SLIM

$$
\begin{aligned}
& \text { Friday, October 6, } 2017 \\
& \hline
\end{aligned}
$$

Felix J．Herman<br><br><br>

\author{ \author{ \author{ \author{ \author{ \author{ <br><br><br><br><br><br><br><br><br><br><br><br><br><br>－<br><br><br><br><br><br><br>（<br><br><br><br><br><br><br>$\square$<br><br><br><br><br><br><br><br><br><br><br><br><br><br>－ } } } }<br><br><br>} }
$\qquad$
$\qquad$
，
 ． ．
 －
$\square+2+2$


#### Abstract

```\(\square\)```


$\qquad$
$\qquad$

都
$\qquad$

## Noise robust and time-domain formulations of Wavefield Reconstruction Inversion

Mathias Louboutin, Peter Bas, Rongrong Wang, Emmanouil Daskalakis


University of British Columbia

## Motivation

## Full-waveform inversion (FWI):

- hampered by poor data \& parasitic local minima
$\rightarrow$ ill-posed $\longrightarrow$ missing frequencies \& finite aperture
- high-contrast high-velocity inclusions
- noise in data \& errors in modeling

Notoriously difficult inverse problem:

- non-convex
- extremely large scale


## Heuristic strategy

## Extend \& Project

- avoid local minima via extensions
- variable project to fit data


## Squeeze

- impose physics \& constrain the model


## Cycle \& Relax

- do multiple warm restarts while relaxing constraints


## Heuristic strategy

## Extend \& Project

- avoid local minima via extensions
- variable project to fit data


## Squeeze

- impose physics \& constrain the model


## Cycle \& Relax

- do multiple warm restarts while relaxing constraints

No, this is not a yoga class...

## Stylized example

Consider

$$
F(c) q=\left(\begin{array}{l}
\mathcal{F}^{-1} e^{\imath \omega\left\|x_{1}-x_{s}\right\|_{2} / c} \mathcal{F} q \\
\mathcal{F}^{-1} e^{\imath \omega\left\|x_{2}-x_{s}\right\|_{2} / c} \mathcal{F} q \\
\mathcal{F}^{-1} e^{\imath \omega\left\|x_{3}-x_{s}\right\|_{2} / c} \mathcal{F} q
\end{array}\right)
$$

- seems harmless
- not so - oscillatory because of missing low frequencies



## Stylized example - extension

Replace $\min _{m} \frac{1}{2} \sum_{j=1}^{N_{s}}\left\|F(m) q_{j}-d_{j}\right\|_{2}^{2}$
by

$$
\min _{m, \Delta q} \frac{1}{2} \sum_{j=1}^{N_{s}}\left\|F(m)\left(q_{j}+\Delta q_{j}\right)-d_{j}\right\|_{2}^{2}+\lambda^{2}\left\|\Delta q_{j}\right\|_{2}^{2}
$$

with $\Delta q=\left[\Delta q_{1} ; \Delta q_{2}, \ldots, \Delta q_{N_{s}}\right]$ slack variables

- coincides with original solution since

$$
\lambda \uparrow \infty,\|\Delta q\|_{2} \downarrow 0
$$

Proxy for extensions of AWI, WRI, and their variants...

