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Motivation

Full-waveform	inversion	(FWI):

‣ hampered	by	poor	data	&	parasitic	local	minima

‣ ill-posed															missing	frequencies	&	finite	aperture

‣ high-contrast	high-velocity	inclusions
‣ noise	in	data	&	errors	in	modeling

Notoriously	difficult	inverse	problem:

‣ non-convex
‣ extremely	large	scale
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Heuristic strategy

Extend	&	Project

‣ avoid	local	minima	via	extensions

‣ variable	project	to	fit	data
Squeeze	

‣ impose	physics	&	constrain	the	model

Cycle	&	Relax

‣do	multiple	warm	restarts	while	relaxing	constraints	
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Heuristic strategy

Extend	&	Project

‣ avoid	local	minima	via	extensions

‣ variable	project	to	fit	data
Squeeze	

‣ impose	physics	&	constrain	the	model

Cycle	&	Relax

‣do	multiple	warm	restarts	while	relaxing	constraints	

No,	this	is	not	a	yoga	class...	
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Stylized example

Consider

‣ seems	harmless	

‣ not	so	–	oscillatory	because	of	missing	low	frequencies
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Ernie Esser, Lluís Guasch, Tristan van Leeuwen, Aleksandr Y. Aravkin, and Felix J. Herrmann, 
“Total-variation regularization strategies in full-waveform inversion”. 2016.
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Stylized example – extension

Replace

by

with																																																														slack	variables	

‣ coincides	with	original	solution	since

Proxy	for	extensions	of	AWI,	WRI,	and	their	variants...

min
m,�q

1

2

NsX

j=1

kF (m)(qj +�qj)� djk22 + �2k�qjk22,

min
m

1

2

NsX

j=1

kF (m)qj � djk22

�q = [�q1;�q2, . . . ,�qNs ]

� " 1, k�qk2 # 0
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Stylized example – extension

Solve	by	projecting	out	the	slack	variables

‣modify	objective	for	model	parameters

‣ avoids	cycle	skips
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Extensions

Wavefield	Reconstruction	Inversion:

‣ weak	constraints
‣ “analysis”	form

Matched	Source	Waveform	Inversion:

‣ weighted	“synthesis”	form	&	weights	W	focusses

min
m,u

1

2
kPu� dk22 +

�2

2
kA(m)u� qk22

min
m,q

1

2
kPA�1(m)q� dk22 +

�2

2
kWqk22

Tristan van Leeuwen and Felix J. Herrmann, “A penalty method for PDE-constrained optimization in 
inverse problems”, Inverse Problems, vol. 32, p. 015007, 2015.

Guanghui Huang, William Symes, and Rami Nammour, ”Matched source waveform inversion: Space-time extension”
SEG Technical Program Expanded Abstracts 2016. September 2016, 1426-1431 
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Extensions

Wavefield	Reconstruction	Inversion:

‣ weak	constraints
‣ “analysis”	form

Matched	Source	Waveform	Inversion:

‣ weighted	“synthesis”	form	&	weights	W	focusses

min
m,u
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2
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2
kA(m)u� qk22

min
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1

2
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Tristan van Leeuwen and Felix J. Herrmann, “A penalty method for PDE-constrained optimization in 
inverse problems”, Inverse Problems, vol. 32, p. 015007, 2015.

Guanghui Huang, William Symes, and Rami Nammour, ”Matched source waveform inversion: Space-time extension”
SEG Technical Program Expanded Abstracts 2016. September 2016, 1426-1431 

Challenge	is	to	set	the	Lagrange		multiplier!
Friday, October 6, 2017
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Tikhonov regularization

Add	quadratic	penalty	terms:

‣ well-known	&	successful	technique
‣ is	differentiable
‣ not	an	exact	penalty
‣ gradient	&	Hessian	may	become	ill-conditioned
‣ requires	non-trivial	choices	for	hyper	parameters
‣ not	easily	extended	to	edge-preserving							-	norms	&	bound	constraints
‣ no	guarantees	that	all	model	iterates	are	regularized

minimize
m

f(m) +
↵

2
kR1mk2 + �

2
kR2mk2

`1

Andrey	Tikhonov
	1906–1993
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Ernie Esser

