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Motivation

Develop constraints & optimization methods to deal with:
® noisy data
® inaccurate starting models
e small number of data points

Constraints encode information about:
¢ smoothness
e blockiness
e approximately layered media
e number of velocity jumps up or down
e maximum & minimum values, well-log information, reference models
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Goal

Create software toolbox that builds on top of existing codes:

use any code for data-misfit value and gradient

for inverse problems with expensive function & gradient
arbitrary combinations of convex and non-convex sets

all iterates satisfy all constraints

convenient translation of prior information into constraints
data-misfit and constraints are decoupled

no penalty functions & parameters
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Constraints

Currently implemented:

bounds

nuclear norm, rank
{1 - based sparsity promotion total-variation/transform-domain sparsity
cardinality (¢g) - based total-variation transform-domain sparsity constraints
slope constraints / transform-domain bounds
Fourier-domain smoothness / subspace constraints
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Transform-domain bounds / slope constraints
C={m|l; < (Am); < u;}

. 1 —1 1
slope constraintif: A =1, ® D, with D, = -

<

Interpretation:
e |imit the medium parameter variation per distance unit
e select different bounds for increasing values and decreasing values




Transform-domain bound constraints

arbitrary medium parameter increase,

limited medium parameter decrease
with depth
e induces monotonicity

limited increase and limited decrease
® induces vertical smoothness
e still allows small velocity jumps
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True velocity model
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Example - BG Compass

True velocity model

modeling ‘observed’ data: :
® generate data on original 6m grid 00 |
e time-domain modeling (Julia interface for £ &= —
DeVito [Lange et. al., 2017]) 1500 e I
' denSity and VEIOCity o 0 1000 2000 3000 4000 5000
X [m]
inversion True density model

0
.
e for velocity only =

e fixed density =1 [Da Silva & Herrmann, 2017] E 1000 |
e frequency domain package WAVEFORM ™
e adapt grid for each frequency 2000
® Start at 60m grld —_— 15m gl’ld 0 1000 2000 3000 4000 5000

x [m]

1500

7/
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Example - BG Compass

e 3-15 Hz data, in 1Hz batches from low to high frequency

® bound constraints

Initial velocity model
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bounds only 3-15 Hz, iter = 1
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Example - BG Compass

So far, we (SLIM) used constraints to describe true model.
[E. Esser et. al., 2014; 2015; 2016] [Peters & Herrmann, 2017][B. R. Smithyman, B. Peters & F.J. Herrmann, 2015]
What if we do not know much about expected model?

—>» Use constraints to obtain better starting model

prior assumptions:
e sedimentary geology, mainly layered, no big faults
e starting model should be laterally smooth & velocity increases with depth
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Initial velocity model

s
£ 1000
N 1500
1st cycle: invert 3-4 Hz data with: 2000
® bound constraints \ <
® |ateral smoothness (slope constraint): : bounds & slope constraint, 3-4 Hz
{m ‘ — &1 < ((Iz 0 Dx)m)j < ‘|‘52} 500
® approximate vertical monotonicity: E 1000

m| —e<((D.®I;)m); < +oop

2000

0 1000 2000 3000 4000 5000
x [m]

bounds & slope -> bounds only, 3-15 Hz

2nd cycle:
® use 1st cycle result as new starting model
e invert all data with bound constraints

]_ 1 0 1000 2000 3000 4000 5000
x [m]

Friday, October 6, 2017



Z|mj
=
-

2000

12

bounds & slope constraint, 3-4 Hz, iter = 1
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2000

bounds & slope -> bounds only, 3-15 Hz, iter = 1
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Problem formulation

Im

p
min f(m) s.t. m €& ﬂ C;
i=1

!

differentiable data-misfit  intersection of constraint sets

Geophysical applications:

¢ single C (bounds) [Zeev et al. (2006) and Bello and Raydan (2007)]

® tWO sets [Lelievre and Oldenburg (2009), Baumstein (2013), Smithyman et al. (2015),
Esser et al. (2015ab, 2016ab), B. Peters and Herrmann (2017)]
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Convex sets : some properties

¢ |ine segment between every pair in the set, is in the set as well
e Euclidean projection onto a convex set is unique
® projection onto a convex set Is a hon-expansive operation

Ser

Y Nnon convex

intersection of convex
sets is also convex

https://en.wikipedia.org/wiki/
Helly%27s theorem
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https://en.wikipedia.org/wiki/Helly%27s_theorem
https://en.wikipedia.org/wiki/Helly%27s_theorem
https://en.wikipedia.org/wiki/Helly%27s_theorem
https://en.wikipedia.org/wiki/Helly%27s_theorem

Prior information as convex sets

p
min f(m) s.t. m €& ﬂ C;
i=1

Im

[Birgin et. al. (1999); Schmidt et. al. (2009); Schmidt et. al. (2012)]
projection based algorithms: SPG, PQN, projected Newton-type guarantee
that m satisfies all constraints, every iteration.