## Stylized example - extension

Solve by projecting out the slack variables

- modify objective for model parameters
- avoids cycle skips



## Extensions

## Wavefield Reconstruction Inversion:

$$
\min _{\mathbf{m}, \mathbf{u}} \frac{1}{2}\|P \mathbf{u}-\mathbf{d}\|_{2}^{2}+\frac{\lambda^{2}}{2}\|A(\mathbf{m}) \mathbf{u}-\mathbf{q}\|_{2}^{2}
$$

- weak constraints
- "analysis" form


## Matched Source Waveform Inversion:

$$
\min _{\mathbf{m}, \mathbf{q}} \frac{1}{2}\left\|P A^{-1}(\mathbf{m}) \mathbf{q}-\mathbf{d}\right\|_{2}^{2}+\frac{\lambda^{2}}{2}\|W \mathbf{q}\|_{2}^{2}
$$

- weighted "synthesis" form \& weights W focusses


## Extensions

## Wavefield Reconstruction Inversion:

$$
\min _{\mathbf{m}, \mathbf{u}} \frac{1}{2}\|P \mathbf{u}-\mathbf{d}\|_{2}^{2}+\frac{\lambda^{2}}{2}\|A(\mathbf{m}) \mathbf{u}-\mathbf{q}\|_{2}^{2}
$$

- weak constraints
- "analysis" form


## Matched Source Waveform Inversion:

$$
\min _{\mathbf{m}, \mathbf{q}} \frac{1}{2}\left\|P A^{-1}(\mathbf{m}) \mathbf{q}-\mathbf{d}\right\|_{2}^{2}+\frac{\lambda^{2}}{2}\|W \mathbf{q}\|_{2}^{2}
$$

- weighted "synthesis" form \& weights W focusses

Challenge is to set the Lagrange multiplier!

## Tikhonov regularization

## Add quadratic penalty terms:

$$
\underset{\mathbf{m}}{\operatorname{minimize}} f(\mathbf{m})+\frac{\alpha}{2}\left\|R_{1} \mathbf{m}\right\|^{2}+\frac{\beta}{2}\left\|R_{2} \mathbf{m}\right\|^{2}
$$

- well-known \& successful technique
- is differentiable
- not an exact penalty
- gradient \& Hessian may become ill-conditioned


Andrey Tikhonov 1906-1993

- requires non-trivial choices for hyper parameters
- not easily extended to edge-preserving $\ell_{1}$ - norms \& bound constraints
- no guarantees that all model iterates are regularized


## Ernie Esser

$\underset{\mathbf{m}}{\operatorname{minimize}} f(\mathbf{m}) \quad$ subject to $\quad \mathbf{m} \in \mathcal{C}$
m


Ernie Esser
1980-2015

## Ernie Esser

## minimize $f(\mathbf{m}) \quad$ subject to $\quad \mathbf{m} \in \mathcal{C}$ <br> m

```
Algorithm 1 A Scaled Gradient Projection Algorithm
    \(n=0 ; m^{0} \in C ; \rho>0 ; \epsilon>0 ; \sigma \in(0,1] ;\)
    \(H\) symmetric with eigenvalues between \(\lambda_{H}^{\min }\) and \(\lambda_{H}^{\max }\);
    \(\xi_{1}>1 ; \xi_{2}>1 ; c_{0}>\max \left(0, \rho-\lambda_{H}^{\min }\right) ;\)
    while \(n=0\) or \(\frac{\left\|m^{n}-m^{n-1}\right\|}{\left\|m^{n}\right\|}>\epsilon\)
        \(\Delta m=\arg \min _{\Delta m \in C-m^{n}} \Delta m^{T} \nabla F\left(m^{n}\right)+\frac{1}{2} \Delta m^{T}\left(H^{n}+c_{n} \mathrm{I}\right) \Delta m\)
        if \(F\left(m^{n}+\Delta m\right)-F\left(m^{n}\right)>\sigma\left(\Delta m^{T} \nabla F\left(m^{n}\right)+\frac{1}{2} \Delta m^{T}\left(H^{n}+c_{n} \mathrm{I}\right) \Delta m\right)\)
