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Motivation

Unconventional              
Reservoir Schematic

  Objectives

‣ detection	of	microseismic	
events	in	space	and	time

‣ estimation	of	source	time	
function
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Pre-existing methods

Arrival	time	picking	based	methods:
‣ estimate	the	location	and	origin	time	
‣ can	be	challenging	in	the	presence	of	noise

Imaging	based	methods:
‣ do	not	require	arrival	time	picking
‣ based	on	back	propagation
‣ estimate	the	location	and	origin	time
‣ require	scanning	of	complete	4D	volume	(3D	in	space	and	1D	in	time)

[Rentsch	et	al.,	’07;	McMechan,	’82;	Gajewski	et	al.,	’05;	Nakata	et	al.,’16;	Bazargani	et	al.,’16]
[Thurber	et	al.,	’00;	Waldhauser	et	al.,’00]
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Pre-existing methods

Dictionary	learning	based	methods:
‣ simultaneously	estimate	location,	origin	time	and	source	mechanism
‣ require	forming	large	dictionaries	based	on

number	of	sources,	number	of	receivers	and	number	of	time	samples
‣ require	prior	knowledge	of	source-time	function

Full-waveform	inversion	(FWI)	based	methods:

‣ invert	for	source	parameters
‣ some	of	these	methods	assume

prior	knowledge	of	source-time	function
source-time	function	to	be	a	gaussian	function	

[Sjögreen	et	al.,’14;	Wu	et	al.,’96;	Kim	et	al.,’11;	Michel	et	al.,’14;	Kaderli	et	al.,’15]
[Rodriguez	et	al.,’12;	Ely	et	al.,	’13]
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Estimates	complete	source	field	in:
‣ space	and
‣ time

[Sharan	et	al.,’16]

Proposed method w/ sparsity promotion
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Estimates	complete	source	field	in:
‣ space	and
‣ time

[Sharan	et	al.,’16]

Proposed method w/ sparsity promotion

No	assumptions	on:

‣ shape	of	source-time	function
‣ prior	knowledge	of	source-time	function
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Estimates	complete	source	field	in:
‣ space	and
‣ time

[Sharan	et	al.,’16]

Proposed method w/ sparsity promotion

No	assumptions	on:

‣ shape	of	source-time	function
‣ prior	knowledge	of	source-time	function

Needs:

‣ sufficiently	accurate	medium	velocity	model
‣ position	of	receivers
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Proposed method w/ sparsity promotion

Unconventional 
Reservoir Schematic

Assumptions

‣localized	in	space
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Proposed method w/ sparsity promotion

Unconventional 
Reservoir Schematic

Time

Assumptions

‣localized	in	space

‣finite	energy	along	time
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Proposed method w/ sparsity promotion

Source field

Forward 
modeling 
operator

Slowness 
square Observed data

Noise level

:		number	of	grid	pointsn
x

:		number	of	time	samplesnt

[Van	Den	Berg	et	al.,’08]

minimize

Q
kQk2,1

subject to kF [m](Q)� dk2  ✏

Q 2 Rn
x

⇥n
t
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Proposed method w/ sparsity promotion

Source field

Forward 
modeling 
operator

Slowness 
square Observed data

Noise level

:		number	of	grid	pointsn
x

:		number	of	time	samplesnt

Similar	to	classic	Basis	
pursuit	denoising	
(BPDN)

[Van	Den	Berg	et	al.,’08]

minimize

Q
kQk2,1

subject to kF [m](Q)� dk2  ✏

Q 2 Rn
x

⇥n
t
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Solving w/ linearized Bregman

[Lorentz	et	al.,’14;	Herrmann	et	al.,’15;	Sharan	et	al.,’16	]

‣ Recent	successful	application	to	seismic	imaging	problem

‣ Three-step	algorithm	simple	to	implement	

‣ Choice	of					controls	the	trade	off	between	sparsity	and	the	Frobenius	norm
‣ 												corresponds	to	solving	original	BPDN	problem

µ

µ " 1

minimize

Q
kQk2,1 +

1

2µ
kQk2F

subject to kF [m](Q)� dk2  ✏
⇤
where k.kF is the Frobenius norm
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Linearized Bregman algorithm
[Lorentz	et	al.,’14;	Combettes	et	al.,’11]

1. Data d, slowness square m //Input

2. for k = 0, 1, · · ·
3. Vk = F>

[m](⇧✏(F [m](Qk)� d)) //adjoint solve

4. Zk+1 = Zk � tkVk //auxiliary variable update

5. Qk+1 = Proxµ`2,1(Zk+1) //sparsity promotion

6. end

7. I(x) =

P
t | Q(x, t) | //Intensity plot
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Linearized Bregman algorithm

