Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Tracking the spatial-temporal evolution of fractures by microseismic source collocation

Shashin Sharan, Rongrong Wang and Felix J. Herrmann

SLIM University of British Columbia

Unconventional Reservoir Schematic

Objectives

- detection of microseismic events in space and time
- estimation of source time function

[Rentsch et al., '07; McMechan, '82; Gajewski et al., '05; Nakata et al.,'16; Bazargani et al.,'16] [Thurber et al., '00; Waldhauser et al.,'00]

Pre-existing methods

- Arrival time picking based methods:
 - estimate the location and origin time
 - can be challenging in the presence of noise

Imaging based methods:

- It do not require arrival time picking
- based on back propagation
- estimate the location and origin time

require scanning of complete 4D volume (3D in space and 1D in time)

[Sjögreen et al., '14; Wu et al., '96; Kim et al., '11; Michel et al., '14; Kaderli et al., '15] [Rodriguez et al., '12; Ely et al., '13]

Pre-existing methods

- Dictionary learning based methods:

 - require forming large dictionaries based on
 - require prior knowledge of source-time function
- Full-waveform inversion (FWI) based methods:
 - invert for source parameters
 - some of these methods assume prior knowledge of source-time function source-time function to be a gaussian function

simultaneously estimate location, origin time and source mechanism

number of sources, number of receivers and number of time samples

[Sharan et al.,'16]

Proposed method w/ sparsity promotion

Estimates complete source field in:

- space and
- ► time

[Sharan et al.,'16]

Proposed method w/ sparsity promotion

Estimates complete source field in:

- space and
- ▶ time

No assumptions on:

- shape of source-time function
- prior knowledge of source-time function

[Sharan et al.,'16]

Proposed method w/ sparsity promotion

Estimates complete source field in:

- space and
- ▶ time

No assumptions on:

- shape of source-time function
- prior knowledge of source-time function

Needs:

- sufficiently accurate medium velocity model
- position of receivers

Proposed method w/ sparsity promotion

Unconventional Reservoir Schematic

Assumptions

Iocalized in space

Proposed method w/ sparsity promotion

Unconventional Reservoir Schematic

Iocalized in space

finite energy along time

[Van Den Berg et al.,'08]

 $\mathbf{Q} \in \mathbb{R}^{n_x imes n_t}$

 n_x : number of grid points n_t : number of time samples

[Van Den Berg et al.,'08]

 $\mathbf{Q} \in \mathbb{R}^{n_x imes n_t}$

 n_x : number of grid points n_t : number of time samples

Similar to classic Basis pursuit denoising (BPDN)

[Lorentz et al., '14; Herrmann et al., '15; Sharan et al., '16]

Solving w/linearized Bregman

minimize $\|\mathbf{Q}\|$ subject to $\|\mathcal{F}\|$ *where $\|.\|_F$ is the Frobenius norm

- Recent successful application to seismic imaging problem
- Three-step algorithm simple to implement
- Choice of μ controls the trade off between sparsity and the Frobenius norm
- $\mu \uparrow \infty$ corresponds to solving original BPDN problem

$$\begin{aligned} \|\mathbf{2}_{,1} + \frac{1}{2\mu} \|\mathbf{Q}\|_F^2 \\ \mathbf{m}](\mathbf{Q}) - \mathbf{d}\|_2 \le \epsilon \end{aligned}$$

Data d, slowness square m //Input 1. 2. for $k = 0, 1, \cdots$ $\mathbf{V}_k = \mathcal{F}^{\top}[\mathbf{m}](\Pi_{\epsilon}(\mathcal{F}[\mathbf{m}](\mathbf{Q}_k) - \mathbf{d}))$ //adjoint solve 3. $\mathbf{Z}_{k+1} = \mathbf{Z}_k - t_k \mathbf{V}_k$ //auxiliary variable update 4. $\mathbf{Q}_{k+1} = \operatorname{Prox}_{\mu\ell_{2,1}}(\mathbf{Z}_{k+1})$ //sparsity promotion 5. 6. end $\mathbf{I}(\mathbf{x}) = \sum_{t} |\mathbf{Q}(\mathbf{x}, t)| / \text{Intensity plot}$ 7.