            \(c_{n}=\xi_{2} c_{n}\)
        else
            \(m^{n+1}=m^{n}+\Delta m\)
            \(c_{n+1}= \begin{cases}\frac{c_{n}}{\xi_{1}} & \text { if } \frac{c_{n}}{\xi_{1}}>\max \left(0, \rho-\lambda_{H}^{\min }\right) \\ c_{n} & \text { otherwise }\end{cases}\)
            Define \(H^{n+1}\) to be symmetric Hessian approximation
                with eigenvalues between \(\lambda_{H}^{\min }\) and \(\lambda_{H}^{\max }\)
            \(n=n+1\)
        end if
    end while
```

Ernie Esser 1980-2015

## Regularization w/ constraints

## Add multiple constraints:

$$
\operatorname{minimize}_{\mathbf{m}} f(\mathbf{m}) \quad \text { sulbject to } \quad n \in C_{1} \cap C_{2}
$$

- not well-known in our community
- requires understanding of latest optimization techniques
- does not affect gradient \& Hessian


Jean Jacques Moreau 1923-2014

- easier parameterization
- able to uniquely project onto intersection of multiple constraint sets
- constraints do not need to be differentiable
- constraints are satisfied at every model iterate


## Reduced (2.5 X) BP model - modelling parameters

- number of sources: 132; number of receivers: 311
- receiver spacing: 40m, source spacing: 80m, max offset 11.5 km
- grid size: 20 m
- known Ricker wavelet sources with 15 Hz peak frequency
- data available starting at 3 Hz
- 8 simultaneous shots w/ Gaussian weights w/ redraws
- starting model = smoothed true model
- inversion crime but poor data $\|$ noise $\left\|_{2} /\right\|$ signal $\|_{2}=0.5$


## 1st cycle cycle

$\|$ noise $\left\|_{2} /\right\|$ signal $\|_{2}=0.5$
bounds only


FWI
$50 \%$ noise, FWI, TV, 1st cycle



## 2nd cycle

$\|$ noise $\left\|_{2} /\right\|$ signal $\|_{2}=0.5$
bounds only


FWI



## 3rd cycle

$\|$ noise $\left\|_{2} /\right\|$ signal $\|_{2}=0.5$
bounds only


FWI
$50 \%$ noise, FWI, TV, 3rd cycle



## Today's agenda

Deal w/ "noise" by

- by handling source-side noise \& modeling errors
- automatically select penalty parameter by exploiting duality

Move extensions to 3D
t time-domain WRI

- by exploiting duality


# A denoising formulation of Full-Waveform Inversion 

Rongrong Wang and Felix J. Herrmann

University of British Columbia

## Motivation

## Noises in observed data consist of:



## Motivation—the Failures of FWI

When measurement noise is "spiky"


(a)

Model misfit for FWI

(b)

Model misfit for inversion with Student's t penalty

## Motivation-the Failures of FWI

When water velocity is wrong


## FWI \& its relaxation

FWI requires strict satisfaction of the PDE :
$\min _{m, u_{i}, i=1, \ldots, n_{s}} \sum_{i}^{n_{s}}\left\|P_{\Omega_{i}} u_{i}-d_{i}\right\|_{2}^{2}$
subject to $A(m) u_{i}=q_{i}, i=1, \ldots, n_{s}$
$P_{\Omega_{i}}:$ restriction operator
$q_{i}: i$ th source
$A$ : Time stepping or Helmholtz operator
