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Motivation

Academic software frameworks:
> only for small 2D/3D problems (Madagascar, Seismiclulia) or
> unmaintainable low-level black-box spaghetti codes

> without detailed knowledge of code, hard to:

- change a line search

- keep history of gradients (e.g for SPG)

- change parallelization

- change the underlying physics, correct adjoints

But there is also iWave:
> well designed, abstractions
> high accuracy, testing framework, correct adjoints

> Pput: written in C/C++, not primarily designed for performance, not very
Intuitive to use

A
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Motivation

Potential applications of software:
> linear least squares problems such as LS-RTM

1
minimize || VF(mo,q) 6m — id|[3

> non-linear optimization problems such as FWI

1
minimize gb( F(m,q) — d) ,Where ¢(x) = §HXH%
Maintain flexibility:
> change F(m, q), the underlying wave equation solver
> change the formulation (different misfits ¢(x), constraints, penalties)

» choose from large variety of optimization algorithms
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Overview of Julia Devito

Julia Devito is a wave-equation based inversion framework:

> non proprietary Julia programming language (public license)

> uses Devito to express and solve underlying PDEs

> matrix-free linear operators and out-of-core SEG-Y data containers
> resilient parallelization

> unified 2D-3D environment

> can interact with variety of general-purpose optimization libraries
> designed to push inversion to the next scale

> scalable but also flexible
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Overview of Julia Devito

linear opeartors, data containers

Julia l parallel modeling function

parallelization: distribute sources, data

l serial modeling function

interface to Devito (Python)
l call code l T return results

set up PDEs, discretization generate code <olve PDE
generate code + JIT compilation —_—

Python C
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Linear operators and data containers

Linear algebra notation is intuitive for seismic operations:
> forward modeling/time reversal modeling

d=P,.FP'q, q=P,F' P'd
> demigration/migration
5d =J ém, om=J'sd
> FWI gradients, Gauss-Newton step, etc.
g=J" (P, FP/q—doys)
om = (J'J)"'J"sd




Linear operators and data containers

Challenges of this approach for time-domain modeling/inversion:
> seismic data is multidimensional volume with meta data
> simply vectorizing the input data not an option
» data typically too big to fit in memory

d=P.FP/ q

10




Linear operators and data containers

Challenges of this approach for time-domain modeling/inversion:
> seismic data is multidimensional volume with meta data

> simply vectorizing the input data not an option
» data typically too big to fit in memory

»cannot be formed explicitly
»need physical information (model, source/receiver locations)
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Linear operators and data containers

Challenges of this approach for time-domain modeling/inversion:
> seismic data is multidimensional volume with meta data

> simply vectorizing the input data not an option
» data typically too big to fit in memory

»cannot be kept in memory »cannot be formed explicitly
»not a vector »need physical information (model, source/receiver locations)
»contains header information
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Linear operators and data containers

Abstract in-core and out-of-core data vectors:
> inspired by iWave, RVL and others  (Symes, Padula) (joint work with Keegan Lensink)
> can be formed directly from single/multiple SEG-Y files
> parallel read/write chunks of data

julia> container = segy_scan(pwd(), "overthrust_shots", ["GroupX","GroupY"]);

Scanning ... /home/slim/pwitte/overthrust_shots_41_60.segy
Scanning ... /home/slim/pwitte/overthrust_shots_21_40.segy
Scanning ... /home/slim/pwitte/overthrust_shots_61_80.segy
Scanning ... /home/slim/pwitte/overthrust_shots_1_20.segy
Scanning ... /home/slim/pwitte/overthrust_shots_81_97.segy

julia> d = joData(container)
(opesciSLIM.TimeModeling. joData{Float32}, "Julia seismic data container", 15029763, 1)

julia> size(d)
(15029763, 1)

julia> norm(d)
7371.35f0

julia> dot(d,d)
5.432854f7

julia> typeof(d.data[1l])
SeisI0.SeisCon

(Instructional video at: https://www.youtube.com/watch?v=tx530Q0PeZ0)
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Linear operators and data containers