Data d, slowness square m //Input 1. 2. for $k = 0, 1, \cdots$ $\mathbf{V}_k = \mathcal{F}^{\top}[\mathbf{m}](\Pi_{\epsilon}(\mathcal{F}[\mathbf{m}](\mathbf{Q}_k) - \mathbf{d}))$ //adjoint solve 3. $\mathbf{Z}_{k+1} = \mathbf{Z}_k - t_k \mathbf{V}_k$ //auxiliary variable update 4. $\mathbf{Q}_{k+1} = \operatorname{Prox}_{\mu\ell_{2,1}}(\mathbf{Z}_{k+1})$ //sparsity promotion 5. 6. end $\mathbf{I}(\mathbf{x}) = \sum_{t} |\mathbf{Q}(\mathbf{x}, t)| //\text{Intensity plot}$ 7.

* $\Pi_{\epsilon}(\mathbf{x}) = \max\{0, 1 - \frac{\epsilon}{\|\mathbf{x}\|}\}.(\mathbf{x})$ the projection on to ℓ_2 norm ball

- Data d, slowness square m //Input 1. 2. for $k = 0, 1, \cdots$ $\mathbf{V}_k = \mathcal{F}^{\top}[\mathbf{m}](\Pi_{\epsilon}(\mathcal{F}[\mathbf{m}](\mathbf{Q}_k) - \mathbf{d}))$ //adjoint solve 3. $\mathbf{Z}_{k+1} = \mathbf{Z}_k - t_k \mathbf{V}_k$ //auxiliary variable update 4. $\mathbf{Q}_{k+1} = \operatorname{Prox}_{\mu\ell_{2,1}}(\mathbf{Z}_{k+1})$ //sparsity promotion 5. 6. end $\mathbf{I}(\mathbf{x}) = \sum_{t} |\mathbf{Q}(\mathbf{x}, t)| //\text{Intensity plot}$ 7.
- * $\Pi_{\epsilon}(\mathbf{x}) = \max\{0, 1 \frac{\epsilon}{\|\mathbf{x}\|}\}.(\mathbf{x})$ the projection on to ℓ_2 norm ball *where $t_k = \frac{\|\mathcal{F}[\mathbf{m}](\mathbf{Q}_k) - \mathbf{d}\|^2}{\|\mathcal{F}^{\top}[\mathbf{m}](\mathcal{F}[\mathbf{m}](\mathbf{Q}_k) - \mathbf{d})\|^2}$ is the dynamic step length

Data d, slowness square m //Input 1. 2. for $k = 0, 1, \cdots$ $\mathbf{V}_k = \mathcal{F}^{\top}[\mathbf{m}](\Pi_{\epsilon}(\mathcal{F}[\mathbf{m}](\mathbf{Q}_k) - \mathbf{d}))$ //adjoint solve 3. $\mathbf{Z}_{k+1} = \mathbf{Z}_k - t_k \mathbf{V}_k$ //auxiliary variable update 4. $\mathbf{Q}_{k+1} = \operatorname{Prox}_{\mu\ell_{2,1}}(\mathbf{Z}_{k+1})$ //sparsity promotion 5. 6. end $\mathbf{I}(\mathbf{x}) = \sum_{t} |\mathbf{Q}(\mathbf{x}, t)| / \text{Intensity plot}$ 7.

* $\Pi_{\epsilon}(\mathbf{x}) = \max\{0, 1 - \frac{\epsilon}{\|\mathbf{x}\|}\}.(\mathbf{x})$ the projection on to ℓ_2 norm ball *where $t_k = \frac{\|\mathcal{F}[\mathbf{m}](\mathbf{Q}_k) - \mathbf{d}\|^2}{\|\mathcal{F}^{\top}[\mathbf{m}](\mathcal{F}[\mathbf{m}](\mathbf{Q}_k) - \mathbf{d})\|^2}$ is the dynamic step length * $\operatorname{Prox}_{\mu\ell_{2,1}}(\mathbf{C}) := \operatorname{arg\,min}_{\mathbf{B}} \|\mathbf{B}\|_{2,1} + \frac{1}{2\mu} \|\mathbf{C} - \mathbf{B}\|_{F}^{2}$ is the proximal mapping of the $\ell_{2,1}$ norm