$d_{i}$ : Observed data for the $i$ th source
$u_{i}$ : wavefield associated to the $i$ th source

- Implicitly assumes that noise is Gaussian distributed along sources \& receivers
- Neglects modeling errors
- Cannot accommodate prior information on noise level
- Becomes problematic when water velocity is wrong

Direct relaxation of PDE constraint:

$$
\min _{m, u_{i}, i=1, \ldots, n_{s}} \sum_{i}\left\|P_{\Omega_{i}} u_{i}-d_{i}\right\|_{2}
$$

$$
\text { subject to }\left\|A(m) u_{i}-q_{i}\right\|_{2} \leq \epsilon, i=1, \ldots, n_{s}
$$

Direct relaxation of PDE constraint:

$$
\begin{aligned}
& \min _{m, u_{i}, i=1, \ldots, n_{s}} \sum_{i}\left\|P_{\Omega_{i}} u_{i}-d_{i}\right\|_{2} \\
& \text { subject to }\left\|A(m) u_{i}-q_{i}\right\|_{2} \leq \Theta, i=1, \ldots, n_{s}
\end{aligned}
$$

## FWI \& its relaxation

Direct relaxation of PDE constraint

Flip the objective and the constraint

$$
\begin{aligned}
& \min _{m, u_{i}, i=1, \ldots, n_{s}} \sum_{i}\left\|P_{\Omega_{i}} u_{i}-d_{i}\right\|_{2} \\
& \text { subject to }\left\|A(m) u_{i}-q_{i}\right\|_{2} \leq € i=1, \ldots, n_{s} \\
& \min _{m, u_{i}, i=1, \ldots, n_{s}}\left\|A(m) u_{i}-q_{i}\right\|_{2}^{2} \\
& \text { subject to }\left\|P_{\Omega_{i}} u_{i}-d_{i}\right\|_{2} \leq \epsilon_{i}, i=1, \ldots, n_{s}
\end{aligned}
$$

Direct relaxation of PDE constraint

Flip the objective and the constraint

$$
\begin{aligned}
& \min _{m, u_{i}, i=1, \ldots, n_{s}} \sum_{i}\left\|P_{\Omega_{i}} u_{i}-d_{i}\right\|_{2} \\
& \text { subject to }\left\|A(m) u_{i}-q_{i}\right\|_{2} \leq € i=1, \ldots, n_{s}
\end{aligned}
$$

$$
\min _{m, u_{i}, i=1, \ldots, n_{s}}\left\|A(m) u_{i}-q_{i}\right\|_{2}^{2} \text { Noise level }
$$

$$
\text { subject to }\left\|P_{\Omega_{i}} u_{i}-d_{i}\right\|_{2} \leq \epsilon_{i}, i=1, \ldots, n_{s}
$$

## FWI \& its relaxation

Direct relaxation of PDE constraint

Flip the objective and the constraint

Decompose wavefield variables

$$
\min _{m, u_{i}, i=1, \ldots, n_{s}} \sum_{i}\left\|P_{\Omega_{i}} u_{i}-d_{i}\right\|_{2} \text { Hard to choose! }
$$

$$
\text { subject to }\left\|A(m) u_{i}-q_{i}\right\|_{2} \leq € i=1, \ldots, n_{s}
$$

$$
\min _{m, u_{i}, i=1, \ldots, n_{s}}\left\|A(m) u_{i}-q_{i}\right\|_{2}^{2} \text { Noise level }
$$

$$
\text { subject to }\left\|P_{\Omega_{i}} u_{i}-d_{i}\right\|_{2} \leq \epsilon_{i}, i=1, \ldots, n_{s}
$$

$$
u_{i}=\underbrace{P_{\Omega_{i}^{c}}^{T} P_{\Omega_{i}^{c}} u_{i}}_{\text {Interior part }}+\underbrace{}_{\Omega_{i} P_{\Omega_{i}} u_{i}} \text { Boundary part }
$$

## FWI \& its relaxation

Direct relaxation of PDE constraint

Flip the objective and the constraint

Decompose wavefield variables

$$
\begin{aligned}
& \min _{m, u_{i}, i=1, \ldots, n_{s}} \sum_{i}\left\|P_{\Omega_{i}} u_{i}-d_{i}\right\|_{2} \\
