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Motivation

Develop	constraints	&	optimization	methods	to	deal	with:
• noisy	data
• inaccurate	starting	models
• small	number	of	data	points

Constraints	encode	information	about:
• smoothness
• blockiness
• approximately	layered	media
• number	of	velocity	jumps	up	or	down
• maximum	&	minimum	values,	well-log	information,	reference	models
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Goal

Create	software	toolbox	that	builds	on	top	of	existing	codes:

• use	any	code	for	data-misfit	value	and	gradient	
• for	inverse	problems	with	expensive	function	&	gradient
• arbitrary	combinations	of	convex	and	non-convex	sets
• all	iterates	satisfy	all	constraints
• convenient	translation	of	prior	information	into	constraints
• data-misfit	and	constraints	are	decoupled	
• no	penalty	functions	&	parameters
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Constraints

Currently	implemented:

• bounds	
• nuclear	norm,	rank
• 					-	based	sparsity	promotion	total-variation/transform-domain	sparsity
• cardinality	(					)	-	based	total-variation	transform-domain	sparsity	constraints
• slope	constraints	/	transform-domain	bounds
• Fourier-domain	smoothness	/	subspace	constraints

4

`1
`0

Friday, October 6, 2017



Interpretation:
• limit	the	medium	parameter	variation	per	distance	unit
• select	different	bounds	for	increasing	values	and	decreasing	values

Transform-domain bounds / slope constraints
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Transform-domain bound constraints
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constraint on vertical derivative
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smoothness (through constraint on vertical derivative) 
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True velocity model
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arbitrary	medium	parameter	increase,
limited	medium	parameter	decrease
with	depth	
•induces	monotonicity

limited	increase	and	limited	decrease			
•induces	vertical	smoothness
•still	allows	small	velocity	jumps
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Example - BG Compass
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modeling	‘observed’	data:
• generate	data	on	original	6m	grid
• time-domain	modeling	(Julia	interface	for	
Devito																											)

• density	and	velocity

inversion
• for	velocity	only
• fixed	density	=	1
• frequency	domain	package	WAVEFORM
• adapt	grid	for	each	frequency	
• start	at	60m	grid								15m	grid	

True density model
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[Da	Silva	&	Herrmann,	2017]	

[Lange	et.	al.,	2017]	
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Example - BG Compass

• 3-15	Hz	data,	in	1Hz	batches	from	low	to	high	frequency
• bound	constraints
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bounds only 3-15 Hz
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Example - BG Compass
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Example - BG Compass

So	far,	we	(SLIM)	used	constraints	to	describe	true	model.	

What	if	we	do	not	know	much	about	expected	model?
								use	constraints	to	obtain	better	starting	model

prior	assumptions:	
• sedimentary		geology,	mainly	layered,	no	big	faults
• starting	model	should	be	laterally	smooth	&	velocity	increases	with	depth
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[E.	Esser	et.	al.,	2014;	2015;	2016]	 [B.	R.	Smithyman,	B.	Peters	&	F.J.	Herrmann,	2015][Peters	&	Herrmann,	2017]
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1st	cycle:	invert	3-4	Hz	data	with:
• bound	constraints
• lateral	smoothness	(slope	constraint):

• approximate	vertical	monotonicity:

2nd	cycle:	
• use	1st	cycle	result	as	new	starting	model
• invert	all	data	with	bound	constraints
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bounds & slope constraint, 3-4 Hz
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bounds & slope -> bounds only, 3-15 Hz
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Initial velocity model
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With constraints, cycle 1
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With constraints, cycle 1
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Geophysical	applications:
• single					(bounds)	
• two	sets	

Problem formulation
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min
m

f(m) s.t. m 2
p\

i=1

Ci

intersection	of	constraint	setsdifferentiable	data-misfit

m

[Lelièvre	and	Oldenburg	(2009),		Baumstein	(2013),	Smithyman	et	al.	(2015),	
Esser	et	al.	(2015ab,	2016ab),	B.	Peters	and	Herrmann	(2017)]

[Zeev	et	al.	(2006)	and	Bello	and	Raydan	(2007)]C
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Convex sets : some properties

• line	segment	between	every	pair	in	the	set,	is	in	the	set	as	well
• Euclidean	projection	onto	a	convex	set	is	unique
• projection	onto	a	convex	set	is	a	non-expansive	operation
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Prior information as convex sets

projection	based	algorithms:	SPG,	PQN,	projected	Newton-type	guarantee	
that							satisfies	all	constraints,	every	iteration.

