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Interpolation

Interpolation	schemes	rely	on	prior	information	on	the	data	to	fill	
in	missing	values:

‣ seismic	data	consists	of	limited	number	of	events.
‣ sparsity	in	transform	domain.
‣ low-rank	structure	of	seismic	data	in	coordinate	transformed	
domain.

Can	we	use	probabilistic	information?

Spitz,	S.,	1991.	Seismic	trace	interpolaLon	in	the	FX	domain.	Geophysics,	56(6),	pp.785-794.
Herrmann,	F.J.	and	Hennenfent,	G.,	2008.	Non-parametric	seismic	data	recovery	with	curvelet	frames.	Geophysical	Journal	Interna5onal,	173(1),	pp.
233-248.
Kumar,	R.,	Mansour,	H.,	Herrmann,	F.J.	and	Aravkin,	A.Y.,	2013.	ReconstrucLon	of	seismic	wavefields	via	low-rank	matrix	factorizaLon	in	the	hierarchical-
separable	matrix	representaLon.	In	SEG	Technical	Program	Expanded	Abstracts	2013	(pp.	3628-3633).	Society	of	ExploraLon	Geophysicists.
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Why probabilistic information?

In	probabilistic	methods,	if	we	have	a	precise	model	for	our	data:
‣ We	don’t	need	to	make	any	additional	assumptions	about	model

Assumptions	not	always	work	for	us:
‣ As	frequency	increases,	frequency	slices	become	less	low	rank
‣ If	we	miss	a	big	chunk	of	data,	interpolating	using	Curvelets	
becomes	less	efficient
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Probabilistic point of view

Images	can	be	thought	as	samples	from	a	complex	high-
dimensional	probability	distribution

Maximum	likelihood	estimation	for	finding	the	probability	
distribution	(if	we	assume	we	have	an	probability	function)
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Maximum likelihood estimation

If	data	samples	are	IID,	then	we	look	for	a	set	of	parameters	which	
maximize	the	probability	of	data	being	observed:

						:	Model	parameters
						:	Number	of	data	samples
						:	Explicit	probability	function	for	model
						:	All	the	data	samples
						:								data	sample
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Generative models

Instead	of	writing	out	a	function															,	learn	to	draw	samples	
from	the	distribution	directly.

Generative	Adversarial	Network	is	a	way	to	learn	to	sample	from	
complex,	high-dimensional	training	set	that	comes	from	a	
distribution.
How?	By	playing	a	game	between	two	players:

‣ Discriminator	(D)
‣ Generator	(G)

p(x; ✓)

Goodfellow,	I.,	Pouget-Abadie,	J.,	Mirza,	M.,	Xu,	B.,	Warde-Farley,	D.,	Ozair,	S.,	Courville,	A.	and	Bengio,	Y.,	2014.	GeneraLve	adversarial	nets.	In	Advances	
in	neural	informaLon	processing	systems	(pp.	2672-2680).
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Goal of the game

Learn a transformation mapping of noise into 
data distribution

GeneratorInput noise Sample from data 
distribution
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The game

Player					’s	task:	discrimination	between:
‣ a	sample	from	the	data	distribution
‣ and	a	sample	from	the	generator

Player					’s	task:	try	to	“fool”						by	generating	samples	that	are	
hard	for							to	discriminate	from	data.

Competition	drives	both	players	to	improve	their	methods.

G

D

D
D
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Players in our game

Two	players	in	the	game	are	represented	by	two	differentiable	
functions.

• Discriminator:	
• Input:					from	data	space	
• Output:	probability	that					

• Generator:	
• Input:	
• Output:	a	mapping	to	data	space

x

x ⇠ pdata

z ⇠ U(�1, 1)
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Figure	1	GANs	framework

The game played 
in GAN

Goodfellow,	I.,	2016.	NIPS	2016	tutorial:	GeneraLve	adversarial	networks.	arXiv	preprint	arXiv:1701.00160.
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Notation

Discriminator

Generator

z ⇠ U(�1, 1) ✓(G)

✓(D)

G✓(G)(z) ⇠ p
model

G✓(G)(z) 2 dom(data)

D✓(D)(x) = prob(x ⇠ pdata)x 2 dom(data)
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Game in equations

The	simplest	version	of	the	game	is	zero-sum	game:

Generator	
parameters

Discriminator	
parameters

Discriminator’s	ability	to		
recognize	data	as

being	real

Discriminator’s	ability	to		
recognize	output	of

generator	as	being	fake

Samples	drawn	
from	data	distribution

Samples	drawn	
from	latent	space
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Goodfellow,	I.,	Pouget-Abadie,	J.,	Mirza,	M.,	Xu,	B.,	Warde-Farley,	D.,	Ozair,	S.,	Courville,	A.	and	Bengio,	Y.,	2014.	GeneraLve	adversarial	nets.	In	Advances	
in	neural	informaLon	processing	systems	(pp.	2672-2680).
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Dealing with                      

Given	finite	training	dataset,					,	we	approximate	the	expectation	
using	batch	of	samples:

‣ sample							data	points,	without	replacement	from	

X

m

E
x⇠pdata(x)

(.)
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Nowozin,	S.,	Cseke,	B.	and	Tomioka,	R.,	2016.	f-gan:	Training	generaLve	neural	samplers	using	variaLonal	divergence	minimizaLon.	In	Advances	in	Neural	
InformaLon	Processing	Systems	(pp.	271-279).
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GANs: Convolutional Architectures (DCGAN)

Stable	set	of	neural	network	architectures	for	training	generative	
adversarial	networks.