& \text { subject to }\left\|A(m) u_{i}-q_{i}\right\|_{2} \leq €, i=1, \ldots, n_{s} \\
& \min _{m, u_{i}, i=1, \ldots, n_{s}}\left\|A(m) u_{i}-q_{i}\right\|_{2}^{2} \underbrace{}_{i} \text { Noise level } \\
& \text { subject to }\left\|P_{\Omega_{i}} u_{i}-d_{i}\right\|_{2} \leq \epsilon_{i}, i=1, \ldots, n_{s} \\
& v_{i}=\underbrace{P_{\Omega_{i}^{c}}^{T}}_{\text {Interior part }} \underbrace{\underbrace{T}_{\Omega_{i}} P_{\Omega_{i}} u_{i}}_{P_{\Omega_{i}^{c}} u_{i}} \text { Boundary part }
\end{aligned}
$$

## FWI \& its relaxation

Direct relaxation of PDE constraint

Flip the objective and the constraint

Decompose wavefield variables

## The denoising formulation (FWIDN)

## Denoising formulation of FWI:

$$
\begin{aligned}
& \min _{m, b_{i}, v_{i}, i=1, \ldots, n_{s}}\left\|A(m)\left(P_{\Omega_{i}^{c}}^{T} v_{i}+P_{\Omega_{i}}^{T} b_{i}\right)-q_{i}\right\|_{2}^{2} \\
& \text { subject to }\left\|b_{i}-d_{i}\right\|_{2} \leq \epsilon_{i}, i=1, \ldots, n_{s}
\end{aligned}
$$

## Pros:

- allows noise levels $\epsilon_{i}$ to vary with sources, and allows $\epsilon_{i}=0$
- ensures reasonable PDE fidelity while preventing overfit
- all pros of WRI

Cons: algorithmically \& computationally more demanding

## FWI-DN - a more general form

## Weighted/preconditioned least-squares objective:

$$
\begin{aligned}
& \min _{m, b_{i}, v_{i}, i=1, \ldots, n_{s}}\left\|\mathcal{D}_{z}\left(A(m)\left(P_{\Omega_{i}^{c}}^{T} v_{i}+P_{\Omega_{i}}^{T} b_{i}\right)-q_{i}\right)\right\|_{2}^{2} \\
& \text { subject to }\left\|b_{i}-d_{i}\right\|_{2} \leq \epsilon_{i}, i=1, \ldots, n_{s}
\end{aligned}
$$

- $\mathcal{D}_{z}$ reshapes PDE misfit distribution
- Imposes looser PDE constraint at shallow part where the model is "noisier"
- Examples of $\mathcal{D}_{z}$ : linear depth weighting, two-level depth weighting

$$
\mathcal{D}_{z} f(x, z)=z f(x, z) \quad \mathcal{D}_{z} f(x, z)=\chi_{z<z_{0}} f(x, z)+2 \chi_{z \geq z_{0}} f(x, z)
$$

## Solving FWI-DN

Strategy: alternatively update $m$ and $b_{i}, i=1, \ldots, n_{s}$

## At iteration k,

1. fix $m^{k}$, solve for $b_{i}^{k+1}, i=1, \ldots, n_{s}$ from

$$
\begin{aligned}
\left(b_{i}^{k+1}, v_{i}^{k+1}\right)= & \arg \min _{b_{i}, v_{i}, i=1, \ldots, n_{s}}\left\|\mathcal{D}_{z}\left(A\left(m^{k}\right)\left(P_{\Omega_{i}^{c}}^{T} v_{i}+P_{\Omega_{i}}^{T} b_{i}\right)-q_{i}\right)\right\|_{2}^{2} \\
& \text { subject to }\left\|b_{i}-d_{i}\right\|_{2} \leq \epsilon_{i}, i=1, \ldots, n_{s}
\end{aligned}
$$

2. for fixed $b_{i}^{k+1}, i=1, \ldots, n_{s}$, update $m^{k}$ by solving $T$ steps of

$$
\begin{equation*}
\min _{m, v_{i}, i=1, \ldots, n_{s}} \sum_{i=1}^{n_{s}}\left\|\mathcal{D}_{z}\left(A(m)\left(P_{\Omega_{i}^{c}}^{T} v_{i}+P_{\Omega_{i}}^{T} b_{i}^{k+1}\right)-q_{i}\right)\right\|_{2}^{2} \tag{m}