Ernie	Esser
1980	–	2015

minimize

m
f(m) subject to m 2 C

Ernie Esser, Xiaoqun Zhang, and Tony F. Chan. A General Frame- work for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging 
Science. SIAM Journal on Imaging Sciences, 3(4):1015–1046, 2010.
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Ernie Esser

Ernie	Esser
1980	–	2015

minimize

m
f(m) subject to m 2 C

H c

F (m + ∆m) − F (m) ≤ ∆mT ∇F (m) + 1
2∆mT (H + cI)∆m

m ∈ C ∆m m + ∆m ∈ C cn F (mn + ∆m) ≤ F (mn) ∆m

F (m + ∆m) − F (m) ≤ ∆mT ∇F (m) + K

2 ∥∆m∥2 ,

F (m + ∆m) − F (m) ≤ 1
2(K − λH − c)∥∆m∥2+

∆mT ∇F (m) + 1
2∆mT (H + cI)∆m ,

λH H c > K −λH
c

cn

F (m + ∆m) − F (m) ≤ σ(∆mT ∇F (m) + 1
2∆mT (H + cI)∆m) ,

σ ∈ (0, 1]

n = 0 m0 ∈ C ρ > 0 ϵ > 0 σ ∈ (0, 1]
H λH λH
ξ1 > 1 ξ2 > 1 c0 > max(0, ρ − λH )

n = 0 ∥mn−mn−1∥
∥mn∥ > ϵ

∆m = arg min∆m∈C−mn ∆mT ∇F (mn) + 1
2 ∆mT (Hn + cnI)∆m

F (mn + ∆m) − F (mn) > σ(∆mT ∇F (mn) + 1
2 ∆mT (Hn + cnI)∆m)

cn = ξ2cn

mn+1 = mn + ∆m

cn+1 =
{

cn
ξ1

cn
ξ1

> max(0, ρ − λH )
cn

Hn+1

λH λH
n = n + 1

Hn

Hn F mn

cn cn cn > K − λH
F

∇F F (m) C
m ∈ C {m̃ ∈ C : F (m̃) ≤ F (m)} m∗

{mn} (m − m∗)T ∇F (m∗) ≥ 0
m ∈ C

Ernie Esser, Xiaoqun Zhang, and Tony F. Chan. A General Frame- work for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging 
Science. SIAM Journal on Imaging Sciences, 3(4):1015–1046, 2010.
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Regularization w/ constraints

Add	multiple	constraints:

‣ not	well-known	in	our	community
‣ requires	understanding	of	latest	optimization	techniques
‣ does	not	affect	gradient	&	Hessian
‣ easier	parameterization
‣ able	to	uniquely	project	onto	intersection	of	multiple	constraint	sets	
‣ constraints	do	not	need	to	be	differentiable
‣ constraints	are	satisfied	at	every	model	iterate

minimize

m
f(m) subject to m 2 C1

\
C2

Jean	Jacques	Moreau
	1923–2014

Bello, L., and Raydan, M., 2007, Convex constrained optimization for the seismic reflection tomography problem: Journal of Applied Geophysics, 62, 158–
166
L. Métivier and R. Brossier. The seiscope optimization toolbox: A large-scale nonlinear optimization library based on reverse communication. Geophysics, 
81:F11-F25, 2016
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Reduced (2.5 X) BP model – modelling parameters

‣ number	of	sources:	132;	number	of	receivers:	311

‣ receiver	spacing:	40m,	source	spacing:	80m,	max	offset	11.5	km

‣ grid	size:	20	m
‣ known	Ricker	wavelet	sources	with	15Hz	peak	frequency
‣ data	available	starting	at	3	Hz
‣ 8	simultaneous	shots	w/	Gaussian	weights	w/	redraws