Matrix-free linear operators
> read necessary meta information from data objects
> use like explicit matrices

julia> F = joModeling(info,model®)
(opesciSLIM.TimeModeling. joModeling{Float32,Float32}, "forward wave equation"”, 27566740206, 27566740206)

julia> Pr = joProjection(info,d.geometry)
(opesciSLIM.TimeModeling. joProjection{Float32,Float32}, "restriction operator"”, 15029763, 27566740206)

julia> Ps = joProjection(info,q.geometry)
(opesciSLIM.TimeModeling. joProjection{Float32,Float32}, "restriction operator", 72847, 27566740206)

julia> d_pred = Pr*F*ps'*q
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Overview of Julia Devito

linear opeartors, data containers

parallel modeling function

parallelization: distribute sources, data

serial modeling function

interface to Devito (Python)
l call code l T return results

set up PDEs, discretization generate code <olve PDE
generate code + JIT compilation —_—

Julia

Python C
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Parallelization

Modeling multiple shots happens in parallel:

julia> d = Pr*F*ps'*q
From worker 2: Nonlinear forward modeling (source no. 1)
From worker 5: Nonlinear forward modeling (source no. 4)
From worker 3: Nonlinear forward modeling (source no. 2)

From worker 4: Nonlinear forward modeling (source no. 3)
(opesciSLIM.TimeModeling. joData{Float32}, "Seismic data vector", 240480, 1)

Same for adjoint modeling:

julia> q = Ps*F'*Pr'*d
From worker 2: Nonlinear adjoint modeling (source no. 2)
From worker 3: Nonlinear adjoint modeling (source no. 3)
From worker 4: Nonlinear adjoint modeling (source no. 1)
From worker 5: Nonlinear adjoint modeling (source no. 4)

(opesciSLIM.TimeModeling. joData{Float32}, "Seismic data vector"”, 2004, 1)
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Parallelization

Parallelization in our framework:
> 2 levels of parallelization
> distribution of sources/shots (shared/distributed memory)
> parallelization over modeling domain via OpenMP (shared memory)
> in future Devito release: domain decomposition for distributed memory

Julia’s parallel framework has built-in resilience:

> in case of worker/node failure, workload is redistributed to remaining
pProcessors

» program is not interrupted

17
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Overview of Julia Devito

linear opeartors, data containers

Julia l parallel modeling function

parallelization: distribute sources, data

serial modeling function

interface to Devito (Python)

call code

return results

set up PDEs, discretization generate code <olve PDE
generate code + JIT compilation —_—

Python C
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Interface to Devito
(joint work with Mathias Louboutin)
What is Devito?
> domain-specific language for Python
> symbolically set up variety of wave equations (acoustic, anisotropic)
> Devito compiler automatically generates optimized C code

> optimizes Flop count, loops, memory alighnment, etc.
> details in the next talk by Mathias

Interfacing Devito from Julia:
> Julia allows direct Python and C function calls
» call Devito functions that generate optimized C code
> call generated C code directly from Julia (no data copies)

19
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Numerical case studies

Full-waveform inversion:
> vanilla FWI w/ gradient descent and line search
> FWI with different misfit functions
> Interfacing optimization libraries for more advanced algorithms

Least-squares migration:
> parallel algorithms: LS-RTM w/ elastic average SGD
> strategies for large-scale migration: compressive LS-RTM
> imaging in the presence of salt

20
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Example 1: FWI with a line search

Full-waveform inversion w/ least squares misfit:

1
minimize §H F(m,q) —d|”

Optimization:
> gradientgivenby g=J'(F(m,q)—d)
> implement (stochastic) gradient descent w/ approximate line search
> bound constraints for velocity

21
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Example 1: FWI with a line search

Runnable Julia code:

1 # Main loop
> for j=l:maxiter

4 # select current batch

5 idx = randperm(dobs.nsrc) [1:batchsize]
6 dsub = subsample(dobs,idx)

7 qsub = subsample(q,idx)

9 # get fwl objective function value and gradient
10 f, g = fwi_objective(modelO,qgsub,dsub)

11

# linesearch | ively:
13 step = backtracking_linesearch(vec(modelO.m), g; varargs...) « alternatively:

14 > line search w/ (strong) Wolfe conditions

15 # Update model and bound projection » Barzilai-Borwein step size
16 modelO.m = proj(modelO.m + step)

12

> constant step size

17

18 # termination criteria »efC.
19 if f <= fTerm || norm(g) <= gradTerm

20 break

21 end

22 end
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Example 1: FWI with a line search
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Example 2: FWI with different misfit functions

Previous example:
> objective function that returns function value and gradient for £5 -misfit

9 # get fwl objective function value and gradient
10 f, g = fwi_objective(modelO,qgsub,dsub)

Change to different misfit:
> if observed data has strong outliers: (pseudo-) Huber misfit

— €2 \/ 1+ X / €)* — 1 (Guitton and Symes, 2003; van Leeuwen et al., 2013)

> gradient given by

Vo(x) =

X

V14 (x/€)?