Projection	(Euclidean,	minimum-distance	projection):
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PC(m) = PC(PC(m))

min
m

f(m) s.t. m 2
p\
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Ci

[Birgin	et.	al.	(1999);	Schmidt	et.	al.	(2009);	Schmidt	et.	al.	(2012)]
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Projection onto an intersection

Before,	we	used	(parallel)	black-box	algorithms
such	as	Dykstra’s	algorithm.

one	projection	onto	each	set	separately	per	iteration
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PC(m) = argmin
x

kx�mk2 s.t. x 2
p\

i=1

Ci.

Algorithm 1 Dykstra.
x0 = m, p0 = 0, q0 = 0
For k = 0,1, . . .

yk = PC1(xk + pk)
pk+1 = xk + pk � yk
xk+1 = PC2(yk +qk)
qk+1 = yk +qk � xk+1

End

each set separately. This is a cheap and simple algorithm and therefore allows to find projections onto
complicated intersections of sets. The algorithm is given by #alg1.

A toy exmaple of the trajectory the iterates follow is shown in figure 1 .
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Figure 1: The trajectory of Dykstra’s algorithm for a toy example with constraints y � 2 and x2 + y2  3.
Iterates 5, 6 and 7 coinside, the algorithm converged to the point closest to point number 1 and satisfying
both constraints. Note that the projection onto convex sets (POCS) algorithm would converge at point
number 3 and is clearly unsuitable for this type of projection problem.

While the gradient-projection algorithm is a solid approach, it can also be relatively slowly converging.
A potentially much faster algorithm is the class of quasi-Newton methods, which iteratively try to
approximate the Hessian by using just gradient and function value information. However, in general it
is not possible to just project quasi-Newton steps onto a convex set, just as in the gradient-projection
algorithm. The use of second-order information may cause a projected step to point in the opposite
direction and in general does not solve problem 5, but converges to a solution which does not correspond
to the problem. There are slighly more complicated algorithms which properly implement a projected
quasi-Newton algorithm. We select the projected-quasi-Newton (PQN) algorithm by Schmidt et al. (2009).
This algorithm finds a search direction which is in the intersection of the convex sets using the spectral
projected gradient algorithm (SPG) as a subproblem of an L-BFGS-like algorithm. This algorithm need
the objective function value, f (m) , its gradient and an algorithm to solve the projection problem 6. This
algorithm has very similar computational cost as the standard LBFGS algorithm, because the projections
are cheap to compute. See Schmidt et al. (2009) for some examples of strong emperical performance of
PQN versus projected-gradient for some non-geophysical examples.

The final algorithm is given by.

77th EAGE Conference & Exhibition 2015
IFEMA Madrid, Spain, 1–4 June 2015

[Dykstra,	1983	;	Boyle	&	Dykstra,	1986	;	
Censor,	2006;	Bauschke	&	Koch,	2015]
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Dykstra’s algorithm
Toy	example:
find	projection	onto	intersection	of	circle	&	square

Algorithm 1 Dykstra.
x0 = m, p0 = 0, q0 = 0
For k = 0,1, . . .

yk = PC1(xk + pk)
pk+1 = xk + pk � yk
xk+1 = PC2(yk +qk)
qk+1 = yk +qk � xk+1

End

each set separately. This is a cheap and simple algorithm and therefore allows to find projections onto
complicated intersections of sets. The algorithm is given by #alg1.

A toy exmaple of the trajectory the iterates follow is shown in figure 1 .
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Figure 1: The trajectory of Dykstra’s algorithm for a toy example with constraints y � 2 and x2 + y2  3.
Iterates 5, 6 and 7 coinside, the algorithm converged to the point closest to point number 1 and satisfying
both constraints. Note that the projection onto convex sets (POCS) algorithm would converge at point
number 3 and is clearly unsuitable for this type of projection problem.

While the gradient-projection algorithm is a solid approach, it can also be relatively slowly converging.
A potentially much faster algorithm is the class of quasi-Newton methods, which iteratively try to
approximate the Hessian by using just gradient and function value information. However, in general it
is not possible to just project quasi-Newton steps onto a convex set, just as in the gradient-projection
algorithm. The use of second-order information may cause a projected step to point in the opposite
direction and in general does not solve problem 5, but converges to a solution which does not correspond
to the problem. There are slighly more complicated algorithms which properly implement a projected
quasi-Newton algorithm. We select the projected-quasi-Newton (PQN) algorithm by Schmidt et al. (2009).
This algorithm finds a search direction which is in the intersection of the convex sets using the spectral
projected gradient algorithm (SPG) as a subproblem of an L-BFGS-like algorithm. This algorithm need
the objective function value, f (m) , its gradient and an algorithm to solve the projection problem 6. This
algorithm has very similar computational cost as the standard LBFGS algorithm, because the projections
are cheap to compute. See Schmidt et al. (2009) for some examples of strong emperical performance of
PQN versus projected-gradient for some non-geophysical examples.

