Philipp A. Witte, Mathias Louboutin and Felix J. Herrmann

SLM@

University of British Columbia

Research goals

7.5 7.5

10.0

10.0

SLIM yesterday:

12.5

w
w
Velocity [km/s]

15.0

w
(=)

17.5

SLIM today:

20.0
5 10 15 0 5 10 15 20

Lateral X position [km] Lateral X position [km]

Depth [km]

0 2 46 § 10 12 14 16
Lateral position [km]

Lateral position [km]

2

Friday, October 6, 2017

Research goails g 3
10.0 10.0 35 %
SLIM yesterday:
| SRR SUM today:

Lateral X position [km] Lateral X position [km]

3 orders of magnitude

Depth [km]

Lateral position [km]

0 5 10 15 20

Lateral position [km]

2 more to go

3

Friday, October 6, 2017

Motivation

Academic software frameworks:
> only for small 2D/3D problems (Madagascar, Seismiclulia) or
> unmaintainable low-level black-box spaghetti codes

> without detailed knowledge of code, hard to:

- change a line search

- keep history of gradients (e.g for SPG)

- change parallelization

- change the underlying physics, correct adjoints

But there is also iWave:
> well designed, abstractions
> high accuracy, testing framework, correct adjoints

> Pput: written in C/C++, not primarily designed for performance, not very
Intuitive to use

A

Friday, October 6, 2017

Motivation

Potential applications of software:
> linear least squares problems such as LS-RTM

1
minimize || VF(mo,q) 6m — id|[3

> non-linear optimization problems such as FWI

1
minimize gb(F(m,q) — d) ,Where ¢(x) = §HXH%
Maintain flexibility:
> change F(m, q), the underlying wave equation solver
> change the formulation (different misfits ¢(x), constraints, penalties)

» choose from large variety of optimization algorithms

5

Friday, October 6, 2017

Overview of Julia Devito

Julia Devito is a wave-equation based inversion framework:

> non proprietary Julia programming language (public license)

> uses Devito to express and solve underlying PDEs

> matrix-free linear operators and out-of-core SEG-Y data containers
> resilient parallelization

> unified 2D-3D environment

> can interact with variety of general-purpose optimization libraries
> designed to push inversion to the next scale

> scalable but also flexible

6

Friday, October 6, 2017

Overview of Julia Devito

linear opeartors, data containers

Julia l parallel modeling function

parallelization: distribute sources, data

l serial modeling function

interface to Devito (Python)
l call code l T return results

set up PDEs, discretization generate code <olve PDE
generate code + JIT compilation —_—

Python C

Friday, October 6, 2017

Overview of Julia Devito

linear opeartors, data containers

Julia parallel modeling function

parallelization: distribute sources, data
l serial modeling function

interface to Devito (Python)

call code l T return results

set up PDEs, discretization generate code <olve PDE
generate code + JIT compilation —_—

Python C

Friday, October 6, 2017

Linear operators and data containers

Linear algebra notation is intuitive for seismic operations:
> forward modeling/time reversal modeling

d=P,.FP'q, q=P,F' P'd
> demigration/migration
5d =J ém, om=J'sd
> FWI gradients, Gauss-Newton step, etc.
g=J" (P, FP/q—doys)
om = (J'J)"'J"sd

Linear operators and data containers

Challenges of this approach for time-domain modeling/inversion:
> seismic data is multidimensional volume with meta data
> simply vectorizing the input data not an option
» data typically too big to fit in memory

d=P.FP/ q

10

Linear operators and data containers

Challenges of this approach for time-domain modeling/inversion:
> seismic data is multidimensional volume with meta data

> simply vectorizing the input data not an option
» data typically too big to fit in memory

»cannot be formed explicitly
»need physical information (model, source/receiver locations)

11

Friday, October 6, 2017

Linear operators and data containers

Challenges of this approach for time-domain modeling/inversion:
> seismic data is multidimensional volume with meta data

> simply vectorizing the input data not an option
» data typically too big to fit in memory

»cannot be kept in memory »cannot be formed explicitly
»not a vector »need physical information (model, source/receiver locations)
»contains header information