Data d, slowness square m //Input 1. 2. for $k = 0, 1, \cdots$ $\mathbf{V}_k = \mathcal{F}^{\top}[\mathbf{m}](\Pi_{\epsilon}(\mathcal{F}[\mathbf{m}](\mathbf{Q}_k) - \mathbf{d}))$ //adjoint solve 3. $\mathbf{Z}_{k+1} = \mathbf{Z}_k - t_k \mathbf{V}_k$ //auxiliary variable update 4. $\mathbf{Q}_{k+1} = \operatorname{Prox}_{\mu\ell_{2,1}}(\mathbf{Z}_{k+1})$ //sparsity promotion 5. 6. end $\mathbf{I}(\mathbf{x}) = \sum_{t} |\mathbf{Q}(\mathbf{x}, t)| / \text{Intensity plot}$ 7.

* $\Pi_{\epsilon}(\mathbf{x}) = \max\{0, 1 - \frac{\epsilon}{\|\mathbf{x}\|}\}.(\mathbf{x})$ the projection on to ℓ_2 norm ball *where $t_k = \frac{\|\mathcal{F}[\mathbf{m}](\mathbf{Q}_k) - \mathbf{d}\|^2}{\|\mathcal{F}^{\top}[\mathbf{m}](\mathcal{F}[\mathbf{m}](\mathbf{Q}_k) - \mathbf{d})\|^2}$ is the dynamic step length * $\operatorname{Prox}_{\mu\ell_{2,1}}(\mathbf{C}) := \operatorname{arg\,min}_{\mathbf{B}} \|\mathbf{B}\|_{2,1} + \frac{1}{2\mu} \|\mathbf{C} - \mathbf{B}\|_{F}^{2}$ is the proximal mapping of the $\ell_{2,1}$ norm

• Source location: estimated as outlier in intensity plot Source-time function: temporal variation of wavefield at estimated source location

Friday, October 6, 2017

Case study: two far sources

Modeling information:

Model size: 0.7 km x 0.7 km Grid spacing: 5m Receiver spacing: 10m Receiver depth: 20m Fixed spread: 0.69km Sampling interval: 2 ms Recording length: 1s Peak frequency : 30 Hz Dominant wavelength: 46 m

Data and estimated location

Data and estimated location

Estimated wavelet

Friday, October 6, 2017

What happens when sources are very close?

Microseismic data

Estimated location after 150 iterations

Estimated location, μ = 8e-4

Estimated location after 150 iterations

Estimated location, μ = 8e-4

Estimated location after 150 iterations

Estimated location after 150 iterations

Convergence comparison

Convergence comparison

Motivation for locating closely spaced sources: for accurate fracture mapping

Convergence comparison

Motivation for locating closely spaced sources: for accurate fracture mapping

Challenges with linearized Bregman algorithm:

- need higher value of µ to resolve closely spaces sources
- \blacktriangleright higher values of μ needs more iterations

[Huang et al.,'13; Yin ,'10] Convergence comparison

Motivation for locating closely spaced sources: for accurate fracture mapping

Challenges with linearized Bregman algorithm:

- need higher value of µ to resolve closely spaces sources
- \blacktriangleright higher values of μ needs more iterations

Acceleration with quasi-Newton:

- Inearized Bregman algorithm is equivalent to solving dual problem by gradient descent
- we accelerate the dual problem using quasi-Newton

[Huang et al., '13; Yin , '10]

Acceleration with quasi-Newton: Algorithm

1. Initialize dual variable $y = 10^{-3} d$ 2. $\hat{\mathbf{y}} = \text{L-BFGS}(f(\mathbf{y}), g(\mathbf{y}), \mathbf{y}, k)$ //Dual solution 3. $f(\mathbf{y}) = \Psi(\mathbf{y}) - \epsilon \|\mathbf{y}\|_2$ //L-BFGS objective where $g(\mathbf{y}) = \Psi'(\mathbf{y}) - \epsilon \mathbf{y} / \|\mathbf{y}\|_2$ //L-BFGS gradient and $\hat{\mathbf{Q}} = \operatorname{Prox}_{\mu\ell_{2,1}}(\mu \mathcal{F}[\mathbf{m}]^{\top}(\hat{\mathbf{y}})) / \operatorname{Primal solution}$ 4. 5. $\mathbf{I}(\mathbf{x}) = \sum_{t} |\hat{\mathbf{Q}}(\mathbf{x}, t)| / \text{Intensity plot}$

