\\ \title{

Algorithms and Julia software for constrained FWI
 \title{ \section*{Algorithms and Julia software for constrained FWI

 Bes Peters}

 Bes Peters}}

SLIM@

SINBAD FALL 2017
FALL

University of British Columbia
\qquad -
\square

\square - , ,
\square

Motivation

Develop constraints \& optimization methods to deal with:

- noisy data
- inaccurate starting models
- small number of data points

Constraints encode information about:

- smoothness
- blockiness
- approximately layered media
- number of velocity jumps up or down
- maximum \& minimum values, well-log information, reference models

Goal

Create software toolbox that builds on top of existing codes:

- use any code for data-misfit value and gradient
- for inverse problems with expensive function \& gradient
- arbitrary combinations of convex and non-convex sets
- all iterates satisfy all constraints
- convenient translation of prior information into constraints
- data-misfit and constraints are decoupled
- no penalty functions \& parameters

Constraints

Currently implemented:

- bounds
- nuclear norm, rank
- ℓ_{1} - based sparsity promotion total-variation/transform-domain sparsity
- cardinality $\left(\ell_{0}\right)$ - based total-variation transform-domain sparsity constraints
- slope constraints / transform-domain bounds
- Fourier-domain smoothness / subspace constraints

Transform-domain bounds / slope constraints

$$
\mathcal{C} \equiv\left\{\mathbf{m} \mid \mathbf{l}_{j} \leq(A \mathbf{m})_{j} \leq \mathbf{u}_{j}\right\}
$$

slope constraint if: $A=I_{x} \otimes D_{z}$ with $D_{z}=\frac{1}{h_{z}}\left(\begin{array}{ccccc}-1 & 1 & & & \\ & -1 & 1 & & \\ & & \ddots & \ddots & \\ & & & -1 & 1\end{array}\right)$

Interpretation:

- limit the medium parameter variation per distance unit
- select different bounds for increasing values and decreasing values

Transform-domain bound constraints

arbitrary medium parameter increase, limited medium parameter decrease with depth - induces monotonicity
limited increase and limited decrease - induces vertical smoothness

Example - BG Compass

modeling 'observed' data:

- generate data on original 6 m grid
- time-domain modeling (Julia interface for Devito [Lange et. al., 2017])
- density and velocity

inversion

- for velocity only
- fixed density = 1
[Da Silva \& Herrmann, 2017] $\bar{\xi}$
- frequency domain package WAVEFORM
- adapt grid for each frequency
- start at 60m grid $\longrightarrow 15 \mathrm{~m}$ grid

Example - BG Compass

- 3-15 Hz data, in 1 Hz batches from low to high frequency
- bound constraints

Example - BG Compass

bounds only $\mathbf{3 - 1 5 ~ H z}$, iter = 1

Example - BG Compass

So far, we (SLIM) used constraints to describe true model.
[E. Esser et. al., 2014; 2015; 2016] [Peters \& Herrmann, 2017][B. R. Smithyman, B. Peters \& F.J. Herrmann, 2015]
What if we do not know much about expected model?
\rightarrow use constraints to obtain better starting model

prior assumptions:

- sedimentary geology, mainly layered, no big faults
- starting model should be laterally smooth \& velocity increases with depth

1st cycle: invert 3-4 Hz data with:

- bound constraints
- lateral smoothness (slope constraint): $\left\{\mathbf{m} \mid-\varepsilon_{1} \leq\left(\left(I_{z} \otimes D_{x}\right) \mathbf{m}\right)_{j} \leq+\varepsilon_{2}\right\}$
- approximate vertical monotonicity: $\left\{\mathbf{m} \mid-\varepsilon \leq\left(\left(D_{z} \otimes I_{x}\right) \mathbf{m}\right)_{j} \leq+\infty\right\}$

2nd cycle:

- use 1st cycle result as new starting model
- invert all data with bound constraints