12

Friday, October 6, 2017

Linear operators and data containers

Abstract in-core and out-of-core data vectors:
> inspired by iWave, RVL and others (Symes, Padula) (joint work with Keegan Lensink)
> can be formed directly from single/multiple SEG-Y files
> parallel read/write chunks of data

julia> container = segy_scan(pwd(), "overthrust_shots", ["GroupX","GroupY"]);

Scanning ... /home/slim/pwitte/overthrust_shots_41_60.segy
Scanning ... /home/slim/pwitte/overthrust_shots_21_40.segy
Scanning ... /home/slim/pwitte/overthrust_shots_61_80.segy
Scanning ... /home/slim/pwitte/overthrust_shots_1_20.segy
Scanning ... /home/slim/pwitte/overthrust_shots_81_97.segy

julia> d = joData(container)
(opesciSLIM.TimeModeling. joData{Float32}, "Julia seismic data container", 15029763, 1)

julia> size(d)
(15029763, 1)

julia> norm(d)
7371.35f0

julia> dot(d,d)
5.432854f7

julia> typeof(d.data[1l])
SeisI0.SeisCon

(Instructional video at: https://www.youtube.com/watch?v=tx530Q0PeZ0)

Friday, October 6, 2017

https://www.youtube.com/watch?v=tx530QOPeZo
https://www.youtube.com/watch?v=tx530QOPeZo

Linear operators and data containers

Matrix-free linear operators
> read necessary meta information from data objects
> use like explicit matrices

julia> F = joModeling(info,model®)
(opesciSLIM.TimeModeling. joModeling{Float32,Float32}, "forward wave equation"”, 27566740206, 27566740206)

julia> Pr = joProjection(info,d.geometry)
(opesciSLIM.TimeModeling. joProjection{Float32,Float32}, "restriction operator"”, 15029763, 27566740206)

julia> Ps = joProjection(info,q.geometry)
(opesciSLIM.TimeModeling. joProjection{Float32,Float32}, "restriction operator", 72847, 27566740206)

julia> d_pred = Pr*F*ps'*q

Friday, October 6, 2017

Overview of Julia Devito

linear opeartors, data containers

parallel modeling function

parallelization: distribute sources, data

serial modeling function

interface to Devito (Python)
l call code l T return results

set up PDEs, discretization generate code <olve PDE
generate code + JIT compilation —_—

Julia

Python C

Friday, October 6, 2017

Parallelization

Modeling multiple shots happens in parallel:

julia> d = Pr*F*ps'*q
From worker 2: Nonlinear forward modeling (source no. 1)
From worker 5: Nonlinear forward modeling (source no. 4)
From worker 3: Nonlinear forward modeling (source no. 2)

From worker 4: Nonlinear forward modeling (source no. 3)
(opesciSLIM.TimeModeling. joData{Float32}, "Seismic data vector", 240480, 1)

Same for adjoint modeling:

julia> q = Ps*F'*Pr'*d
From worker 2: Nonlinear adjoint modeling (source no. 2)
From worker 3: Nonlinear adjoint modeling (source no. 3)
From worker 4: Nonlinear adjoint modeling (source no. 1)
From worker 5: Nonlinear adjoint modeling (source no. 4)

(opesciSLIM.TimeModeling. joData{Float32}, "Seismic data vector"”, 2004, 1)

16

Friday, October 6, 2017

Parallelization

Parallelization in our framework:
> 2 levels of parallelization
> distribution of sources/shots (shared/distributed memory)
> parallelization over modeling domain via OpenMP (shared memory)
> in future Devito release: domain decomposition for distributed memory

Julia’s parallel framework has built-in resilience:

> in case of worker/node failure, workload is redistributed to remaining
pProcessors

» program is not interrupted

17

Friday, October 6, 2017

Overview of Julia Devito

linear opeartors, data containers

Julia l parallel modeling function

parallelization: distribute sources, data

serial modeling function

interface to Devito (Python)

call code

return results

set up PDEs, discretization generate code <olve PDE
generate code + JIT compilation —_—