Projection (Euclidean, minimum-distance projection):

x—mls st x€eC Pe(m) = Pe(Pe(m))

Pc(m) = arg min
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Projection onto an intersection

p
Pe(m) = argmin ||x — mlls s.t. x & ﬂ Ci.
i=1

X
Before, we used (parallel) black-box algorithms Algorithm 1 Dykstra.
such as Dykstra’s algorithm. xXo=m, po=0,g90=0
[Dykstra, 1983 ; Boyle & Dykstra, 1986 ; FOr k — O, 1, o

Censor, 2006; Bauschke & Koch, 2015]

Y= Pc,(+pe) |
one projection onto each set separately per iteration < Pk+1 = Xk + Pk — Yk
Xier1 = Po, (e + qi))

qk+1 = Yk T qk — Xk+1
End
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Dyksira’s algorithm

Toy example:
find projection onto intersection of circle & square
Algorithm 1 Dykstra. | T2 e P |5 oy
xo=m, po =0, go =0 28 |
For k=0,1, ... -
- Yk = P, (X + pr) R
Pk+1 = Xi+ Pk — Y& -
- M= 2o et ar) 20 |
dk+1 = Yk T 4k — Xk+1 ,
End Feasible set Feasible set

1.8 ' ' t- ' '
1.8 2 22 24 288 2 22 24 26

Only needs projections onto each set separately  x X
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Projected gradient

effective domain non-convex function
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-1.5

YS moving along the

set boundary
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99 zoomed in
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moving away
from boundary
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effective domain non-convex function
73 zoomed in
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Projection onto an intersection

Dykstra Pro: Algorithm 1 Dykstra.
. ?;Tn?.le and fast if projections are known in closed- Xo=m, po=0, go =0
For k=0,1, ...
Dykstra Con: " [Yk = ‘@Q (xk _I_pk) J
e Uses another iterative algorithm for other Pk+1 = Xg + Pk — Yk
projections | | > [xk“ = Y, ()’k e qk)J
® Nested strategy requires two sets of stopping -
criteria. Gk+1 = Yk T Gk — Xk+1

e Does not take similarity between sets into account. End
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Similarity between sefts

limited number of discontinuities (lateral): {m | card(D,m) < k}
limited magnitude of discontinuities (lateral): {m |1 < D,m < u}

—>» both sets have same transform-domain operator

anisotropic total-variation: {m|| (D D;,F)T mi; <o}

limited number of discontinuities (lateral): {m | card(D,m) < k}

—>» transform-domain operators have overlapping sparsity-pattern

—3» Mat-vec product at same cost
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New algorithm (1)

Goals:

Construct a single algorithm to project onto an intersection
e one instead of two sets of stopping criteria
o exploit similarity between sets
e use parallel resources

Merge ideas from SALSA/SDMM and ARADMM
e recast as known algorithm for known problem = convergence guarantees
e automatic (acceleration) parameter selection

[Afonso et. al., 2011], [Combettes & Pesquet, 2011 ; Kitic et. al. 2016] , [Xu et. al. ,2016a ; Xu et. al. ,2017]

26
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New algorithm (2)
p—1

Reformulate projection onto |
an intersectioF;\: J Pe(m) = arg}r{nm 2 Ix — mH% T Z e, (Aix)

i=1
Introduce new variables and 1 , p—1
couple w/ linear equality min - |x — ml||5 + Z e, (y;) st Aix=Yy;
constraints: X,¥i —

27




New algorithm (3)

Aq Y1
Define matrix and vectors: A = ' oy = v =
Ap — ]N yp
p—1
Define function: f (5’ ) = f (y p) + Z LC, (y@)
i=1
Final problem formulation: Iillgfl f(y) st. Ax=y
Equivalent to ADMM min f(X) g(y) s t. Ax By — C
structure: X,y
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New algorithm (4)

ADMM is based on augmented Lagrangian: (separable in our case)

Lpl,...,pp(X7Y17°°'7YP7V17°°°7Vp) —
D - _
Pi
D | filyd) +vi (yi — Aix) 4 > llyi = Aix];
=1 *+ -

ADMM iterations: x* ™! = argmin L ,(x, y", v")

X

k+1 __ :
y — argmin L,

y
vl — vk o p(AXk_I_l B yk+1)

(x* Ty, vF)
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New algorithm (5)