‣ starting	model	=	smoothed	true	model

‣ inversion	crime	but	poor	data

Billette, F., and Brandsberg-Dahl, S., 2005
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1st cycle cycle
50% noise, FWI, bounds only, 1st cycle
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2nd cycle
50% noise, FWI, bounds only, 2nd cycle
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3rd cycle
50% noise, FWI, bounds only, 3rd cycle
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Today’s agenda

Deal	w/	“noise”	by

‣by	handling	source-side	noise	&	modeling	errors

‣automatically	select	penalty	parameter	by	exploiting	duality

Move	extensions	to	3D

‣ time-domain	WRI

‣by	exploiting	duality
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A denoising formulation of Full-Waveform Inversion 
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Motivation

Noises	in	observed	data	consist	of:

20

• spatial	and	spectral	discretization	errors
• inaccurate	PDE	modeling,		boundary	reflections,	multiples	
• source	estimation	error,	unknown	&	interfering	sources
• trace	truncation	error
• timing	error
• receiver	location	error
• measurement	noise

modeling	error

acquisition	error

interior	of	the	domain	

boundary	
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Motivation     the Failures of FWI 

21

Model	misfit	for	FWI Model	misfit	for	inversion	with	
Student’s	t	penalty

When	measurement	noise	is	``spiky”	

True Initial

[Aravkin,	A.,	van	Leeuwen,	T.,		&	Herrmann,	F	J,	2012]
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22

When	water	velocity	is	wrong	

FWI	inversion

True	model
Initial

Motivation     the Failures of FWI 

[Peters,	A.,	&	Herrmann,	F	J,	2014]
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FWI & its relaxation 

FWI	requires	strict	satisfaction	of	the	PDE:

23

• Implicitly	assumes	that	noise	is	
Gaussian	distributed	along	sources	&	
receivers	

• Neglects	modeling	errors	

• Cannot	accommodate	prior	
information	on	noise	level	

• Becomes	problematic	when	water	
velocity	is	wrong

min

m,ui,i=1,...,ns

nsX

i

kP⌦iui � dik22

subject to A(m)ui = qi, i = 1, ..., ns

P⌦i : restriction operator

qi : ith source

A : Time stepping or Helmholtz operator

di : Observed data for the ith source

ui : wavefield associated to the ith source
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FWI & its relaxation 

24

min

m,ui,i=1,...,ns

X

i

kP⌦iui � dik2

subject to kA(m)ui � qik2  ✏, i = 1, ..., ns

Direct	relaxation	of	PDE	constraint:
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FWI & its relaxation 

25

min

m,ui,i=1,...,ns

X

i

kP⌦iui � dik2

subject to kA(m)ui � qik2  ✏, i = 1, ..., ns

Direct	relaxation	of	PDE	constraint:
Hard	to	choose!
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FWI & its relaxation 

26

min

m,ui,i=1,...,ns

X

i

kP⌦iui � dik2

subject to kA(m)ui � qik2  ✏, i = 1, ..., ns

Direct	relaxation	of	PDE	constraint
Hard	to	choose!

Flip	the	objective	and	the	constraint min

m,ui,i=1,...,ns

kA(m)ui � qik22

subject to kP⌦iui � dik2  ✏i, i = 1, ..., ns
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FWI & its relaxation 

27

min

m,ui,i=1,...,ns

X

i

kP⌦iui � dik2

subject to kA(m)ui � qik2  ✏, i = 1, ..., ns

Direct	relaxation	of	PDE	constraint
Hard	to	choose!

Flip	the	objective	and	the	constraint min

m,ui,i=1,...,ns

kA(m)ui � qik22

subject to kP⌦iui � dik2  ✏i, i = 1, ..., ns

Noise	level	

Friday, October 6, 2017



FWI & its relaxation 

28

min

m,ui,i=1,...,ns

X

i

kP⌦iui � dik2

subject to kA(m)ui � qik2  ✏, i = 1, ..., ns

Direct	relaxation	of	PDE	constraint
Hard	to	choose!