Python C

Friday, October 6, 2017

Interface to Devito
(joint work with Mathias Louboutin)
What is Devito?
> domain-specific language for Python
> symbolically set up variety of wave equations (acoustic, anisotropic)
> Devito compiler automatically generates optimized C code

> optimizes Flop count, loops, memory alighnment, etc.
> details in the next talk by Mathias

Interfacing Devito from Julia:
> Julia allows direct Python and C function calls
» call Devito functions that generate optimized C code
> call generated C code directly from Julia (no data copies)

19

Friday, October 6, 2017

Numerical case studies

Full-waveform inversion:
> vanilla FWI w/ gradient descent and line search
> FWI with different misfit functions
> Interfacing optimization libraries for more advanced algorithms

Least-squares migration:
> parallel algorithms: LS-RTM w/ elastic average SGD
> strategies for large-scale migration: compressive LS-RTM
> imaging in the presence of salt

20

Friday, October 6, 2017

Example 1: FWI with a line search

Full-waveform inversion w/ least squares misfit:

1
minimize §H F(m,q) —d|”

Optimization:
> gradientgivenby g=J'(F(m,q)—d)
> implement (stochastic) gradient descent w/ approximate line search
> bound constraints for velocity

21

Friday, October 6, 2017

Example 1: FWI with a line search

Runnable Julia code:

1 # Main loop
> for j=l:maxiter

4 # select current batch

5 idx = randperm(dobs.nsrc) [1:batchsize]
6 dsub = subsample(dobs,idx)

7 qsub = subsample(q,idx)

9 # get fwl objective function value and gradient
10 f, g = fwi_objective(modelO,qgsub,dsub)

11

linesearch | ively:
13 step = backtracking_linesearch(vec(modelO.m), g; varargs...) « alternatively:

14 > line search w/ (strong) Wolfe conditions

15 # Update model and bound projection » Barzilai-Borwein step size
16 modelO.m = proj(modelO.m + step)

12

> constant step size

17

18 # termination criteria »efC.
19 if f <= fTerm || norm(g) <= gradTerm

20 break

21 end

22 end

Friday, October 6, 2017

Example 1: FWI with a line search

True model
0
1 >
n
< Py
Q 3 [y,
a 38
4 >
e ——————————
2
5 I I I I I I I I
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0 Starting model
1 > T ; .
_ 0 1.0 - —— Backtracking line search w/ Armijo-Goldstein
< 2
g ’ 30
S v 0.8
4 3
2 ©
5 I I I I I I I I ;
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 2
c 0.6 -
)
Backtracking line search w/ Armijo-Goldstein conditions "_5
° g
1 5 ©
_ © = 0.4-
Ez 2 4 ;E 2
< Py
g ’ 39
q) —
4 > 0.2
R — 2
5 I I I I I I I I T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Lateral position [km] Iteration No

23

Friday, October 6, 2017

Example 2: FWI with different misfit functions

Previous example:
> objective function that returns function value and gradient for £5 -misfit

9 # get fwl objective function value and gradient
10 f, g = fwi_objective(modelO,qgsub,dsub)

Change to different misfit:
> if observed data has strong outliers: (pseudo-) Huber misfit

— €2 \/ 1+ X / €)* — 1 (Guitton and Symes, 2003; van Leeuwen et al., 2013)

> gradient given by

Vo(x) =

X

V14 (x/€)?

24

Friday, October 6, 2017

Example 2: FWI with different misfit functions

Objective function w/ £2-misfit Objective function w/ pseudo-Huber misfit:
1 # FWI with least squares misfit function 1 # FWI with pseudo-huber misfit function
> function fwi_objective_l2(model: :Model,q::joData,d::joData) > function fwi_objective_huber(model: :Model,q::joData,d::joData)
3 3
4 # Set up operators 4 # Set up operators
5 nt = get_computational_nt(q.geometry,d.geometry,model) 5
6 info = Info(prod(model.n),d.nsrc,nt) 6
7 F = joModeling(info,model,q.geometry,d.geometry) : Data residual, function value and gradient
s J = joJacobian(F,q) g = Fxq - d
9 9 eps”2*xsqrt(1l + dot(r,r)/eps”2) - eps™2 # e.g. eps=1
10 Data residual, function value and gradient 10 = J’*r/sqrt(1 + dot(r,r)/eps”2)
11 = Fxq - d 11 return 1,g
12 .5*xnorm(r,2) "2 1> end
13 J’*r
14 return f,g
15 end