24
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Example 2: FWI with different misfit functions

Objective function w/ £2-misfit Objective function w/ pseudo-Huber misfit:
1 # FWI with least squares misfit function 1 # FWI with pseudo-huber misfit function
> function fwi_objective_l2(model: :Model,q::joData,d::joData) > function fwi_objective_huber(model: :Model,q::joData,d::joData)
3 3
4 # Set up operators 4 # Set up operators
5 nt = get_computational_nt(q.geometry,d.geometry,model) 5
6 info = Info(prod(model.n),d.nsrc,nt) 6
7 F = joModeling(info,model,q.geometry,d.geometry) : Data residual, function value and gradient
s J = joJacobian(F,q) g = Fxq - d
9 9 eps”2*xsqrt(1l + dot(r,r)/eps”2) - eps™2 # e.g. eps=1
10 Data residual, function value and gradient 10 = J’*r/sqrt(1 + dot(r,r)/eps”2)
11 = Fxq - d 11 return 1,g
12 .5*xnorm(r,2) "2 1> end
13 J’*r
14 return f,g
15 end

== change misfit independently from the rest of the code
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Example 3: FWI using optimization libraries

What if we want to use more complicated algorithms?
> previous misfit functions can be passed to third-party optimization libraries
> access to large variety of optimization methods
> no need to implement everything from scratch

Tested for various libraries:
> Julia implementation of minConf (included in software release) (Schmidt et al., 2009)

> Bas’ framework for constrained optimization w/ projections onto intersections
of convex sets (Peters and Herrmann, 2017)

> NLopt.jl (native Fortran library) (Johnson et al., 2017)
> Optim.jl (native Julia library) (White et al., 2017)

26
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Example 3: FWI using optimization libraries

Does this scale to 3D?
> case study w/ 3D Overthrust velocity model
» 801 x 801 x 207 grid points + PML (222 million unknowns)

» ~ 10k shot records, 8 km max. offset, 3 seconds recording time
(100 billion data points, over 1.2 TB of data)

» spectral-projected gradient algorithm from minConf library
> backtracking line search
» 15 iterations w/ 1080 shot records per iteration

27
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Example 3: FWI using optimization libraries

Ne) 09 ~ (@) ot =~ w V) =

\V) [\) (\V] N [\) \V) N (\] N = = = = = = = = = =
(0.9] ~ [@)) ot SN w (\V] = (@) Ne) (0.9] ~ (@) ot I°N w (\V] = ()

N
©

# Optimization parameters
fevals = 15
batchsize = 1080

# Objective function that 1is passed to library
function objective_function(x)

# update model
modelO.m = reshape(x,model0.n);

# select batch Set up 3D FWI in <50 lines of code:
idx = randperm(dobs.nsrc) [1:batchsize]
dsub = subsample(dobs,idx) > possible to work w/ subset of shots
qsub = subsample(q, 1dx) > still access to gradient (mute, scale etc.)
# fwi function value and gradient > Change from SPG to L-BFGS by mOdIfylng
fval, grad = fwi_misfit(modelO,qgsub,dsub;options=opt) 2 "nes Of COde
# reset gradient in water column to O. » works with out-of-core data containers
grad : rejh;ﬁ(grgdéfgodelo-n) (handle arbitrary sized data sets)
grad[:,:,1: = 0. : :

> 4 minutes per gradient (1 node, 20
return fval, vec(grad) threads)

end

# Bound projection
Proj(x) = median([mmin x mmax],2)

# FWI with spectral projected gradient from minConf library

50 X,fval = minConf_SPG(objective_function,vec(modelO.m),Proj,opt)
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Example 3: FWI using optimization libraries
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Example 4: Serial and parallel SGD

What about parallel algorithms?
> parallel version of stochastic gradient descent: elastic average SGD  (Zhanget al., 2015)
> change from serial to parallel version in few lines of code

Case study for LS-RTM (but could be used for FWI as well):

o] _ 1 _
minimize §H M, LIM - om — M, Lod||s (e.g. Herrmann et al., 2008; Dai et al., 2012)

om

> Ml_l, M ! are left- and right preconditioners (model-, data-topmute, scaling, etc.)