*
$$\Psi(\mathbf{y}) = \min_{\mathbf{Q}} \|\mathbf{Q}\|_{2,1} + \frac{1}{2\mu} \|\mathbf{Q}\|_F - \mathbf{y}^\top (\mathcal{F}[\mathbf{m}]) \|\mathbf{Q}\|_F$$

* $\Psi'(\mathbf{y}) = \mathbf{d} - \mathcal{F}[\mathbf{m}] (\operatorname{Prox}_{\mu\ell_{2,1}}(\mu \mathcal{F}[\mathbf{m}]^\top(\mathbf{y})))$ is the gradient

- Data d, slowness square m, number of iterations k //Input

- $\mathbf{Q}) \mathbf{d}$
- t of $\Psi(\mathbf{y})$

[Huang et al., '13; Yin , '10]

Acceleration with quasi-Newton: Algorithm

1. Initialize dual variable $y = 10^{-3} d$ 2. $\hat{\mathbf{y}} = \text{L-BFGS}(f(\mathbf{y}), g(\mathbf{y}), \mathbf{y}, k)$ //Dual solution 3. $f(\mathbf{y}) = \Psi(\mathbf{y}) - \epsilon \|\mathbf{y}\|_2$ //L-BFGS objective where $g(\mathbf{y}) = \Psi'(\mathbf{y}) - \epsilon \mathbf{y} / ||\mathbf{y}||_2$ //L-BFGS gradient and $\hat{\mathbf{Q}} = \operatorname{Prox}_{\mu\ell_{2,1}}(\mu \mathcal{F}[\mathbf{m}]^{\top}(\hat{\mathbf{y}})) / \operatorname{Primal solution}$ 4. $\mathbf{I}(\mathbf{x}) = \sum_{t} |\hat{\mathbf{Q}}(\mathbf{x}, t)| //\text{Intensity plot}$ 5.

*
$$\Psi(\mathbf{y}) = \min_{\mathbf{Q}} \|\mathbf{Q}\|_{2,1} + \frac{1}{2\mu} \|\mathbf{Q}\|_F - \mathbf{y}^\top (\mathcal{F}[\mathbf{m}]) \|\mathbf{Q}\|_F$$

* $\Psi'(\mathbf{y}) = \mathbf{d} - \mathcal{F}[\mathbf{m}] (\operatorname{Prox}_{\mu\ell_{2,1}}(\mu \mathcal{F}[\mathbf{m}]^\top(\mathbf{y})))$ is the gradient

Data d, slowness square m, number of iterations k //Input

lives in much smaller space :

- dimensions equals that of observed data
- better approximation of inverse Hessian by storing more and more dual variable updates

 $\mathbf{Q}) - \mathbf{d}$

nt of $\Psi(\mathbf{y})$

[Herrmann et al.,'09;]

Further acceleration w/ 2D Preconditioning

Each iteration of L-BFGS requires solving at least one

- wave equation and
- ▶ its adjoint

[Herrmann et al.,'09;]

Further acceleration w/ 2D Preconditioning

Each iteration of L-BFGS requires solving at least one

- wave equation and
- its adjoint

Requires further reduction in the total number of iterations due to:

- the problem size and
- computational costs

[Herrmann et al.,'09;]

Further acceleration w/ 2D Preconditioning

Each iteration of L-BFGS requires solving at least one

- wave equation and
- its adjoint

Requires further reduction in the total number of iterations due to:

- the problem size and
- computational costs

Left preconditioner:

- accelerates the convergence

 \blacktriangleright reduces the condition number of 2D forward modeling operator \mathcal{F}

Further acceleration w/ 2D Preconditioning

- In 2D, a point source implicitly assumes
 - ▶ a line source
 - extending infinitely in the out of plain direction

This causes wavefields to have:

- amplitude and
- b phase differ from the wavefields of a true point source

We introduce:

- a symmetric half differentiation correction along time corrects for the amplitude and phase of 2D wavefield which acts as a left preconditioner