\end{equation*}
$$

## Solving for $\left(P_{d}\right)$ — a denoising step

$\left(P_{d}\right) \quad$ Fix $m^{k}$, solve for $b_{i}^{k+1}$ from

$$
\left.\begin{array}{rl}
\left(b_{i}^{k+1}, v_{i}^{k+1}\right)= & \arg \min \\
b_{i}, v_{i}
\end{array}\left\|\mathcal{D}_{z}\left(A\left(m^{k}\right)\left(P_{\Omega_{i}^{c}}^{T} v_{i}+P_{\Omega_{i}}^{T} b_{i}\right)-q_{i}\right)\right\|_{2}^{2}\right)
$$

## Solving for $\left(P_{d}\right)$ — a denoising step

$$
\begin{aligned}
& \left(P_{d}\right) \quad \text { Fix } m^{k} \text {, solve for } b_{i}^{k+1} \text { from } \\
& \begin{aligned}
\left(b_{i}^{k+1}, v_{i}^{k+1}\right)= & \arg \min _{b_{i}, v_{i}}\left\|\mathcal{D}_{z}\left(A\left(m^{k}\right)\left(P_{\Omega_{i}^{T}}^{T} v_{i}+P_{\Omega_{i}}^{T} b_{i}\right)-q_{i}\right)\right\|_{2}^{2} \\
& \text { subject to }\left\|b_{i}-d_{i}\right\|_{2} \leq \epsilon_{i},
\end{aligned}
\end{aligned}
$$

The Lagrangian dual of $\left(P_{d}\right)$ is
where

$$
\max _{\lambda \geq 0} \phi(\lambda)
$$

$$
\phi(\lambda)=\min _{u_{i}}\left\|\mathcal{D}_{z}\left(A(m) u_{i}-q_{i}\right)\right\|_{2}^{2}+\lambda\left\|P_{\Omega_{i}} u_{i}-d_{i}\right\|_{2}^{2}-\lambda \epsilon_{i}
$$

Strong duality principle [More, 1993] guarantees primal \& dual optimality agree

## Solving for $\left(P_{d}\right)$ —adenoising step

$$
\begin{aligned}
& \left(P_{d}\right) \quad \text { Fix } m^{k}, \text { solve for } b_{i}^{k+1} \text { from } \\
& \qquad \begin{array}{l}
\left(b_{i}^{k+1}, v_{i}^{k+1}\right)= \\
\end{array} \underset{\text { subject to } \| b_{i}, v_{i}}{\arg \min _{z}\left\|\mathcal{D}_{i}\right\|_{2} \leq \epsilon_{i}} .
\end{aligned}
$$

The Lagrangian dual of $\left(P_{d}\right)$ is
where


$$
\phi(\lambda)=\min _{u_{i}}\left\|\mathcal{D}_{z}\left(A(m) u_{i}-q_{i}\right)\right\|_{2}^{2}+\lambda\left\|P_{\Omega_{i}} u_{i}-d_{i}\right\|_{2}^{2}-\lambda \epsilon_{i}
$$

Strong duality principle [More, 1993] guarantees primal \& dual optimality agree.

## Solving for $\left(P_{d}\right)$ — a denoising step

$\phi(\lambda)$ has closed-form gradient \& Hessian

$$
\begin{aligned}
& \phi^{\prime}(\lambda)=\left\|P_{\Omega_{i}} \bar{u}_{i}(\lambda)-d_{i}\right\|_{2}^{2}-\epsilon_{i} \\
& \phi^{\prime \prime}(\lambda)=-2\left(P_{\Omega_{i}} \bar{u}_{i}(\lambda)-d_{i}\right)^{T} P_{\Omega_{i}} C^{-1} P_{\Omega_{i}}^{T}\left(P_{\Omega_{i}} \bar{u}_{i}-d_{i}\right)
\end{aligned}
$$

where

$$
C=A(m)^{T} \mathcal{D}_{z}^{T} \mathcal{D}_{z} A(m)+\lambda P_{\Omega_{i}}^{T} P_{\Omega_{i}} \quad \bar{u}_{i}(\lambda)=\left[\begin{array}{c}
\mathcal{D}_{z}\left(A\left(m^{k}\right)\right) \\
\sqrt{\lambda} P_{\Omega_{i}}
\end{array}\right]^{\dagger}\left[\begin{array}{c}
\mathcal{D}_{z}\left(q_{i}\right) \\
\sqrt{\lambda} d_{i}
\end{array}\right]
$$

Newton steps for $\lambda$