⇤
⇧✏(x) = max{0, 1� ✏

kxk}.(x) the projection on to `2 norm ball
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⇤
⇧✏(x) = max{0, 1� ✏
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Linearized Bregman algorithm

⇤
⇧✏(x) = max{0, 1� ✏

kxk}.(x) the projection on to `2 norm ball

[Lorentz	et	al.,’14;	Combettes	et	al.,’11]

⇤where tk = kF [m](Qk)�dk2

kF>[m](F [m](Qk)�d)k2 is the dynamic step length

⇤
Proxµ`2,1(C) := argminB kBk2,1 + 1

2µkC �Bk2F is the proximal mapping

of the `2,1 norm
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Linearized Bregman algorithm

⇤
⇧✏(x) = max{0, 1� ✏

kxk}.(x) the projection on to `2 norm ball

[Lorentz	et	al.,’14;	Combettes	et	al.,’11]

‣ Source	location:	estimated	as	outlier	in	intensity	plot

‣ Source-time	function:	temporal	variation	of	wavefield	at	estimated	source	location

⇤where tk = kF [m](Qk)�dk2

kF>[m](F [m](Qk)�d)k2 is the dynamic step length

⇤
Proxµ`2,1(C) := argminB kBk2,1 + 1

2µkC �Bk2F is the proximal mapping

of the `2,1 norm

1. Data d, slowness square m //Input
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Case study: two far sources

Receivers

Modeling information:

Model size: 0.7 km x 0.7 km
Grid spacing: 5m
Receiver spacing: 10m
Receiver depth: 20m
Fixed spread: 0.69km
Sampling interval: 2 ms
Recording length: 1s
Peak frequency : 30 Hz
Dominant wavelength: 46 m

Acquisition	setup

1400	m/s
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Data and estimated location

Microseismic	data Estimated	location
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Data and estimated location

Microseismic	data Estimated	location
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Estimated wavelet

True	Wavelet True	Wavelet

Estimated	WaveletEstimated	Wavelet
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What happens when sources are very close?

Microseismic	dataAcquisition	setup

Receivers

1400	m/s
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Estimated location after 150 iterations

Estimated	location,					=	8e-4µ
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Estimated	location,					=	8e-4µ

Estimated location after 150 iterations
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Estimated	location,					=	8e-4µ Estimated	location,					=	8e-3µ
Increased µ

For high resolution 

Estimated location after 150 iterations
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Estimated	location,					=	8e-4µ
Increased µ

For high resolution 
Estimated	location,					=	8e-3µ

Estimated location after 150 iterations
Fails	to	resolve	due	to	slow	
convergence	
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Convergence comparison
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Convergence comparison

Motivation	for	locating	closely	spaced	sources:	
for	accurate	fracture	mapping
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Convergence comparison

Motivation	for	locating	closely	spaced	sources:	
for	accurate	fracture	mapping

Challenges	with	linearized	Bregman	algorithm:
‣ need	higher	value	of					to	resolve	closely	spaces	
sources
‣ higher	values	of					needs	more	iterations

µ

µ
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Convergence comparison

Motivation	for	locating	closely	spaced	sources:	
for	accurate	fracture	mapping

Challenges	with	linearized	Bregman	algorithm:
‣ need	higher	value	of					to	resolve	closely	spaces	
sources
‣ higher	values	of					needs	more	iterations

µ

µ

Acceleration	with	quasi-Newton:
‣ linearized	Bregman	algorithm	is	equivalent	to	
solving	dual	problem	by	gradient	descent
‣ we	accelerate	the	dual	problem	using	quasi-
Newton	

[Huang	et	al.,’13;	Yin	,’10]
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Acceleration with quasi-Newton: Algorithm

[Huang	et	al.,’13;	Yin	,’10]

1. Data d, slowness square m, number of iterations k //Input

2. Initialize dual variable y = 10

�3
d

3.

ˆ

y = L-BFGS(f(y), g(y),y, k) //Dual solution

where f(y) =  (y)� ✏kyk2 //L-BFGS objective

and g(y) =  0
(y)� ✏y/kyk2 //L-BFGS gradient

4.