Iterations for our problem: (equivalent to SDMM + over/under relaxation)
p—1

Xk_l_1 — (Z[,OZATA _I_pp 12 AT(IO’L yZ _I_V )
1=1 )
Xk = = i Azxk+1 + (1 - /Yf)yf?
k41 k41 Vi
Y; < prOsz,pz (Xz | p;)
vith=vi (it =
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New algorithm (6)

e Converges forp; > 0 and ~; € (0, 2)

e Automatic updating of Pi and”i , based on Barzilai-Borwein [Xuet.al.,2016a; Xu et. al. ,2017]

® Uses equivalence between ADMM for

min f(x) + g(y) s.t. Ax+ By =c
X7y

and Douglas-Rachford splitting on its dual problem
® Fewer iterations [Xuet.al.,2016a; Xu et. al. ,2017]

e Strong empirical performance on non-convex problems [Xuet.al.,2016b]
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New algorithm (7)

Iterations for our problem: (equivalent to SDMM + over/under relaxation)
p—1 _

x T = (Z[pZATA + pplp) ! Z AT(,OZ y* + vF¥)|— warm-start CG
i=1 '

%, = A T (1= ))y;

simple projection onto set:

k
k+1 - ) > norm-ball/bounds/cardinality/rank
(/

yz - pI‘OXfZ 0 (X

(all closed-form solutions)

vitl=vi iy %

1
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New algorithm vs black-box approach

e Black-box version of the new algorithm can be derived as well
e Similar to parallel Dykstra

e MovesA from x-computation to y-computation

p—1 P : becomes average
x" T = (Z[pZAZTAZ] + pplp) ! Z AL (pFy? + vF)| —> instead of linear
— — L - system

;= P AXTT + (1 =)y

ko1 k1 Vf becomes “difficult’ projection involving
y; &€ Proxg , (X; i ) > transform-domain operator (another
)

iterative algorithm)

k+1  _ k ko k41 ka1
v, T =v; + iy, %)
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Mixing column/row/fibre, matrix & tensors consiraints

Consider prior knowledge: 5 main geological units

We expect max 4 large discontinuities in depth direction:
e 1 matrix based constraint: {m|card((D, ® I,)m) < k}

k=4 X Ngridpoints(x)
or

e Noridpoints(x) vector based constraints {m | card(D,R,m) < k}
k=4

e Software can use both simultaneously, both offer complementary information.

® Restriction matrix £2; drops out, does not occur in computations.
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Timing 2D (serial)

2D time vs grid size

Same constraints as in example: ] e total time
® bounds on lateral gradient '

® approximate vertical monotonicity
® bound constraints

341 X 1600

time [seconds]

341 X 50

10°

N gridpoints
35 griap




Timing 3D (serial)

3D time vs grid size

Same constraints as in example: | e total time 350 X 350 X 350
® bounds on lateral gradient |
® approximate vertical monotonicity
® bound constraints 10°
m
e use domain-decomposition and/or S
multi-grid for larger domains O
O 1
2 10
W
=
e
10°
50X 50 X50
0 106 10

16 N gridpoints




Software design (1)

Each set has two elementary components:
e transform-domain operator A
e sub-problem projection (closed-form) (norm-ball, cardinality, bounds, ...)

For example:
C={m|card(Am) < k} — P.ara = keep largest k elements & A = A
C={m|[|[Am[; <o} — Pljga=4
C={m, | b! <m, < bt — A =1&Pc(m;) = median{bé, m;, b}
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Software design (2)

Algorithm input:

® pairs of (transform-domain operator, sub-problem projection)( A;, P¢;)

® point to project onto the intersection:m
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FL=32

constraint=Dict()

constraint
constraint
constraint

""use bounds"]
:llm_minll]

:llm_maxll ]

constraint ["use rank"]
constraint["max rank"]

constraint["use TD card fibre x"]
constraint["card fibre x"]

constraint

constraint["use TD card 1"]
constraint["card 1"]
constraint["TD _card_operator_1"]

["TD _card_fibre x_operator"]

true
round(Integer,3%0.33xn[1])
IID—XII




(P,P_sub,TD_OP,TD_Prop,AtA) = setup _constraints_2D(constraint,model,FL);

options_PARSDMM=PARSDMM_options()
function ProjectionIntersection(x)
(x, Llog_PARSDMM)=compute_projection_intersection_PARSDMM(x, ini_guess,AtA,TD_OP,TD_Prop,
P _sub,constraint,options_PARSDMM)
return Xx
(x, fsave, funEvals) = SPG(data_misfit, m@, ProjectionIntersection, SPG_options)
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Conclusions

® add arbitrarily many constraints to existing FWI algorithms

e simpler, faster algorithms, also for non-convex sets (empirically)
e Julia implementation will be on SLIM git soon

® applies to other inverse problems as well
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