With constraints, cycle 1

bounds \& slope constraint, $3-4 \mathrm{~Hz}$, iter $=1$

bounds \& slope $->$ bounds only, $3-15 \mathrm{~Hz}$, iter $=1$

Problem formulation

Geophysical applications:

- single \mathcal{C} (bounds) [Zeev et al. (2006) and Bello and Raydan (2007)]
- two sets [Lelièvre and Oldenburg (2009), Baumstein (2013), Smithyman et al. (2015), Esser et al. (2015ab, 2016ab), B. Peters and Herrmann (2017)]

Convex sets : some properties

- line segment between every pair in the set, is in the set as well
- Euclidean projection onto a convex set is unique
- projection onto a convex set is a non-expansive operation

convex

non convex

Prior information as convex sets

$$
\min _{\mathbf{m}} f(\mathbf{m}) \quad \text { s.t. } \quad \mathbf{m} \in \bigcap_{i=1}^{p} \mathcal{C}_{i}
$$

[Birgin et. al. (1999); Schmidt et. al. (2009); Schmidt et. al. (2012)] projection based algorithms: SPG, PQN, projected Newton-type guarantee that \mathbf{m} satisfies all constraints, every iteration.

Projection (Euclidean, minimum-distance projection):

$$
\mathcal{P}_{\mathcal{C}}(\mathbf{m})=\underset{\mathbf{x}}{\arg \min }\|\mathbf{x}-\mathbf{m}\|_{2} \quad \text { s.t. } \quad \mathbf{x} \in \mathcal{C} \quad \quad \mathcal{P}_{\mathcal{C}}(\mathbf{m})=\mathcal{P}_{\mathcal{C}}\left(\mathcal{P}_{\mathcal{C}}(\mathbf{m})\right)
$$

Projection onto an intersection

$$
\mathcal{P}_{\mathcal{C}}(\mathbf{m})=\underset{\mathbf{x}}{\arg \min }\|\mathbf{x}-\mathbf{m}\|_{2} \quad \text { s.t. } \quad \mathbf{x} \in \bigcap_{i=1}^{p} \mathcal{C}_{i}
$$

Before, we used (parallel) black-box algorithms such as Dykstra's algorithm.
[Dykstra, 1983 ; Boyle \& Dykstra, 1986 ;
Censor, 2006; Bauschke \& Koch, 2015]

Algorithm 1 Dykstra.

$$
x_{0}=\mathbf{m}, p_{0}=0, q_{0}=0
$$

$$
\text { For } k=0,1, \ldots
$$

$$
<\begin{aligned}
& y_{k}=\mathscr{P}_{C_{1}}\left(x_{k}+p_{k}\right) \\
& p_{k+1}=x_{k}+p_{k}-y_{k} \\
& x_{k+1}=\mathscr{P}_{C_{2}}\left(y_{k}+q_{k}\right) \\
& q_{k+1}=y_{k}+q_{k}-x_{k+1}
\end{aligned}
$$

End

Dykstra's algorithm

Toy example:
find projection onto intersection of circle \& square

Algorithm 1 Dykstra.

$$
x_{0}=\mathbf{m}, p_{0}=0, q_{0}=0
$$

For $k=0,1, \ldots$
$\longrightarrow \begin{aligned} & y_{k}=\mathscr{P}_{C_{1}}\left(x_{k}+p_{k}\right) \\ & p_{k+1}=x_{k}+p_{k}-y_{k}\end{aligned}$

$$
\begin{aligned}
\longrightarrow x_{k+1} & =\mathscr{P}_{C_{2}}\left(y_{k}+q_{k}\right) \\
q_{k+1} & =y_{k}+q_{k}-x_{k+1}
\end{aligned}
$$

End

Only needs projections onto each set separately

Projected gradient

Projected gradient

Projected gradient

Projected gradient

Projected gradient

effective domain non-convex function

Projection onto an intersection

Dykstra Pro:

- Simple and fast if projections are known in closedform.