== change misfit independently from the rest of the code

Friday, October 6, 2017

Example 3: FWI using optimization libraries

What if we want to use more complicated algorithms?
> previous misfit functions can be passed to third-party optimization libraries
> access to large variety of optimization methods
> no need to implement everything from scratch

Tested for various libraries:
> Julia implementation of minConf (included in software release) (Schmidt et al., 2009)

> Bas’ framework for constrained optimization w/ projections onto intersections
of convex sets (Peters and Herrmann, 2017)

> NLopt.jl (native Fortran library) (Johnson et al., 2017)
> Optim.jl (native Julia library) (White et al., 2017)

26

Friday, October 6, 2017

Example 3: FWI using optimization libraries

Does this scale to 3D?
> case study w/ 3D Overthrust velocity model
» 801 x 801 x 207 grid points + PML (222 million unknowns)

» ~ 10k shot records, 8 km max. offset, 3 seconds recording time
(100 billion data points, over 1.2 TB of data)

» spectral-projected gradient algorithm from minConf library
> backtracking line search
» 15 iterations w/ 1080 shot records per iteration

27

Friday, October 6, 2017

Example 3: FWI using optimization libraries

Ne) 09 ~ (@) ot =~ w V) =

\V) [\) (\V] N [\) \V) N (\] N = = = = = = = = = =
(0.9] ~ [@)) ot SN w (\V] = (@) Ne) (0.9] ~ (@) ot I°N w (\V] = ()

N
©

Optimization parameters
fevals = 15
batchsize = 1080

Objective function that 1is passed to library
function objective_function(x)

update model
modelO.m = reshape(x,model0.n);

select batch Set up 3D FWI in <50 lines of code:
idx = randperm(dobs.nsrc) [1:batchsize]
dsub = subsample(dobs,idx) > possible to work w/ subset of shots
qsub = subsample(q, 1dx) > still access to gradient (mute, scale etc.)
fwi function value and gradient > Change from SPG to L-BFGS by mOdIfylng
fval, grad = fwi_misfit(modelO,qgsub,dsub;options=opt) 2 "nes Of COde
reset gradient in water column to O. » works with out-of-core data containers
grad : rejh;ﬁ(grgdéfgodelo-n) (handle arbitrary sized data sets)
grad[:,:,1: = 0. : :

> 4 minutes per gradient (1 node, 20
return fval, vec(grad) threads)

end

Bound projection
Proj(x) = median([mmin x mmax],2)

FWI with spectral projected gradient from minConf library

50 X,fval = minConf_SPG(objective_function,vec(modelO.m),Proj,opt)

Friday, October 6, 2017

Depth [km]

X =4 km

H 9)]

w

Velocity [km/s]

Depth [km]

2.5

5.0

7.5

10.0

12.5

15.0

17.5

S Ul

w

Velocity [km/s]

N

W

Depth [km]

N

o

N

Velocity [km/s]

w

0.0

29

2.5

5.0

7.5

10.0
Lateral Y position [km]

12.5

15.0

17.5

Depth [km]

5_

Example 3: FWI using optimization libraries

v=4km

0.0

Depth [km]

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Depth [km]

—

5.0

10.0
Lateral X position [km]

12.5

Friday, October 6, 2017

IN Ul
Velocity [km/s]

w

w H Ul

Velocity [km/s]

N

(9]

D
Velocity [km/s]

w

30

Example 3: FWI using optimization libraries

Lateral Y position [km]

Lateral Y position [km]

0.0

N
Ul

V1
o

~
92}

|
O
o

=
N
(92

V1
o

0.0

N
(02

V1
o

~
92}

|
O
o

=
N
(92

V1
o

5

10

15

Lateral X position [km]

5

10

15

Lateral X position [km]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

5

10

15

Lateral X position [km]

5

10

15

Lateral X position [km]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

5

10

15

Lateral X position [km]