31
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Algorithm 1 Preconditioned LS-RTM with SGD
for j =1 tondo
rj = M; T M x; — My Hd,
g =M, I M r;
gl )
L = gl )
Xj+1 = Xj — 1;8;
end for

10

11
12
13
14
15
16
17

18

32

Example 4: LS-RTM w/ serial and parallel SGD

# Stochastic gradient descent
batchsize = 10
niter = 32

for j=l:niter
# Select batch
idx = randperm(dD.nsrc) [1:batchsize]
Jsub = subsample(J,idx)
dsub = subsample(dD,idx)

Compute residual and gradient
= Ml*Jsub*Mr*x - Ml*dsub

= Mr’*Jsub’*M1’*r

Step size and update variable
= norm(r) “2/norm(g) "2
— t*g
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Algorithm 2 Preconditioned LS-RTM with elastic average SGD

for ) =1ton do
for £k =1 to p do

r; = M; ' J M P — M od

gi = M;TJkaMl_Trj and

Xy =k gl xt) — (-
end for
X1 = (1-B)%X; + B8(; X1 x))
end for

X;)
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Example 4: LS-RTM w/ serial and parallel SGD

# Gradient function
Q@everywhere function update_x(M1l,J,Mr,x,d,eta,alpha,xav)
r = MI*xJxMrxx - Mlxd
g = Mr’*J’*xM1’°*r
return x - etaxg - alpha*(x - xav)
end
update_x_par = remote(update_x) # Parallel function wrapper

for j=1l:niter
@sync begin
for k=1:p

# Select batch

idx = randperm(dD.nsrc) [1:batchsize]
Jsub = subsample(J,idx)

dsub = subsample(dD,idx)

# Calculate x update in parallel

xnew[:,k] = update_x_par(M1l,Jsub,Mr,x[:,k],
dsub,eta,alpha,xav)

end
end

# Update average variable
xav = (1 - beta)*xav + betax(1l/p *sum(x,2))
x = copy(xnew)

end
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Example 4: LS-RTM w/ serial and parallel SGD

True image
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002 > 320 shots
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0.5 g 0.85 A
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E E g) 0.80 o
21'5 0.00 § %
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—-0.04
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Example 5: Compressive inversion

Challenges of large-scale 3D inversion:
> save forward wavefields for gradient
> domain decomposition, checkpointing, boundary reconstruction
> on-the-fly DFT for frequency domain gradients (Sirgue et al., 2010)

Devito allows to easily implement:
> boundary reconstruction

> on-the-fly DFT
» domain decomposition + checkpointing require more effort (w.i.p.)

35
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Example 5: Compressive inversion

Implement inversion with on-the-fly DFT in Devito:
> sum wavefields in the forward time loop
> two extra lines of Python code

# On-the-fly real-valued DFT
egn_f_r = [EqCufr, ufr + u*cos(Z2*np.pi*f*time*dt))]
egn_f_1i = [EqCufi, ufi + u*sin(Z2*np.pi*f*time*dt))]

> similar change for gradients

Run FWI or LS-RTM at any scale:
» only save few frequency-domain wavefields
> integrates seamlessly into Julia framework
> applications: source encoded/simultaneous source FWI and LS-RTM

(e.g. Romero et al., 2000; Krebs et al., 2009; Herrmann et al., 2009; Dai et al., 2013)
36
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Example 5b: Compressive imaging

Imaging with frequency subsampling more challenging:
> subsampling creates noisy images
> want sharp image (broad frequency band) from few frequencies

Sparsity-promoting “compressive” LS-RTM:  (Herrmann and Li, 2012; Dai et al., 2013)
> frequency-domain imaging w/ time-domain modeling
» work with subsets of random shots and frequencies
> sparsity-promotion to address artifacts

