt	interfaces	causes	low-frequency	artifacts
‣ Laplacian	filtering,	wavefield	filtering,	alternative	imaging	conditions

SPLS-RTM	with	linearized	inverse	scattering	imaging	condition:
‣ derive	forward/adjoint	pair	of	ISIC

46

(Whitmore	et	al.,	2012;	Witte	and	Herrmann,	2017)

b
J

>�d =
X

t

(
diag

⇣
ü[t]�m

⌘⇣
F

>P>
r �d

⌘
[t] +

3X

i=1

diag

@u[t]

@xi

!
@

@xi

F

>P>
r �d

!
[t]

)

b
J�m =

(
PrFdiag

⇣
ü[t]�m

⌘
�m+ Pr

3X

i=1

F

@

@xi
diag

@u[t]

@xi

!
�m

)

Friday, October 6, 2017

‣ sparsity-promoting	LS-RTM
‣ linearized	inverse	scattering	imaging	condition
‣ 960	shots,	10	seconds	recording
‣ 15	Hz	peak	frequency
‣ estimate	source	wavelet

Example 6: Imaging in the presence of salt

0 5 10 15 20

Distance [km]

0

1

2

3

4

5

6

7

8

9

D
e

p
th

 [
km

]

1.5

2

2.5

3

3.5

4

4.5

V
e
lo

ci
ty

 [
km

/s
]

0 5 10 15 20

Lateral position [km]

0

1

2

3

4

5

6

7

8

9

D
e
p
th

 [
km

]

0 5 10 15 20

Lateral position [km]

0

1

2

3

4

5

6

7

8

9

D
e
p
th

 [
km

]

SPLS-RTMRTM

(joint	work	with	Mengmeng	Yang)

Friday, October 6, 2017

‣ sparsity-promoting	LS-RTM
‣ linearized	Bregman	w/	18	iterations
‣ 960	shots,	10	seconds	recording
‣ 100	shots	per	iteration,	2	data	passes
‣ estimate	source	wavelet	on	the	fly

Example 6: Imaging in the presence of salt

(joint	work	with	Mengmeng	Yang)

4 4.5 5 5.5 6 6.5 7

Time [s]

-4

-2

0

2

4

6

A
m

p
lit

u
d
e

×10 -3

observed data

modeled data

3 3.5 4 4.5 5 5.5 6

Depth [km]

-5

0

5

δ
 m

 [
s

2
/k

m
2
]

×10 -4

true image

recovered image

Friday, October 6, 2017

Summary

Julia	framework	for	seismic	modeling	and	inversion
‣ modular	software	structure
‣ matrix-free	linear	operators	and	out-of-core	SEG-Y	data	containers
‣ implement	variety	of	inverse	problems	in	few	lines	of	code
‣ efficient	and	fast	PDE	solves	through	Devito
‣ parallelization	w/	resilience	to	hardware	failures
‣ interface	optimization	libraries
‣ all	ingredients	for	LS-RTM:	correct	adjoints,	artifact-free	salt	imaging
‣ scales to large-scale 3D problems

49
Friday, October 6, 2017

The road ahead

Map	Julia	Devito	to	the	cloud:
‣ provider	independent	(AWS,	Google,	Microsoft	Azure	or	possibly	others)
‣ utilize	full	range	of	cloud	services	(auto-scaling,	elastic	cache,	etc.)
‣ scale	algorithms	to	ANY	number	of	workers

Possible	future	workflows:
‣ data	sets	stored	in	cloud	(already	some	SEG	datasets	available)
‣ bring	algorithms	to	the	cloud	and	to	the	data
‣ anyone	can	buy	cloud	time	and	run	certain	algorithms	on	a	data	set
‣ no	need	to	buy	and	maintain	expensive	HPC	clusters

50
Friday, October 6, 2017

Reproducible examples

Examples	from	this	talk	can	be	found	in	the	software	release:
‣ FWI	with	a	line	search

‣ 2D	and	3D	FWI	with	spectral-projected	gradient	descent

‣ Preconditioned	LS-RTM	w/	SGD

‣ more	to	come!

51

https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/Imaging/TimeDomain/2DLSRTM/scripts/lsrtm_marmousi.jl

https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl

https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/3DFWI/scripts/fwi_overthrust_3D.jl

https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D_linesearch.jl

Friday, October 6, 2017

https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl

Tutorial for data IO with SeisIO.jl

Demonstration	and	tutorial	on	Youtube:
• read	and	write	SEG-Y	in	Julia	(chunking,	read/write	blocks,	create	look-up	tables)
• parallel	scanning	and	reading	of	arbitrary	size	data	sets

• SeisIO.jl	on	git:	https://github.com/slimgroup/SeisIO.jl
52

https://www.youtube.com/watch?v=tx530QOPeZo

Friday, October 6, 2017

https://github.com/slimgroup/SeisIO.jl
https://github.com/slimgroup/SeisIO.jl
https://www.youtube.com/watch?v=tx530QOPeZo
https://www.youtube.com/watch?v=tx530QOPeZo

Acknowledgements

This	research	was	carried	out	as	part	of	the	SINBAD	project	with	the	
support	of	the	member	organizaqons	of	the	SINBAD	Consorqum.

53
Friday, October 6, 2017