5

10

15

Lateral X position [km]

Velocity [km/s]

Velocity [km/s]

Zz=400 m

z=800m

Friday, October 6, 2017

-

Example 4: Serial and parallel SGD

What about parallel algorithms?
> parallel version of stochastic gradient descent: elastic average SGD (Zhanget al., 2015)
> change from serial to parallel version in few lines of code

Case study for LS-RTM (but could be used for FWI as well):

o] _ 1 _
minimize §H M, LIM - om — M, Lod||s (e.g. Herrmann et al., 2008; Dai et al., 2012)

om

> Ml_l, M ! are left- and right preconditioners (model-, data-topmute, scaling, etc.)

31

Friday, October 6, 2017

Algorithm 1 Preconditioned LS-RTM with SGD
for j =1 tondo
rj = M; T M x; — My Hd,
g =M, I M r;
gl)
L = gl)
Xj+1 = Xj — 1;8;
end for

10

11
12
13
14
15
16
17

18

32

Example 4: LS-RTM w/ serial and parallel SGD

Stochastic gradient descent
batchsize = 10
niter = 32

for j=l:niter
Select batch
idx = randperm(dD.nsrc) [1:batchsize]
Jsub = subsample(J,idx)
dsub = subsample(dD,idx)

Compute residual and gradient
= Ml*Jsub*Mr*x - Ml*dsub

= Mr’*Jsub’*M1’*r

Step size and update variable
= norm(r) “2/norm(g) "2
— t*g

Friday, October 6, 2017

Algorithm 2 Preconditioned LS-RTM with elastic average SGD

for) =1ton do
for £k =1 to p do

r; = M; ' J M P — M od

gi = M;TJkaMl_Trj and

Xy =k gl xt) — (-
end for
X1 = (1-B)%X; + B8(; X1 x))
end for

X;)

33

—

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Example 4: LS-RTM w/ serial and parallel SGD

Gradient function
Q@everywhere function update_x(M1l,J,Mr,x,d,eta,alpha,xav)
r = MI*xJxMrxx - Mlxd
g = Mr’*J’*xM1’°*r
return x - etaxg - alpha*(x - xav)
end
update_x_par = remote(update_x) # Parallel function wrapper

for j=1l:niter
@sync begin
for k=1:p

Select batch

idx = randperm(dD.nsrc) [1:batchsize]
Jsub = subsample(J,idx)

dsub = subsample(dD,idx)

Calculate x update in parallel

xnew[:,k] = update_x_par(M1l,Jsub,Mr,x[:,k],
dsub,eta,alpha,xav)

end
end

Update average variable
xav = (1 - beta)*xav + betax(1l/p *sum(x,2))
x = copy(xnew)

end

Friday, October 6, 2017

Example 4: LS-RTM w/ serial and parallel SGD

True image
0.0
.04 > marine streamer acquisition
002 > 320 shots
g % > 4 km maximum offset
g . » 32 iterations w/ 10 shots per iteration
~0.02 8 > 1 pass through data
—-0.04
0.95 H
0.0 0.90
- 0.04 S
0.5 g 0.85 A
1.0 0.02 ‘E _é
E E g) 0.80 o
21'5 0.00 § %
§ 2.0 § * 0.75 1
~0.02 E
2.5 0.70 A
—-0.04
>0 0.65 - | | | | | |
5 10 15 20 25 30
Ilteration No.

34

Friday, October 6, 2017

Example 5: Compressive inversion

Challenges of large-scale 3D inversion:
> save forward wavefields for gradient
> domain decomposition, checkpointing, boundary reconstruction
> on-the-fly DFT for frequency domain gradients (Sirgue et al., 2010)

Devito allows to easily implement:
> boundary reconstruction

> on-the-fly DFT
» domain decomposition + checkpointing require more effort (w.i.p.)