Dykstra Con:

- Uses another iterative algorithm for other projections
- Nested strategy requires two sets of stopping criteria.
- Does not take similarity between sets into account.

Algorithm 1 Dykstra.

$$
x_{0}=\mathbf{m}, p_{0}=0, q_{0}=0
$$

For $k=0,1, \ldots$

$$
\longrightarrow \begin{aligned}
& y_{k}=\mathscr{P}_{C_{1}}\left(x_{k}+p_{k}\right) \\
& p_{k+1}=x_{k}+p_{k}-y_{k} \\
& \longrightarrow \begin{array}{l}
x_{k+1}
\end{array}=\mathscr{P}_{C_{2}}\left(y_{k}+q_{k}\right) \\
& q_{k+1}=y_{k}+q_{k}-x_{k+1}
\end{aligned}
$$

Similarity between sets

limited number of discontinuities (lateral): $\quad\left\{\mathbf{m} \mid \operatorname{card}\left(D_{x} \mathbf{m}\right) \leq k\right\}$
limited magnitude of discontinuities (lateral): $\left\{\mathbf{m} \mid \mathbf{l} \leq D_{x} \mathbf{m} \leq \mathbf{u}\right\}$
\rightarrow both sets have same transform-domain operator
anisotropic total-variation:
limited number of discontinuities (lateral): $\quad\left\{\mathbf{m} \mid \operatorname{card}\left(D_{x} \mathbf{m}\right) \leq k\right\}$
\rightarrow transform-domain operators have overlapping sparsity-pattern
\rightarrow mat-vec product at same cost

New algorithm (1)

Goals:

Construct a single algorithm to project onto an intersection

- one instead of two sets of stopping criteria
- exploit similarity between sets
- use parallel resources

Merge ideas from SALSA/SDMM and ARADMM

- recast as known algorithm for known problem \rightarrow convergence guarantees
- automatic (acceleration) parameter selection
[Afonso et. al., 2011], [Combettes \& Pesquet, 2011 ; Kitic et. al. 2016] , [Xu et. al. ,2016a ; Xu et. al. ,2017]

New algorithm (2)

Reformulate projection onto an intersection:

Introduce new variables and couple w/ linear equality constraints:

$$
\mathcal{P}_{\mathcal{C}}(\mathbf{m})=\underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{x}-\mathbf{m}\|_{2}^{2}+\sum_{i=1}^{p-1} \iota_{\mathcal{C}_{i}}\left(A_{i} \mathbf{x}\right)
$$

$$
\min _{\mathbf{x}, \mathbf{y}_{i}} \frac{1}{2}\|\mathbf{x}-\mathbf{m}\|_{2}^{2}+\sum_{i=1}^{p-1} \iota_{\mathcal{C}_{i}}\left(\mathbf{y}_{i}\right) \quad \text { s.t. } \quad A_{i} \mathbf{x}=\mathbf{y}_{i}
$$

New algorithm (3)

Define matrix and vectors: $\quad \tilde{A} \equiv\left(\begin{array}{c}A_{1} \\ \vdots \\ A_{p}=I_{N}\end{array}\right), \quad \tilde{\mathbf{y}} \equiv\left(\begin{array}{c}\mathbf{y}_{1} \\ \vdots \\ \mathbf{y}_{p}\end{array}\right), \quad \tilde{\mathbf{v}} \equiv\left(\begin{array}{c}\mathbf{v}_{1} \\ \vdots \\ \mathbf{v}_{p}\end{array}\right)$

Define function:

$$
\tilde{f}(\tilde{\mathbf{y}}) \equiv f\left(\mathbf{y}_{p}\right)+\sum_{i=1}^{p-1} \iota_{\mathcal{C}_{i}}\left(\mathbf{y}_{i}\right)
$$