ˆ

Q = Proxµ`2,1(µF [m]

>
(

ˆ

y)) //Primal solution

5. I(x) =

P
t | ˆQ(x, t) | //Intensity plot

⇤  (y) = minimize
Q

kQk2,1 +
1

2µ
kQkF � y>(F [m](Q)� d)

⇤
 

0
(y) = d� F [m](Proxµ`2,1(µF [m]

>
(y))) is the gradient of  (y)
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Acceleration with quasi-Newton: Algorithm

[Huang	et	al.,’13;	Yin	,’10]

1. Data d, slowness square m, number of iterations k //Input

2. Initialize dual variable y = 10

�3
d

3.

ˆ

y = L-BFGS(f(y), g(y),y, k) //Dual solution

where f(y) =  (y)� ✏kyk2 //L-BFGS objective

and g(y) =  0
(y)� ✏y/kyk2 //L-BFGS gradient

4.

ˆ

Q = Proxµ`2,1(µF [m]

>
(

ˆ

y)) //Primal solution

5. I(x) =

P
t | ˆQ(x, t) | //Intensity plot

lives	in	much	smaller	
space	:
‣ dimensions	equals	that	
of	observed	data
‣ better	approximation	of	
inverse	Hessian	by	
storing	more	and	more	
dual	variable	updates

⇤  (y) = minimize
Q

kQk2,1 +
1

2µ
kQkF � y>(F [m](Q)� d)

⇤
 

0
(y) = d� F [m](Proxµ`2,1(µF [m]

>
(y))) is the gradient of  (y)
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Further acceleration w/ 2D Preconditioning

[Herrmann	et	al.,’09;]

Each	iteration	of	L-BFGS	requires	solving	at	least	one
‣ wave	equation	and
‣ its	adjoint

Friday, October 6, 2017



Further acceleration w/ 2D Preconditioning

[Herrmann	et	al.,’09;]

Each	iteration	of	L-BFGS	requires	solving	at	least	one
‣ wave	equation	and
‣ its	adjoint

Requires	further	reduction	in	the	total	number	of	iterations	due	to:

‣ the	problem	size	and
‣ computational	costs
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Further acceleration w/ 2D Preconditioning

[Herrmann	et	al.,’09;]

Each	iteration	of	L-BFGS	requires	solving	at	least	one
‣ wave	equation	and
‣ its	adjoint

Requires	further	reduction	in	the	total	number	of	iterations	due	to:

‣ the	problem	size	and
‣ computational	costs

Left	preconditioner:

‣ reduces	the	condition	number	of	2D	forward	modeling	operator
‣ accelerates	the	convergence

F
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Further acceleration w/ 2D Preconditioning

[Herrmann	et	al.,’09;	Song	et	al.	,’95]

In	2D,	a	point	source	implicitly	assumes
‣ a	line	source	
‣ extending	infinitely	in	the	out	of	plain	direction

This	causes	wavefields	to	have:

‣ amplitude	and
‣ phase	differ	from	the	wavefields	of	a	true	point	source

We	introduce:

‣ a	symmetric	half	differentiation	correction	along	time	
‣ corrects	for	the	amplitude	and	phase	of	2D	wavefield
‣ which	acts	as	a	left	preconditioner
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Modified problem w/ 2D Preconditioning

[Herrmann	et	al.,’09;	Song	et	al.	,’95]

⇤F is the Fourier transform and ! is the frequency

⇤� is the noise level

minimize

Q
kQk2,1 +

1

2µ
kQk2F

subject to kMLF [m](Q)�MLdk2  �

⇤
with ML := @1/2

|t| is the half di↵erentiation correction

⇤where @1/2
|t| = F�1|!|1/2F
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Result for two close sources

Estimated	location

With L-BFGS and 2D 
preconditioner

10 iterations
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Result for two close sources

With L-BFGS and 2D 
preconditioner

10 iterations

Estimated	location
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Convergence comparison: LBR vs L-BFGS

Convergence	comparison
‣ Using	same	value	of	µ

Improvement	in	convergence	with
‣ Dual	formulation	and
‣ 2D	Preconditioning
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Numerical Experiment: BG Compass model

Modeling information:

Model size: 2.25 km x 0.915 km
Grid spacing: 5 m
Total number of sources: 2
Peak frequency : 30 Hz
Receiver spacing: 10m
Receiver depth: 20m
Sampling interval: 0.5 ms
Recording length: 1 s
Free surface: No

BG	Compass	model
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Numerical Experiment: BG Compass model

Modeling information:

Model size: 2.25 km x 0.915 km
Grid spacing: 5 m
Total number of sources: 2
Peak frequency : 30 Hz
Receiver spacing: 10m
Receiver depth: 20m
Sampling interval: 0.5 ms
Recording length: 1 s
Free surface: No