35

Friday, October 6, 2017

Example 5: Compressive inversion

Implement inversion with on-the-fly DFT in Devito:
> sum wavefields in the forward time loop
> two extra lines of Python code

On-the-fly real-valued DFT
egn_f_r = [EqCufr, ufr + u*cos(Z2*np.pi*f*time*dt))]
egn_f_1i = [EqCufi, ufi + u*sin(Z2*np.pi*f*time*dt))]

> similar change for gradients

Run FWI or LS-RTM at any scale:
» only save few frequency-domain wavefields
> integrates seamlessly into Julia framework
> applications: source encoded/simultaneous source FWI and LS-RTM

(e.g. Romero et al., 2000; Krebs et al., 2009; Herrmann et al., 2009; Dai et al., 2013)
36

Friday, October 6, 2017

Depth [km]
w N = o

D

(9]

True model

Example 5a: Compressive FWI

O _
o

Depth [km]
A W N R~ O

9)

2.5

5.0

7.5

10.0

Starting model

12.5

15.0

17.5

20.0

O _
o

Depth [km]
N W N L O

Ul

2.5

5.0

7.5

Compressive frequency-domain FWI

10.0

12.5

15.0

17.5

0.0

37

2.5

5.0

7.5

10.0
Lateral position [km]

12.5

15.0

17.5

20.0

I Ul
Velocity [km/s]

w

N

I Ul
Velocity [km/s]

w

N

I Ul
Velocity [km/s]

w

N

FW!I revisited:

Normalized function value

>

>

>

>

same data and script as before

SGD w/ line search

overlapping frequency bands from 3-15 Hz
only save 5 wavefields in memory

—— Compressive frequency-domain FWI

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
lteration No.

Friday, October 6, 2017

Example 5b: Compressive imaging

Imaging with frequency subsampling more challenging:
> subsampling creates noisy images
> want sharp image (broad frequency band) from few frequencies

Sparsity-promoting “compressive” LS-RTM: (Herrmann and Li, 2012; Dai et al., 2013)
> frequency-domain imaging w/ time-domain modeling
» work with subsets of random shots and frequencies
> sparsity-promotion to address artifacts

1
minimize \||Cdml|; + §\|C5m\|g

dm

subject to: FJom = Fod

38

Friday, October 6, 2017

Example 5b: Compressive imaging

lteration 2

dual variable

0.0
- 0.16 1 1 .
05 > per iteration: 20 randomly select
. 008 T shots w/ 10 random frequencies each
' kY,
g %
c 1 0.00 §
o)
8 2.0 S
~0.08 5
o
2 —— compressive LS-RTM
~0.16
3.0
0.95
primal variable 5
0.0 O
= 0.90 -
- 0.04 T
0.5 O
(@)
- -
0.02 v
_ 0 & 2 0.85 |
E “n %
c 1 0.00 S o
7 <
0 2.0 =
~0.02 5 0.80 7
o
2.5
~0.04
3.0
5 10 15 20 25 30
Lateral position [km] Ilteration No.

39

Friday, October 6, 2017

Example 5b: Compressive imaging

lteration 5

dual variable

- 0.16 1 1 .
> per iteration: 20 randomly select
008 T shots w/ 10 random frequencies each
V4
= %
€ k2
< 0.00 &
_0.08 5
o
—— compressive LS-RTM
_0.16
0.95 -
S
0.0 O
= 0.90 -
- 0.04 T
0.5 IS
- -
1.0 0.02 § Cé) 0.85 -
51'5 0.00 & o
S 5
0 2.0 =
~0.02 5 0.80 -
o
2.5
_0.04
3.0
5 10 15 20 25 30
Lateral position [km] lteration No.

40

Friday, October 6, 2017

Depth [km]

Depth [km]

41

lteration 10

dual variable

Lateral position [km]

- ."..1 :..pflf

-

—

; -_#-F.__r‘

i re . .-.--' -
e -
. - & g o - -

- 0.16

0.08

0.00

|
o
o
s3]

—0.16

- 0.04

0.02

0.00

|
o
o
N

—0.04

Example 5b: Compressive imaging

Perturbation [s2/km?]

Perturbation [s2/km?]

Relative model error

> per iteration: 20 randomly select

shots w/ 10 random frequencies each

0.95 -

0.90 -

0.85 A

0.80 -

—— compressive LS-RTM

5 10 15 20 25 30
Ilteration No.