Using	convolutional	neural	networks	as	generator	and	
discriminator	functions.

Radford,	A.,	Metz,	L.	and	Chintala,	S.,	2015.	Unsupervised	representaLon	learning	with	deep	convoluLonal	generaLve	adversarial	networks.	arXiv	preprint	
arXiv:1511.06434.
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GAN trained on seismic frequency slices

We	trained	a	DCGAN	on	seismic	frequency	slices	for	a	specific	
frequency.

The	size	of	each	frequency	slice	is	68x68.

The	images	are	normalized	so	that	details	can	be	visible.
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Figure	3	Original	images	in	
dataset

Dataset
Normalized seismic 
frequency slices in data 
set
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Synthetic	3D	BG	model
68	x	68		sources
401	x	401	receivers
Data	at	7.43	Hz
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Figure	4		Output	of	generator	
for	several	random	inputs

Fake slices
Random outputs of the 
trained generator on 
seismic frequency slices
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What can we do with GANs?

Now	that	we	can	sample	from	the	probability	distribution	of	
interest,	we	can	do	the	following:

‣ find	missing	values	in	images

‣ map	between	two	different	image	domains.

‣ and	much	more...
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Image reconstruction

Find	the	closest	image	on	the	range	of	generator	to	the	corrupted	
image.

Looking	for					such	that	the	mapping													is	close	to	corrupted	
image	where	we	have	data

Mask	for	existing	data.

Yeh,	R.,	Chen,	C.,	Lim,	T.Y.,	Hasegawa-Johnson,	M.	and	Do,	M.N.,	2016.	SemanLc	image	inpainLng	with	perceptual	and	contextual	losses.	arXiv	preprint	
arXiv:1607.07539.
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Figure	2	Comparisons	with	total	variation	(TV)	and	low	rank	
(LR)	based	methods	on	input	with	random	80%	missing.

Application
Missing data recovery

Original Input TV LR
Recovery	
with	GAN

Yeh,	R.,	Chen,	C.,	Lim,	T.Y.,	Hasegawa-Johnson,	M.	and	Do,	M.N.,	2016.	SemanLc	image	inpainLng	with	perceptual	and	contextual	losses.	arXiv	preprint	
arXiv:1607.07539.

20
Thursday, October 5, 2017



Image reconstruction

Why	not	leave	the	image	reconstruction	job	to	GAN?
‣ Less	problems	to	deal	with:	finding	the	“closest”	mapping

Idea:	use	a	generator	which	gets	an	image	as	input	instead	of	
random	vector

Target	image	domain Source	image	domain	
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Isola,	P.,	Zhu,	J.Y.,	Zhou,	T.	and	Efros,	A.A.,	2016.	Image-to-image	translaLon	with	condiLonal	adversarial	networks.	arXiv	preprint	arXiv:1611.07004.
Zhu,	J.Y.,	Park,	T.,	Isola,	P.	and	Efros,	A.A.,	2017.	Unpaired	image-to-image	translaLon	using	cycle-consistent	adversarial	networks.	arXiv	preprint	arXiv:
1703.10593.
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mapping from X to Y

Generator

✓(G)

Discriminator

✓(D) real	or	fake?
prob(y ⇠ pY)

Generator:	generate	fake	images	
that	can	fool	discriminator
Discriminator:	classify	fake	samples	
vs.	real	samples

X Y
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Source	domain Target	domain
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There are infinitely many mappings

Generator

✓(G)

Discriminator

✓(D)

X Y

Real

Generator

✓(G)

Discriminator

✓(D)

Y

Real	too!

X
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But	we	need	a	meaningful	mapping!	How?
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Cycle consistency

X XY

real	or	fake?
prob(y ⇠ pY)

real	or	fake?
prob(x ⇠ pX)

Generator

✓(F )

Discriminator

✓(DX)
Generator

✓(G)

Discriminator

✓(DY )

GAN1 GAN2

Zhu,	J.Y.,	Park,	T.,	Isola,	P.	and	Efros,	A.A.,	2017.	Unpaired	image-to-image	translaLon	using	cycle-consistent	adversarial	networks.	arXiv	preprint	arXiv:1703.10593.

y ! F (y) ! G(F (y)) ⇡ y

x ! G(x) ! F (G(x)) ⇡ x
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Getting a meaningful mapping

Cycle	consistency:	using	two	GANs,	map	from	source	domain	to		
target	domain	and	back	again	and	arrive	where	started

‣ i.e.	make	sure	we	can	invert	the	transform.