Flip	the	objective	and	the	constraint min

m,ui,i=1,...,ns

kA(m)ui � qik22

subject to kP⌦iui � dik2  ✏i, i = 1, ..., ns

Noise	level	

Decompose	wavefield	variables	 Boundary	part	

Interior	part	

ui = PT
⌦c

i
P⌦c

i
ui + PT

⌦i
P⌦iui
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FWI & its relaxation 

29

min

m,ui,i=1,...,ns

X

i

kP⌦iui � dik2

subject to kA(m)ui � qik2  ✏, i = 1, ..., ns

Direct	relaxation	of	PDE	constraint
Hard	to	choose!

Flip	the	objective	and	the	constraint min

m,ui,i=1,...,ns

kA(m)ui � qik22

subject to kP⌦iui � dik2  ✏i, i = 1, ..., ns

Noise	level	

Decompose	wavefield	variables	 Boundary	part	

Interior	part	

ui = PT
⌦c

i
P⌦c

i
ui + PT

⌦i
P⌦iui

vi

bi
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FWI & its relaxation 

30

min

m,ui,i=1,...,ns

X

i

kP⌦iui � dik2

subject to kA(m)ui � qik2  ✏, i = 1, ..., ns

Direct	relaxation	of	PDE	constraint
Hard	to	choose!

Flip	the	objective	and	the	constraint min

m,ui,i=1,...,ns

kA(m)ui � qik22

subject to kP⌦iui � dik2  ✏i, i = 1, ..., ns

Noise	level	

Decompose	wavefield	variables	 Boundary	part	

Interior	part	

ui = PT
⌦c

i
P⌦c

i
ui + PT

⌦i
P⌦iui

vi

bi
min

m,bi,vi,i=1,...,ns

kA(m)(PT
⌦c

i
vi + PT

⌦i
bi)� qik22

subject to kbi � dik2  ✏i, i = 1, ..., ns
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The denoising formulation (FWIDN)

Denoising	formulation	of	FWI:

Pros:						
•			allows	noise	levels						to	vary	with	sources,	and	allows	
•			ensures	reasonable	PDE	fidelity	while	preventing	overfit
•			all	pros	of	WRI
Cons:		algorithmically	&	computationally	more	demanding

31

✏i ✏i = 0

min

m,bi,vi,i=1,...,ns

kA(m)(PT
⌦c

i
vi + PT

⌦i
bi)� qik22

subject to kbi � dik2  ✏i, i = 1, ..., ns
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FWI-DN – a more general form

Weighted/preconditioned	least-squares	objective:

• 									reshapes	PDE	misfit	distribution		
• 	Imposes	looser	PDE	constraint	at	shallow	part	where	the	model	is	“noisier”		
• 	Examples	of								:		linear	depth	weighting,	two-level	depth	weighting

32

Dz

Dz

Dzf(x, z) = zf(x, z) Dzf(x, z) = �z<z0f(x, z) + 2�z�z0f(x, z)

min

m,bi,vi,i=1,...,ns

kDz(A(m)(PT
⌦c

i
vi + PT

⌦i
bi)� qi)k22

subject to kbi � dik2  ✏i, i = 1, ..., ns
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Solving FWI-DN

Strategy:	alternatively	update										and
At	iteration	k,	
																1.	fix									,	solve	for																																				from

													
																2.	for	fixed																																,	update										by	solving	T	steps	of		

33

mk

mk

(Pd)

(Pm)

bi, i = 1, ..., ns

(bk+1
i , vk+1

i ) = arg min

bi,vi,i=1,...,ns

kDz(A(mk
)(PT

⌦c
i
vi + PT

⌦i
bi)� qi)k22

subject to kbi � dik2  ✏i, i = 1, ..., ns

bk+1
i , i = 1, ..., ns

bk+1
i , i = 1, ..., ns

min
m,vi,i=1,...,ns

nsX

i=1

kDz(A(m)(PT
⌦c

i
vi + PT

⌦i
bk+1
i )� qi)k22

m
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Solving for                a denoising step

			Fix									,	solve	for														from

34

mk

(Pd)

(Pd) bk+1
i

(bk+1
i , vk+1

i ) = argmin

bi,vi
kDz(A(mk

)(PT
⌦c

i
vi + PT

⌦i
bi)� qi)k22

subject to kbi � dik2  ✏i,

Friday, October 6, 2017



										