Friday, October 6, 2017

Example 5b: Compressive imaging

lteration 15

dual variable

- 0.16 1 1 .
> per iteration: 20 randomly select
008 T shots w/ 10 random frequencies each
V4
= %
ﬁ —_
< 0.00 &
~0.08 5
o
—— compressive LS-RTM
~0.16
0.95 -
S
= 0.90 -
- 0.04 T
0.5 I
= -
1.0 0.02 § .qz) 0.85 -
£ % s
P Q
< 15 0.00 & a
S 5
0 2.0 =
—0.02 5 0.80 -
o
2.5
~0.04
0 1 2 3 4 5 6 7 5 10 15 20 25 30
Lateral position [km] lteration No.

42

Friday, October 6, 2017

Example 5b: Compressive imaging

lteration 20

dual variable

0.0
e e - 0.16 " ' .
05 > per iteration: 20 randomly select
. 008 T shots w/ 10 random frequencies each
- <
=15 E
c 0.00 &
7] S s g
R e e e e e S ot e rics E
1 e RN . R e R oo —0.08 o
2.5 Sy e S s e e SN e e s
M SR - ' : S —— compressive LS-RTM
20 > ~0.16
= = — 0.95 -
0 1 2 3 4 5 6 7
S
£ 0.90 -
- 0.04 T
e;
o
— S
0.02 g v
= < 2 0.85 -
~ 0, L
< 0.00 § &
3 g
-]
—0.02 E 0.80 -
~0.04
0 1 2 3 4 5 6 7 5 10 15 20 25 30
Lateral position [km] lteration No.

43

Friday, October 6, 2017

Example 5b: Compressive imaging

lteration 25

dual variable

- 0.16 " " .
> per iteration: 20 randomly select
008 T shots w/ 10 random frequencies each
X
= %
ﬁ —
< 0.00 &
§ ' "-f*:_:':_":f:f.f_i';'f{i;;;..',.';‘. Lets r‘;
~0.08 5
o
—— compressive LS-RTM
—-0.16
0.95 -
S
= 0.90 -
0.04 T
©
(@)
_ =
0.02 g v
— X = 0.85 -
S b, ©
= - O
S 0.00 § 2
~0.02 5 0.80 1
(a
—0.04
0 1 > 3 4 : 6 7 5 10 15 20 25 30
Lateral position [km] lteration No.

44

Friday, October 6, 2017

Example 5b: Compressive imaging

lteration 30

dual variable

0.0
- 0.16 1 1 .
05 > per iteration: 20 randomly select
. 008 T shots w/ 10 random frequencies each
' Ry,
g B
c 1 0.00 §
o -
8 2.0 ""_'.'E;i_'.'::.:i.::". alat) _".;
_0.08 5
o
2.5 .
—— compressive LS-RTM
~0.16
3.0
0.95 -
o
0.0 = 0.90 -
- 0.04 T
0.5 ©
(@)
= -
0.02 v
_ 0 & 2 0.85 |
E “n %
c 1 0.00 § o
o -
8 2.0 r‘;
~0.02 E, 0.80 -
2.5
~0.04
3.0
0 1 2 3 4 5 6 7 5 10 15 20 25 30
Lateral position [km] lteration No.

45

Friday, October 6, 2017

Example é: Imaging in the presence of salt

Imaging with salt models:
> backscattered energy from salt interfaces causes low-frequency artifacts
> Laplacian filtering, wavefield filtering, alternative imaging conditions

SPLS-RTM with linearized inverse scattering imaging condition:
> derive forward/adjoint pair of ISIC (Whitmore et al., 2012; Witte and Herrmann, 2017)

J7od = ; {diag (ﬁ[t] © m) (FTPTT(Sd) t] + 7;ildiag (a;;[f]) aii (Fijéd) [t]}

Jom = {Periag (ﬁ[t] © m) om + P, Z F Y diag (8u[t]) 5m}

1 aXZ‘ 6’X7;

46

Friday, October 6, 2017

(joint work with Mengmeng Yang)

Depth [km]

sparsity-promoting LS-RTM
> linearized inverse scattering imaging condition
> 960 shots, 10 seconds recording