1
minimize \||Cdml|; + §\|C5m\|g

dm

subject to: FJom = Fod

38
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Example 5b: Compressive imaging
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Example 5b: Compressive imaging

lteration 5
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Example 5b: Compressive imaging

lteration 15

dual variable
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Example 5b: Compressive imaging

lteration 20

dual variable
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Example 5b: Compressive imaging

lteration 25

dual variable
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Example 5b: Compressive imaging

lteration 30

dual variable
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Example é: Imaging in the presence of salt

Imaging with salt models:
> backscattered energy from salt interfaces causes low-frequency artifacts
> Laplacian filtering, wavefield filtering, alternative imaging conditions

SPLS-RTM with linearized inverse scattering imaging condition:
> derive forward/adjoint pair of ISIC  (Whitmore et al., 2012; Witte and Herrmann, 2017)

J7od = ; {diag (ﬁ[t] © m) (FTPTT(Sd) t] + 7;ildiag (a;;[f]) aii (Fijéd) [t]}

Jom = {Periag (ﬁ[t] © m) om + P, Z F Y diag (8u[t] ) 5m}

1 aXZ‘ 6’X7;
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(joint work with Mengmeng Yang)

Depth [km]

sparsity-promoting LS-RTM
> linearized inverse scattering imaging condition
> 960 shots, 10 seconds recording

N ‘ > 15 Hz peak frequency
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\ 4
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Example é: Imaging in the presence of salt

> sparsity-promoting LS-RTM (joint work with Mengmeng Yang)

> linearized Bregman w/ 18 iterations
> 960 shots, 10 seconds recording

> 100 shots per iteration, 2 data passes
> estimate source wavelet on the fly
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-5 B ] ] ] ] ] ] ]
3 3.5 4 4.5 5 5.5 6 0 : : ' :
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Summary

Julia framework for seismic modeling and inversion
> modular software structure
> matrix-free linear operators and out-of-core SEG-Y data containers
> implement variety of inverse problems in few lines of code
> efficient and fast PDE solves through Devito
> parallelization w/ resilience to hardware failures
> interface optimization libraries
> all ingredients for LS-RTM: correct adjoints, artifact-free salt imaging

> scales to large-scale 3D problems
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The road ahead

Map Julia Devito to the cloud:
» provider independent (AWS, Google, Microsoft Azure or possibly others)
» utilize full range of cloud services (auto-scaling, elastic cache, etc.)
» scale algorithms to ANY number of workers

Possible future workflows:
» data sets stored in cloud (already some SEG datasets available)
» bring algorithms to the cloud and to the data
» anyone can buy cloud time and run certain algorithms on a data set
» no need to buy and maintain expensive HPC clusters
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Reproducible examples

Examples from this talk can be found in the software release:
> FWI with a line search

https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/Waveforminversion/TimeDomain/2DFW!|/scripts/fwi_overthrust 2D linesearch.jl

> 2D and 3D FWI with spectral-projected gradient descent

https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/Waveforminversion/TimeDomain/2DFWI/scripts/fwi_overthrust 2D.jl

https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/Waveforminversion/TimeDomain/3DFW!I/scripts/fwi_overthrust_3D.jl

» Preconditioned LS-RTM w/ SGD

https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/Imaging/TimeDomain/2DLSRTM/scripts/Isrtm _marmousi.|l

> more to come!
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https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl
https://github.com/SINBADconsortium/SLIM-release-jlapps/blob/master/WaveformInversion/TimeDomain/2DFWI/scripts/fwi_overthrust_2D.jl

Tutorial for data 10 with SeislO. |

Demonstration and tutorial on Youtube:
e read and write SEG-Y in Julia (chunking, read/write blocks, create look-up tables)
e parallel scanning and reading of arbitrary size data sets

2 YouTube Search

https://www.youtube.com/watch?v=tx530Q0PeZo

e SeislO.jl on git: https://github.com/slimgroup/SeislO.jl

52

Friday, October 6, 2017



https://github.com/slimgroup/SeisIO.jl
https://github.com/slimgroup/SeisIO.jl
https://www.youtube.com/watch?v=tx530QOPeZo
https://www.youtube.com/watch?v=tx530QOPeZo
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