GAN1

GAN2

Zhu,	J.Y.,	Park,	T.,	Isola,	P.	and	Efros,	A.A.,	2017.	Unpaired	image-to-image	translaLon	using	cycle-consistent	adversarial	networks.	arXiv	preprint	arXiv:
1703.10593.
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CycleGAN math

GAN1	Loss:

GAN2	Loss:
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Zhu,	J.Y.,	Park,	T.,	Isola,	P.	and	Efros,	A.A.,	2017.	Unpaired	image-to-image	translaLon	using	cycle-consistent	adversarial	networks.	arXiv	preprint	arXiv:
1703.10593.

Target	domain
probability	distribution

Source	domain	
probability	distribution

Target	domain
probability	distribution

Source	domain	
probability	distribution

Mapping
X	to	Y

Mapping	
Y to	X
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CycleGAN math

Cycle	consistency	
Loss:

CycleGAN	game: min

✓(G),✓(F )
max

✓(DX ),✓(DY )
{LG + LF + �Lcycle}

L

cycle

(✓(G)
, ✓

(F )) = E
x⇠pX(x)

[kF (G(x))� xk] + E
y⇠pY (y)

[kG(F (y))� yk]

Zhu,	J.Y.,	Park,	T.,	Isola,	P.	and	Efros,	A.A.,	2017.	Unpaired	image-to-image	translaLon	using	cycle-consistent	adversarial	networks.	arXiv	preprint	arXiv:
1703.10593.

forcing

forcing G(F (y)) ⇡ y

F (G(x)) ⇡ x

:				a	hyper-parameter	
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Example
Mapping done 
between image 
domains by CycleGAN

Figure	7	Mapping	between	
two	image	spaces

Zhu,	J.Y.,	Park,	T.,	Isola,	P.	and	Efros,	A.A.,	2017.	Unpaired	image-to-image	translaLon	using	cycle-consistent	adversarial	networks.	arXiv	preprint	arXiv:
1703.10593.

aerial images to Google Maps

winter to summer

horses to zebras

Input G(x) F(G(x))
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Domain definition

We	investigate	three	cases	and	train	a	separate	network	for	each	
task:

1. Source	domain	(X):	freq.	slices	with	missing	data	in	a	box
2. Source	domain	(X):	freq.	slices	with	missing	columns	(receiver	x	
location)

3. Source	domain	(X):	freq.	slices	with	randomly	missing	pixels	
(random	receivers)

Target	domain	(Y):	complete	freq.	slices	with	no	missing	data
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Training

The	CycleGAN	is	trained	on	freq.	slices	with	no	missing	entries	and	
set	of	corrupted	images:

‣ Number	of	training	freq.	slices	in	each	set:	5000
‣ Total	number	of	freq.	slices	in	data	set:	160801
‣ Algorithm	is	tested	on	not	used	freq.	slices	(randomly	picked).

Training	is	done	using	one	node	and	20	threads	for	24	hours.

In	test	time,	we	fill	in	the	missing	values	using	pixels	in	the	
mapped	freq.	slice.
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Seismic application - Testing stage

Generator

✓(G)

Discriminator

✓(D) real	or	fake?
prob(y ⇠ pY)

X Y
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…
 

…
 

‣		This	example	is	showing	the	X	
domain	for	case	which	we	miss	a	
box	in	data
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Scalability

The	are	68	sources	in	x	and	y	direction
‣ size	of	freq.	slices	is	68x68

Is	it	scalable?	
Based	on	the	reference	paper	of	CycleGAN:

‣ “patch-level	discriminator	architecture	has	fewer	parameters	than	
a	full-image	discriminator,	and	can	be	applied	to	arbitrarily-sized	
images”

32

Zhu,	J.Y.,	Park,	T.,	Isola,	P.	and	Efros,	A.A.,	2017.	Unpaired	image-to-image	translaLon	using	cycle-consistent	adversarial	networks.	arXiv	preprint	arXiv:
1703.10593.
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Figure	8	Result

Results
Values missing in a box

missing box: 14x14
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Synthetic	3D	BG	model
68	x	68		sources
401	x	401	receivers
Data	at	7.43	Hz
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Figure	9	Result

Results
Values missing in a box

missing box: 42x42
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Figure	10	Result

Results
Values missing in 
columns

missing every 4th 
column
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Figure	11	Result

Results
Values missing in 
columns

missing half of columns
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Figure	12	Result

Results
Values missing 
randomly

20% missing samples
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Figure	13	Result

Results
Values missing 
randomly

80% missing samples
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Future work

‣ Train	a	single	network	which	can	take	care	of	all	sort	of	different	
missing	values

‣ map	from	domain	of	data	without	multiples	to	domain	of	data	with	
multiples,	i.e.	multiple	prediction

‣ map	from	domain	of	acoustic	data	to	domain	of	elastic	data,	i.e.	
elastic	forward	modeling
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Thank you for your attention.
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