N ‘ > 15 Hz peak frequency

0 5 10 15 20 | » estimate source wavelet

Distance [km]

Velocity [km/s]
\ 4

RTM SPLS-RTM

Depth [km]

0 3} 10 15 20
Lateral position [km] Lateral position [km]

Friday, October 6, 2017

Example é: Imaging in the presence of salt

> sparsity-promoting LS-RTM (joint work with Mengmeng Yang)

> linearized Bregman w/ 18 iterations
> 960 shots, 10 seconds recording

> 100 shots per iteration, 2 data passes
> estimate source wavelet on the fly

103
6 a | | 1 1 1 1 1 1 1
observed data 0.2 F true source -
ar A modeled data || initial guess
3 ok ‘ ‘) 3 0.1 ——— estimated source
= =
S 0 A\ A \/| A ~ \ At s 0
Y
<l (| W v _ < 44
4 1 1 1 1 1 02 | I | I
4 4.5 5 5.5 6 6.5 7 0 0.05 0.1 0.15 0.2 0.25
Time [s] Time [s]
%1074
5 . ! ! ! ! ! .I - 2 | | | | | | | | |
—_ true image true source
° ') : recovered image 1.5 F initial guess -
_\%)) & A / /)) / 2 , A /) > -~ estimated source
~ 0 —~7 ¥y \ I\ N Nl >
n | \ \) 7\ o 1 =
= ‘ v : 5
< f 0.5 -
-5 B]]]]]]]
3 3.5 4 4.5 5 5.5 6 0 : : ' :
' ' ' 0 5 10 15 20 25 30 35 40 45 50
Depth [km]
Frequency [Hz]

Friday, October 6, 2017

Summary

Julia framework for seismic modeling and inversion
> modular software structure
> matrix-free linear operators and out-of-core SEG-Y data containers
> implement variety of inverse problems in few lines of code
> efficient and fast PDE solves through Devito
> parallelization w/ resilience to hardware failures
> interface optimization libraries
> all ingredients for LS-RTM: correct adjoints, artifact-free salt imaging

> scales to large-scale 3D problems

49

Friday, October 6, 2017

The road ahead

Map Julia Devito to the cloud:
» provider independent (AWS, Google, Microsoft Azure or possibly others)
» utilize full range of cloud services (auto-scaling, elastic cache, etc.)
» scale algorithms to ANY number of workers

Possible future workflows:
» data sets stored in cloud (already some SEG datasets available)
» bring algorithms to the cloud and to the data
» anyone can buy cloud time and run certain algorithms on a data set
» no need to buy and maintain expensive HPC clusters

50

Friday, October 6, 2017

Reproducible examples

Examples from this talk can be found in the software release:
> FWI with a line search

https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/Waveforminversion/TimeDomain/2DFW!|/scripts/fwi_overthrust 2D linesearch.jl

> 2D and 3D FWI with spectral-projected gradient descent

https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/Waveforminversion/TimeDomain/2DFWI/scripts/fwi_overthrust 2D.jl

https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/Waveforminversion/TimeDomain/3DFW!I/scripts/fwi_overthrust_3D.jl

» Preconditioned LS-RTM w/ SGD

https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/Imaging/TimeDomain/2DLSRTM/scripts/Isrtm _marmousi.|l

> more to come!

51

Friday, October 6, 2017

https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl

Tutorial for data 10 with SeislO. |

Demonstration and tutorial on Youtube:
e read and write SEG-Y in Julia (chunking, read/write blocks, create look-up tables)
e parallel scanning and reading of arbitrary size data sets

2 YouTube Search

https://www.youtube.com/watch?v=tx530Q0PeZo

e SeislO.jl on git: https://github.com/slimgroup/SeislO.jl

52

Friday, October 6, 2017

https://github.com/slimgroup/SeisIO.jl
https://github.com/slimgroup/SeisIO.jl
https://www.youtube.com/watch?v=tx530QOPeZo
https://www.youtube.com/watch?v=tx530QOPeZo

Acknowledgements

This research was carried out as part of the SINBAD project with the
support of the member organizations of the SINBAD Consortium.

Friday, October 6, 2017