Final problem formulation: $\quad \min _{\mathbf{x}, \tilde{\mathbf{y}}} \tilde{f}(\tilde{\mathbf{y}}) \quad$ s.t. $\quad \tilde{A} \mathbf{x}=\tilde{\mathbf{y}}$

Equivalent to ADMM structure:

$$
\min _{\mathbf{x}, \mathbf{y}} f(\mathbf{x})+g(\mathbf{y}) \text { s.t. } A \mathbf{x}+B \mathbf{y}=\mathbf{c}
$$

New algorithm (4)

ADMM is based on augmented Lagrangian: (separable in our case)

$$
\begin{aligned}
& L_{\rho_{1}, \ldots, \rho_{p}}\left(\mathbf{x}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right)= \\
& \sum_{i=1}^{p}\left[f_{i}\left(\mathbf{y}_{i}\right)+\mathbf{v}_{i}^{T}\left(\mathbf{y}_{i}-A_{i} \mathbf{x}\right)+\frac{\rho_{i}}{2}\left\|\mathbf{y}_{i}-A_{i} \mathbf{x}\right\|_{2}^{2}\right]
\end{aligned}
$$

ADMM iterations: $\mathbf{x}^{k+1}=\arg \min _{\mathbf{x}} L_{\rho}\left(\mathbf{x}, \mathbf{y}^{k}, \mathbf{v}^{k}\right)$

$$
\begin{aligned}
& \mathbf{y}^{k+1}=\arg \min _{\mathbf{y}} L_{\rho}\left(\mathbf{x}^{k+1}, \mathbf{y}, \mathbf{v}^{k}\right) \\
& \mathbf{v}^{k+1}=\mathbf{v}^{k}+\rho\left(A \mathbf{x}^{k+1}-\mathbf{y}^{k+1}\right)
\end{aligned}
$$

New algorithm (5)

Iterations for our problem: (equivalent to SDMM + over/under relaxation)

$$
\begin{aligned}
& \mathbf{x}^{k+1}=\left(\sum_{i=1}^{p-1}\left[\rho_{i} A_{i}^{T} A_{i}\right]+\rho_{p} I_{n}\right)^{-1} \sum_{i=1}^{p}\left[A_{i}^{T}\left(\rho_{i}^{k} \mathbf{y}_{i}^{k}+\mathbf{v}_{i}^{k}\right)\right] \\
& \overline{\mathbf{x}}_{i}^{k+1}=\gamma_{i}^{k} A_{i} \mathbf{x}_{i}^{k+1}+\left(1-\gamma_{i}^{k}\right) \mathbf{y}_{i}^{k} \\
& \mathbf{y}_{i}^{k+1} \in \operatorname{prox}_{f_{i}, \rho_{i}}\left(\overline{\mathbf{x}}_{i}^{k+1}-\frac{\mathbf{v}_{i}^{k}}{\rho_{i}^{k}}\right) \\
& \mathbf{v}_{i}^{k+1}=\mathbf{v}_{i}^{k}+\rho_{i}^{k}\left(\mathbf{y}_{i}^{k+1}-\overline{\mathbf{x}}_{i}^{k+1}\right)
\end{aligned}
$$

New algorithm (6)

- Converges for $\rho_{i}>0$ and $\gamma_{i} \in(0,2)$
- Automatic updating of ρ_{i} and γ_{i}, based on Barzilai-Borwein [xu et. al., 2016a; Xu et. al., 2017]
- Uses equivalence between ADMM for

$$
\min _{\mathbf{x}, \mathbf{y}} f(\mathbf{x})+g(\mathbf{y}) \text { s.t. } A \mathbf{x}+B \mathbf{y}=\mathbf{c}
$$

and Douglas-Rachford splitting on its dual problem

- Fewer iterations [Xu et. al., 2016a ; Xu et. al. ,2017]
- Strong empirical performance on non-convex problems [xu et. al. 2016b]

New algorithm (7)