The	Lagrangian	dual		of													is	

	where		

    Strong duality principle [More, 1993] guarantees primal & dual optimality agree

Solving for                a denoising step

			Fix									,	solve	for														from

35

mk

(Pd)

(Pd)

(Pd)

bk+1
i

(bk+1
i , vk+1

i ) = argmin

bi,vi
kDz(A(mk

)(PT
⌦c

i
vi + PT

⌦i
bi)� qi)k22

subject to kbi � dik2  ✏i,

max

��0
�(�)

�(�) = min
ui

kDz(A(m)ui � qi)k22 + �kP⌦iui � dik22 � �✏i
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The	Lagrangian	dual		of													is	

	where		

Solving for                a denoising step

			Fix									,	solve	for														from

36

mk

(Pd)

(Pd)

(Pd)

bk+1
i

(bk+1
i , vk+1

i ) = argmin

bi,vi
kDz(A(mk

)(PT
⌦c

i
vi + PT

⌦i
bi)� qi)k22

subject to kbi � dik2  ✏i,

max

��0
�(�)

�(�) = min
ui

kDz(A(m)ui � qi)k22 + �kP⌦iui � dik22 � �✏i

data

✏i = 0

✏i = 10%

Denoising	effect	of	 (Pd)

Text

				Strong	duality	principle	[More,	1993]	guarantees	primal	&	dual	optimality	agree.
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															has	closed-form	gradient	&	Hessian
	

			where

			Newton	steps	for	

			After	finding	the	minimizer				,	the	primal	optimizers	are

37

C = A(m)TDT
z DzA(m) + �PT

⌦i
P⌦i

�

(Pd)Solving for                a denoising step

vk+1
i = P⌦c

i
ūi(�

⇤), vk+1
i = P⌦i ūi(�

⇤)

ūi(�) =


Dz(A(mk))p

�P⌦i

�† Dz(qi)p
�di

�

�⇤

�(�)

�0(�) = kP⌦i ūi(�)� dik22 � ✏i

�00(�) = �2(P⌦i ūi(�)� di)
TP⌦iC

�1PT
⌦i
(P⌦i ūi � di)

�k+1 = �k � �0(�)/�00(�)
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Solving for 

						For	fixed																																,	update										by	solving	T	steps	of	

																								

38

mk

(Pm)

(Pm) min
m,vi,i=1,...,ns

nsX

i=1

kDz(A(m)(PT
⌦c

i
vi + PT

⌦i
bk+1
i )� qi)k22

bk+1
i , i = 1, ..., ns
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Solving for 

						For	fixed																																,	update										by	solving	T	steps	of	

																								

39

mk

(Pm)

(Pm)

Solve	by	variable	projection	 	[Aravkin	and	van	Leeuwen,	2012]

min
m,vi,i=1,...,ns

nsX

i=1

kDz(A(m)(PT
⌦c

i
vi + PT

⌦i
bk+1
i )� qi)k22

bk+1
i , i = 1, ..., ns
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Solving for 

						For	fixed																																,	update										by	solving	T	steps	of	

																								

40

mk

(Pm)

(Pm)

Solve	by	variable	projection	 	[Aravkin	and	van	Leeuwen,	2012]

(v̄1, ..., v̄ns) = arg min
v1,...,vns

f(m, v1, ..., vns)min
m,vi,i=1,...,ns

f(m, v1, ..., vns) = min
m

f(m, v̄1, ..., v̄ns)()

min
m,vi,i=1,...,ns

nsX

i=1

kDz(A(m)(PT
⌦c

i
vi + PT

⌦i
bk+1
i )� qi)k22 ⌘ f(m, v1, ...vns)

min
m,vi,i=1,...,ns

nsX

i=1

kDz(A(m)(PT
⌦c

i
vi + PT

⌦i
bk+1
i )� qi)k22

bk+1
i , i = 1, ..., ns
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			Inputs:																																																	,	T,	K
			For																																	do	
														solve													using	T	iterations	of	Newton	updates	on
														perform	K	gradient	or	L-BFGS	updates	on	m	towards	the	minimizer		of			
				Endfor
																			