BG	Compass	model

Adjacent	sources	are	located	within	half	a	wavelength	with	overlapping	source-time	
functions
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Data

Noise	free	microseismic	data Noisy	Microseismic	data,	SNR	=	2.45

Friday, October 6, 2017



Estimated source location in 10 iterations
w/noise	free	data	and	true	velocity	model w/noisy	data	and	smooth	velocity	model
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Estimated source location in 10 iterations
w/noise	free	data	and	true	velocity	model w/noisy	data	and	smooth	velocity	model
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Wavelet comparison

True	Wavelet

w/	noise	free	data	and	true	velocity

w/	noisy	data	and	smooth	velocity

True	Wavelet

w/	noise	free	data	and	true	velocity

w/	noisy	data	and	smooth	velocity
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Numerical Experiment: Marmousi model

Modeling information:

Model size: 3.15 km x 1.08 km
Grid spacing: 5 m
Total number of sources: 7
Peak frequency : 22 Hz, 25 Hz & 30 Hz
Receiver spacing: 10m
Receiver depth: 20m
Sampling interval: 0.5 ms
Recording length: 1 s
Free surface: No

Marmousi	model
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Numerical Experiment: Marmousi model

Modeling information:

Model size: 3.15 km x 1.08 km
Grid spacing: 5 m
Total number of sources: 7
Peak frequency : 22 Hz, 25 Hz & 30 Hz
Receiver spacing: 10m
Receiver depth: 20m
Sampling interval: 0.5 ms
Recording length: 1 s
Free surface: No

Marmousi	model

Adjacent	sources	are	located	within	half	a	wavelength	with	overlapping	source-time	
functions
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Evolving seismicity
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Evolving seismicity
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Data

Noise	free	microseismic	data Noisy	Microseismic	data,	SNR	=	2.9
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Estimated source location in 10 iterations
w/noise	free	data	and	true	velocity	model w/noisy	data	and	smooth	velocity	model
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w/noise	free	data	and	true	velocity	model w/noisy	data	and	smooth	velocity	model

Estimated source location in 10 iterations
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Wavelet comparison

True	Wavelet

w/	noise	free	data	and	true	velocity

w/	noisy	data	and	smooth	velocity

True	Wavelet

w/	noise	free	data	and	true	velocity

w/	noisy	data	and	smooth	velocity

	Peak	frequency:	25	Hz 	Peak	frequency:	25	Hz
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Wavelet comparison

True	Wavelet True	Wavelet

w/	noise	free	data	and	true	velocity w/	noise	free	data	and	true	velocity

w/	noisy	data	and	smooth	velocity w/	noisy	data	and	smooth	velocity

	Peak	frequency:	30	Hz 	Peak	frequency:	30	Hz

Friday, October 6, 2017



Wavelet comparison

True	Wavelet True	Wavelet

w/	noise	free	data	and	true	velocity w/	noise	free	data	and	true	velocity

w/	noisy	data	and	smooth	velocity w/	noisy	data	and	smooth	velocity

	Peak	frequency:	30	Hz 	Peak	frequency:	22	Hz
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Wavelet comparison

																	True	Wavelet

w/	noise	free	data	and	true	velocity

w/	noisy	data	and	smooth	velocity

	Peak	frequency:	22	Hz
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Conclusions

Sparsity	promotion	based	method:
‣ can	simultaneously	estimate	multiple	source	locations	&	source-time	functions

‣ can	provide	locations	of	fractures	by	resolving	microseismic	sources	within	half	a	
wavelength

‣ works	w/	sources	of	different	frequencies	&	origin	times
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Conclusions

Sparsity	promotion	based	method:
‣ can	simultaneously	estimate	multiple	source	locations	&	source-time	functions

‣ can	provide	locations	of	fractures	by	resolving	microseismic	sources	within	half	a	
wavelength

‣ works	w/	sources	of	different	frequencies	&	origin	times

Dual	formulation	provides	a	computationally	efficient	scheme.
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Future work

Elastic	data	validation
‣ Use	realistic	source	mechanism	and	elastic	code	to	generate	data

‣ locate	microseismic	sources	from	P-phase	data	using	acoustic	inversion	codes
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Future work

Elastic	data	validation
‣ Use	realistic	source	mechanism	and	elastic	code	to	generate	data

‣ locate	microseismic	sources	from	P-phase	data	using	acoustic	inversion	codes

Extension	to	3D	

Work	on	field	data
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