$$
\lambda^{k+1}=\lambda^{k}-\phi^{\prime}(\lambda) / \phi^{\prime \prime}(\lambda)
$$

After finding the minimizer $\lambda^{*}$, the primal optimizers are

$$
v_{i}^{k+1}=P_{\Omega_{i}^{c}} \bar{u}_{i}\left(\lambda^{*}\right), \quad v_{i}^{k+1}=P_{\Omega_{i}} \bar{u}_{i}\left(\lambda^{*}\right)
$$

## Solving for $\left(P_{m}\right)$

For fixed $b_{i}^{k+1}, i=1, \ldots, n_{s}$, update $m^{k}$ by solving T steps of

$$
\left(P_{m}\right) \min _{m, v_{i}, i=1, \ldots, n_{s}} \sum_{i=1}^{n_{s}}\left\|\mathcal{D}_{z}\left(A(m)\left(P_{\Omega_{i}}^{T} v_{i}+P_{\Omega_{i}}^{T} b_{i}^{k+1}\right)-q_{i}\right)\right\|_{2}^{2}
$$

## Solving for $\left(P_{m}\right)$

For fixed $b_{i}^{k+1}, i=1, \ldots, n_{s}$, update $m^{k}$ by solving T steps of

$$
\left(P_{m}\right) \min _{m, v_{i}, i=1, \ldots, n_{s}} \sum_{i=1}^{n_{s}}\left\|\mathcal{D}_{z}\left(A(m)\left(P_{\Omega_{i}}^{T} v_{i}+P_{\Omega_{i}}^{T} b_{i}^{k+1}\right)-q_{i}\right)\right\|_{2}^{2}
$$

## Solving for $\left(P_{m}\right)$

For fixed $b_{i}^{k+1}, i=1, \ldots, n_{s}$, update $m^{k}$ by solving T steps of

$$
\left(P_{m}\right) \min _{m, v_{i}, i=1, \ldots, n_{s}} \sum_{i=1}^{n_{s}}\left\|\mathcal{D}_{z}\left(A(m)\left(P_{\Omega_{i}}^{T} v_{i}+P_{\Omega_{i}}^{T} b_{i}^{k+1}\right)-q_{i}\right)\right\|_{2}^{2}
$$

## Solve by variable projection [Aravkin and van Leeuwen, 2012]

$$
\min _{m, v_{i}, i=1, \ldots, n_{s}} \sum_{i=1}^{n_{s}}\left\|\mathcal{D}_{z}\left(A(m)\left(P_{\Omega_{i}^{c}}^{T} v_{i}+P_{\Omega_{i}}^{T} b_{i}^{k+1}\right)-q_{i}\right)\right\|_{2}^{2} \equiv f\left(m, v_{1}, \ldots v_{n_{s}}\right)
$$

$$
\Longleftrightarrow \min _{m, v_{i}, i=1, \ldots, n_{s}} f\left(m, v_{1}, \ldots, v_{n_{s}}\right)=\min _{m} f\left(m, \bar{v}_{1}, \ldots, \bar{v}_{n_{s}}\right) \quad\left(\bar{v}_{1}, \ldots, \bar{v}_{n_{s}}\right)=\arg \min _{v_{1}, \ldots, v_{n_{s}}} f\left(m, v_{1}, \ldots, v_{n_{s}}\right)
$$

## Algorithm and Complexity

Inputs: $m_{0}, d_{i}, q_{i}, \quad i=1, \ldots, n_{s}, \mathrm{~T}, \mathrm{~K}$
For $\omega=\omega_{1}, \ldots, \omega_{n}$ do
solve ( $P_{d}$ ) using T iterations of Newton updates on $\lambda$
perform K gradient or L -BFGS updates on m towards the minimizer of $\left(P_{m}\right)$
Endfor
On average, 1 update of $m$ requires: 2 PDE solves for FWI
2 PDE solves for WRI
3-5 PDE solves for FWI-DN

## Case Study

Test 1: robustness under non-uniform noise along sources

## Test 1

- Frequency continuation using batches [3,3.5][3.5,4]....[14.5,15]Hz
- source spacing : 240 m
- receiver spacing : 48m
- SNR=0 for low frequency data $3-10 \mathrm{~Hz}$
- $\mathrm{SNR}=25 \mathrm{~dB}$ for high frequency data $10-15 \mathrm{~Hz}$

- Linear depth weighting
- noise level $\epsilon_{s_{j}}=3 \epsilon_{s_{i}}$ where

$$