Iterations for our problem: (equivalent to SDMM + over/under relaxation)

$$
\begin{aligned}
& \mathbf{x}^{k+1}=\left(\sum_{i=1}^{p-1}\left[\rho_{i} A_{i}^{T} A_{i}\right]+\rho_{p} I_{n}\right)^{-1} \sum_{i=1}^{p}\left[A_{i}^{T}\left(\rho_{i}^{k} \mathbf{y}_{i}^{k}+\mathbf{v}_{i}^{k}\right)\right] \longrightarrow \text { warm-start CG } \\
& \overline{\mathbf{x}}_{i}^{k+1}=\gamma_{i}^{k} A_{i} \mathbf{x}_{i}^{k+1}+\left(1-\gamma_{i}^{k}\right) \mathbf{y}_{i}^{k}
\end{aligned} \begin{aligned}
& \\
& \mathbf{y}_{i}^{k+1} \in \mathbf{p r o x}_{f_{i}, \rho_{i}}\left(\overline{\mathbf{x}}_{i}^{k+1}-\frac{\mathbf{v}_{i}^{k}}{\rho_{i}^{k}}\right) \longrightarrow \begin{array}{l}
\text { simple projection onto set: } \\
\text { norm-ball/bounds/cardinality/rank } \\
\text { (all closed-form solutions) }
\end{array} \\
& \mathbf{v}_{i}^{k+1}=\mathbf{v}_{i}^{k}+\rho_{i}^{k}\left(\mathbf{y}_{i}^{k+1}-\overline{\mathbf{x}}_{i}^{k+1}\right)
\end{aligned}
$$

New algorithm vs black-box approach

- Black-box version of the new algorithm can be derived as well
- Similar to parallel Dykstra
- Moves A from x-computation to y-computation

$$
\begin{aligned}
& \mathbf{x}^{k+1}=\left(\sum_{i=1}^{p-1}\left[\rho_{i} A_{i}^{T} A_{i}\right]+\rho_{p} I_{n}\right)^{-1} \sum_{i=1}^{p}\left[A_{i}^{T}\left(\rho_{i}^{k} \mathbf{y}_{i}^{k}+\mathbf{v}_{i}^{k}\right)\right] \xrightarrow[\begin{array}{l}
\text { instead of linear } \\
\text { system }
\end{array}]{\begin{array}{l}
\text { becomes average }
\end{array}} \\
& \overline{\mathbf{x}}_{i}^{k+1}=\gamma_{i}^{k} A_{i} \mathbf{x}_{i}^{k+1}+\left(1-\gamma_{i}^{k}\right) \mathbf{y}_{i}^{k} \\
& \mathbf{y}_{i}^{k+1} \in \operatorname{prox}_{f_{i}, \rho_{i}}\left(\overline{\mathbf{x}}_{i}^{k+1}-\frac{\mathbf{v}_{i}^{k}}{\rho_{i}^{k}}\right) \longrightarrow \begin{array}{l}
\text { becomes 'difficult' projection involving } \\
\text { transform-domain operator (another } \\
\text { iterative algorithm) }
\end{array} \\
& \mathbf{v}_{i}^{k+1}=\mathbf{v}_{i}^{k}+\rho_{i}^{k}\left(\mathbf{y}_{i}^{k+1}-\overline{\mathbf{x}}_{i}^{k+1}\right)
\end{aligned}
$$

Mixing column/row/fibre, matrix \& tensors constraints

Consider prior knowledge: 5 main geological units
We expect max 4 large discontinuities in depth direction:

- 1 matrix based constraint:

$$
\begin{aligned}
& \left\{\mathbf{m} \mid \operatorname{card}\left(\left(D_{z} \otimes I_{x}\right) \mathbf{m}\right) \leq k\right\} \\
& k=4 \times N_{\text {gridpoints(x) }}
\end{aligned}
$$

or

- $N_{\text {gridpoints(x) }}$ vector based constraints $\left\{\mathbf{m} \mid \operatorname{card}\left(D_{z} R_{i} \mathbf{m}\right) \leq k\right\}$

$$
k=4
$$

- Software can use both simultaneously, both offer complementary information.
- Restriction matrix R_{i} drops out, does not occur in computations.