Modified problem w/ 2D Preconditioning

minimize $\|\mathbf{Q}\|_{2,1} + \frac{1}{2\mu} \|\mathbf{Q}\|_F^2$

*with $\mathcal{M}_L := \partial_{|t|}^{1/2}$ is the half differentiation correction *where $\partial_{|t|}^{1/2} = \mathbf{F}^{-1} |\omega|^{1/2} \mathbf{F}$ ***F** is the Fourier transform and ω is the frequency γ is the noise level

subject to $\|\mathcal{M}_L \mathcal{F}[\mathbf{m}](\mathbf{Q}) - \mathcal{M}_L \mathbf{d}\|_2 \leq \gamma$

Result for two close sources

With L-BFGS and 2D preconditioner

10 iterations

Result for two close sources

With L-BFGS and 2D preconditioner

10 iterations

Convergence comparison: LBR vs L-BFGS

Convergence comparison

• Using same value of μ

Improvement in convergence with Dual formulation and

D Preconditioning

Numerical Experiment: BG Compass model

BG Compass model

³ Modeling information:

Model size: 2.25 km x 0.915 km Grid spacing: 5 m Total number of sources: 2 Peak frequency : 30 Hz Receiver spacing: 10m Receiver depth: 20m Sampling interval: 0.5 ms Recording length: 1 s Free surface: No

Numerical Experiment: BG Compass model

BG Compass model

Adjacent sources are located within half a wavelength with overlapping source-time functions

Friday, October 6, 2017

Modeling information:

Model size: 2.25 km x 0.915 km
 Grid spacing: 5 m
 Total number of sources: 2
 Peak frequency : 30 Hz
 Receiver spacing: 10m
 Receiver depth: 20m
 Sampling interval: 0.5 ms
 Recording length: 1 s
 Free surface: No

Data

Estimated source location in 10 iterations

w/noise free data and true velocity model

Estimated source location in 10 iterations

w/noise free data and true velocity model

Marmousi model

Modeling information:

Model size: 3.15 km x 1.08 km Grid spacing: 5 m **Total number of sources:** 7 Peak frequency: 22 Hz, 25 Hz & 30 Hz Receiver spacing: 10m Receiver depth: 20m Sampling interval: 0.5 ms Recording length: 1 s Free surface: No

Numerical Experiment: Marmousi model [km/s]4 3.5 <u>د</u> 0.5 3 Ν 2.5 2 3 0 x [km]

Marmousi model

Adjacent sources are located within half a wavelength with overlapping source-time functions

Friday, October 6, 2017

Modeling information:

Model size: 3.15 km x 1.08 km Grid spacing: 5 m **Total number of sources:** 7 **Peak frequency :** 22 Hz, 25 Hz & 30 Hz Receiver spacing: 10m Receiver depth: 20m Sampling interval: 0.5 ms Recording length: 1 s Free surface: No

Evolving seismicity

x [km]

Evolving seismicity

Data

Noise free microseismic data

Estimated source location in 10 iterations

w/noise free data and true velocity model

Friday, October 6, 2017

w/noisy data and smooth velocity model

Estimated source location in 10 iterations

w/noise free data and true velocity model

Friday, October 6, 2017

w/noisy data and smooth velocity model

Peak frequency: 30 Hz

Peak frequency: 22 Hz

Conclusions

Sparsity promotion based method:

- wavelength
- works w/ sources of different frequencies & origin times

• can provide locations of fractures by resolving microseismic sources within half a

Conclusions

- Sparsity promotion based method:

 - wavelength
 - works w/ sources of different frequencies & origin times

Dual formulation provides a computationally efficient scheme.

• can provide locations of fractures by resolving microseismic sources within half a

Future work

Elastic data validation

Iocate microseismic sources from P-phase data using acoustic inversion codes

Future work

Elastic data validation

Extension to 3D

Iocate microseismic sources from P-phase data using acoustic inversion codes

Future work

Elastic data validation

Iocate microseismic sources from P-phase data using acoustic inversion codes

Extension to 3D

Work on field data

Acknowledgement

support of the member organizations of the SINBAD Consortium.

This research was carried out as part of the SINBAD project with the

Thank you !!