i=1, \ldots,\left\lfloor n_{s} / 2\right\rfloor, j=\left\lfloor n_{s} / 2\right\rfloor+1, \ldots, n_{s}
$$

## Test 1

Method for comparison: weighted FWI

$$
\min _{m} \sum_{i \in N_{1}} 9\left\|P_{\Omega_{i}} A^{-1}(m) q_{i}-d_{i}\right\|_{2}^{2}+\min _{m} \sum_{i \in N_{2}}\left\|P_{\Omega_{i}} A^{-1}(m) q_{i}-d_{i}\right\|_{2}^{2}
$$

where $N_{1}=\left\{1, \ldots,\left\lfloor\frac{n_{s}}{2}\right\rfloor\right\}, N_{2}=\left\{\left\lfloor\frac{n_{s}}{2}\right\rfloor+1, \ldots, n_{s}\right\}$

## Test 1



Inverted model w/ weighted FWI
(km/s)


Inverted model w/ FWI-DN


# Test 2: robustness under modeling error 

## Test 2

- Frequency continuation using batches [3,3.5][3.5,4]....[14.5,15]Hz
- source spacing : 240 m
- receiver spacing : 48m
- source depth: 12 m
- True source q: ricker wavelet at 10 Hz
- Source used for inversion: $0.8 q$
- Linear depth weighting

distance (km)


## Test 2



Inverted model w/ FWI


Inverted model w/ FWI-DN with $\epsilon=0$

## Conclusion

- We proposed a denoising version of FWI
- We observed weighted/preconditioned PDE misfits dramatically increase robustness to modeling error
- The formulation makes incorporating prior knowledge of noise level convenient w/o increasing too much of complexity


## Cost saving, time-domain dual formulation of WRI

Felix J. Herrmann, Mathias Louboutin, Peter Bas, Rongrong Wang, Emmanouil Daskalakis


University of British Columbia

## Time domain implementation through dual formulation

$$
\begin{aligned}
& \text { Primal formulation } \\
& \min _{\mathbf{U}, \mathbf{m}}\|A(\mathbf{m}) \mathbf{U}-\mathbf{Q}\|_{2} \\
& \text { s.t. }\left\|P_{\Omega} \mathbf{U}-\mathbf{D}\right\|_{2} \leq \epsilon
\end{aligned}
$$

## Dual formulation

$$
\min _{\mathbf{m}}-\left\{\max _{\mathbf{y}} \frac{1}{2}\left\|F^{T}(\mathbf{y})\right\|_{2}^{2}+\langle\mathbf{y}, \mathbf{D}-F \mathbf{Q}\rangle+\epsilon\|\mathbf{y}\|_{2}\right\}
$$

$$
\text { where } F=P_{\Omega} A^{-1}(\mathbf{m})
$$

Variable Size: $O\left(N_{x} N_{z} N_{T} N_{s}\right)$

At optimal points: $\quad A(\mathbf{m}) \mathbf{U}^{*}=\mathbf{Q}-F^{T} \mathbf{y}^{*}$

## Algorithm

$G_{\mathbf{y}}=F F^{T} \mathbf{y}+\mathbf{D}-F \mathbf{Q}+\epsilon \frac{\mathbf{y}}{\|\mathbf{y}\|_{2}}$
$G_{\mathbf{m}}=\operatorname{Jacobian}\left(\mathbf{m}, \mathbf{Q}-F^{T} \mathbf{y}\right)$
Step 1: L-BFGS on $\mathbf{y}$
Step 2: Gradient descent on $\mathbf{m}$

## Algorithm

Using the following gradients:

$$
\begin{aligned}
& \frac{\partial p(m, y)}{\partial y}=F F^{T} y+D-F Q+\epsilon \frac{y}{\|y\|_{2}} \\
& \frac{\partial p(m, y)}{\partial m}=J^{T}(m, \widetilde{Q}) y
\end{aligned}
$$

1. Solve with L-BFGS or gradient descent on the variable pair $(m, y)$
2. Alternating updates of the two variables

## Preliminary results





Original time-harmonic WRI


New time-domain WRI