																				

Algorithm and Complexity

											On	average,	1	update	of						requires:	2	PDE	solves	for	FWI
																																																																																		2	PDE	solves	for	WRI
																																																																																		3-5	PDE	solves	for	FWI-DN

41

(Pd)

(Pm)

di, qi, i = 1, ..., nsm0,

�

m

! = !1, ...,!n
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																																Case	Study

Friday, October 6, 2017



43

Test	1:		robustness	under	non-uniform	noise	along	sources
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Test 1

44

• Frequency	continuation	using	
batches	[3,3.5][3.5,4]....[14.5,15]Hz

• source	spacing	:	240m	
• receiver	spacing	:	48m
• SNR=0	for	low	frequency	data	
3-10Hz

• SNR=25dB	for	high	frequency	data	
10-15Hz

• Linear	depth	weighting
• noise	level																							where

i = 1, ..., bns/2c, j = bns/2c+ 1, ..., ns

✏sj = 3✏si
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Test 1

Method	for	comparison:	weighted	FWI

where	

45

min
m

X

i2N1

9kP⌦iA
�1(m)qi � dik22 +min

m

X

i2N2

kP⌦iA
�1(m)qi � dik22

N1 = {1, ..., bns

2
c}, N2 = {bns

2
c+ 1, ..., ns}
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Test 1
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distance (km)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

de
pt

h(
km

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
1.5

2

2.5

3

3.5

4

4.5

5

5.5
(km/s)

distance (km)
0 1 2 3 4 5

de
pt

h(
km

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

(km/s)

distance (km)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

de
pt

h(
km

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
1.5

2

2.5

3

3.5

4

4.5

5

5.5
(km/s)

			Inverted	model	w/	weighted	FWI																													Inverted	model	w/	FWI-DN	
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						Test	2:		robustness	under	modeling	error

Friday, October 6, 2017



Test 2
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• Frequency	continuation	using	batches	
[3,3.5][3.5,4]....[14.5,15]Hz

• source	spacing	:	240m	
• receiver	spacing	:	48m
• source	depth:	12m
• True	source	q:	ricker	wavelet	at	10Hz
• Source	used	for	inversion:	0.8q
• Linear	depth	weighting distance (km)
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Test 2
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			Inverted	model	w/	FWI																																						Inverted	model	w/	FWI-DN	with	 ✏ = 0
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Conclusion
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• We	proposed	a	denoising	version	of	FWI	

• We	observed	weighted/preconditioned	PDE	misfits	dramatically	increase	robustness	to	
modeling	error

• The	formulation	makes	incorporating	prior	knowledge	of	noise	level	convenient	w/o	
increasing	too	much	of	complexity		
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Variable	Size:	
																				
At	optimal	points:			

Time domain implementation through dual 
formulation

min
U,m

kA(m)U�Qk2

s.t. kP⌦U�Dk2  ✏

min

m
� {max

y

1

2

kFT
(y)k22 + hy,D� FQi+ ✏kyk2}

Primal	formulation Dual	formulation

O(N
x

N
z

N
T

N
s

) O(N
r

N
s

N
T

+N
x

N
z

)

A(m)U⇤ = Q� FTy⇤

where F = P⌦A
�1(m)

Gy = FFTy +D� FQ+ ✏
y

kyk2
Gm = Jacobian(m,Q� FTy)

Step 1: L-BFGS on y

Step 2: Gradient descent on m

Algorithm
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Algorithm

@p(m, y)

@y
= FFT y +D � FQ+ ✏

y

||y||2

@p(m, y)

@m
= JT (m, eQ)y

1.			Solve	with	L-BFGS	or	gradient	descent	on	the	variable	pair																	(m, y)

2.			Alternating	updates	of	the	two	variables

Using	the	following	gradients:
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Preliminary results

Original	time-harmonic	WRI New	time-domain	WRI
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