Timing 2D (serial)

2D time vs grid size

Same constraints as in example:

- bounds on lateral gradient
- approximate vertical monotonicity
- bound constraints

Timing 3D (serial)

Same contraint as in example:

- bounds on lateral gradient
- approximate vertical monotonicity
- bound constraints
- use domain-decomposition and/or multi-grid for larger domains

Software design (1)

Each set has two elementary components:

- transform-domain operator A
- sub-problem projection (closed-form) (norm-ball, cardinality, bounds, ...)

For example:

$$
\begin{aligned}
\mathcal{C} & \equiv\{\mathbf{m} \mid \mathbf{c a r d}(A \mathbf{m}) \leq k\} \longrightarrow \mathcal{P}_{\text {card }}=\text { keep largest k elements } \& A=A \\
\mathcal{C} & \equiv\left\{\mathbf{m} \mid\|A \mathbf{m}\|_{1} \leq \sigma\right\} \longrightarrow \mathcal{P}_{\|\cdot\| \& A=A} \\
\mathcal{C} & \equiv\left\{\mathbf{m}_{i} \mid \mathbf{b}_{i}^{l} \leq \mathbf{m}_{i} \leq \mathbf{b}_{i}^{u}\right\} \longrightarrow A=I \& \mathcal{P}_{\mathcal{C}}\left(\mathbf{m}_{i}\right)=\operatorname{median}\left\{\mathbf{b}_{i}^{l}, \mathbf{m}_{i}, \mathbf{b}_{i}^{u}\right\}
\end{aligned}
$$

Software design (2)

Algorithm input:

- pairs of (transform-domain operator, sub-problem projection) $\left(A_{i}, \mathcal{P}_{\mathcal{C}}\right)$
- point to project onto the intersection:m

```
3 FL=32 #single precision (64 for double)
constraint=Dict()
#bound constraints
constraint["use_bounds"] = true
constraint["m_min"] = 1450
constraint["m_max"] = 5000
#rank constraints
constraint["use_rank"] = true
constraint["max_rank"] = 3
    #cardinality on derivatives (column or row wise)
    constraint["use_TD_card_fibre_x"] = true
    constraint["card_fibre_x"] = 3
    constraint["TD_card_fibre_x_operator"] = "D_x"
    #cardinality on derivatives (matrix based)
    constraint["use_TD_card_1"] = true
    constraint["card_1"] = round(Integer,3*0.33*n[1])
    constraint["TD_card_operator_1"] = "D_x"
```

26 \#script that sets up transform-domain operators and sub-problem projectors

```
(P,P_sub,TD_OP,TD_Prop,AtA) = setup_constraints_2D(constraint,model,FL);
```

options_PARSDMM=PARSDMM_options() \#get default solver options
\#define function or function handle, input: model vector \rightarrow output: projected vector
function ProjectionIntersection(x)
($x, \log _$PARSDMM $)=$compute_projection_intersection_PARSDMM (x , ini_guess,AtA, TD_OP,TD_Prop,
P_sub, constraint,options_PARSDMM)
return x
end
\#data misfit is a function / function(handle) with:
\# input: model vector (m)
\# output: data-misfit value (f) and gradient vector (g)
\# (f,g) = data_misfit(m)
\#FWI with spectral projected gradient algorithm (SPG)
(x, fsave, funEvals) = SPG(data_misfit, m0, ProjectionIntersection, SPG_options)

Conclusions

- add arbitrarily many constraints to existing FWI algorithms
- simpler, faster algorithms, also for non-convex sets (empirically)
- Julia implementation will be on SLIM git soon
- applies to other inverse problems as well

Acknowledgements

This research was carried out as part of the SINBAD project with the support of the member organizations of the SINBAD Consortium.