The final algorithm is given by.

77th EAGE Conference & Exhibition 2015
IFEMA Madrid, Spain, 1–4 June 2015

Only	needs	projections	onto	each	set	separately

Feasible	set Feasible	set
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end
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Projection onto an intersection

Dykstra	Pro:	
• Simple	and	fast	if	projections	are	known	in	closed-
form.

Dykstra	Con:
• Uses	another	iterative	algorithm	for	other	
projections

• Nested	strategy	requires	two	sets	of	stopping	
criteria.

• Does	not	take	similarity	between	sets	into	account.

24

Algorithm 1 Dykstra.
x0 = m, p0 = 0, q0 = 0
For k = 0,1, . . .

yk = PC1(xk + pk)
pk+1 = xk + pk � yk
xk+1 = PC2(yk +qk)
qk+1 = yk +qk � xk+1

End

each set separately. This is a cheap and simple algorithm and therefore allows to find projections onto
complicated intersections of sets. The algorithm is given by #alg1.

A toy exmaple of the trajectory the iterates follow is shown in figure 1 .
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Figure 1: The trajectory of Dykstra’s algorithm for a toy example with constraints y � 2 and x2 + y2  3.
Iterates 5, 6 and 7 coinside, the algorithm converged to the point closest to point number 1 and satisfying
both constraints. Note that the projection onto convex sets (POCS) algorithm would converge at point
number 3 and is clearly unsuitable for this type of projection problem.

While the gradient-projection algorithm is a solid approach, it can also be relatively slowly converging.
A potentially much faster algorithm is the class of quasi-Newton methods, which iteratively try to
approximate the Hessian by using just gradient and function value information. However, in general it
is not possible to just project quasi-Newton steps onto a convex set, just as in the gradient-projection
algorithm. The use of second-order information may cause a projected step to point in the opposite
direction and in general does not solve problem 5, but converges to a solution which does not correspond
to the problem. There are slighly more complicated algorithms which properly implement a projected
quasi-Newton algorithm. We select the projected-quasi-Newton (PQN) algorithm by Schmidt et al. (2009).
This algorithm finds a search direction which is in the intersection of the convex sets using the spectral
projected gradient algorithm (SPG) as a subproblem of an L-BFGS-like algorithm. This algorithm need
the objective function value, f (m) , its gradient and an algorithm to solve the projection problem 6. This
algorithm has very similar computational cost as the standard LBFGS algorithm, because the projections
are cheap to compute. See Schmidt et al. (2009) for some examples of strong emperical performance of
PQN versus projected-gradient for some non-geophysical examples.

The final algorithm is given by.

77th EAGE Conference & Exhibition 2015
IFEMA Madrid, Spain, 1–4 June 2015
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Similarity between sets

limited	number	of	discontinuities	(lateral):
limited	magnitude	of	discontinuities	(lateral):
								both	sets	have	same	transform-domain	operator

anisotropic	total-variation:
limited	number	of	discontinuities	(lateral):
								transform-domain	operators	have	overlapping	sparsity-pattern
								mat-vec	product	at	same	cost
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New algorithm (1)

Goals:	
Construct	a	single	algorithm	to	project	onto	an	intersection

• one	instead	of	two	sets	of	stopping	criteria
• exploit	similarity	between	sets
• use	parallel	resources

Merge	ideas	from	SALSA/SDMM	and	ARADMM
• recast	as	known	algorithm	for	known	problem									convergence	guarantees
• automatic	(acceleration)	parameter	selection
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[Afonso	et.	al.,	2011],	[Combettes	&	Pesquet,	2011	;	Kitic	et.	al.	2016]	,	[Xu	et.	al.	,2016a	;	Xu	et.	al.	,2017]	
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New algorithm (2)

27

min
x,yi

1

2
kx�mk22 +

p�1X

i=1

◆Ci(yi) s.t. Aix = yi

PC(m) = argmin
x

1

2
kx�mk22 +

p�1X

i=1

◆Ci(Aix)
Reformulate	projection	onto	
an	intersection:
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couple	w/	linear	equality	
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New algorithm (3)
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CADefine	matrix	and	vectors:

Define	function:

Final	problem	formulation:

Equivalent	to	ADMM	
structure:
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New algorithm (4)

ADMM	is	based	on	augmented	Lagrangian:	(separable	in	our	case)

ADMM	iterations:
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New algorithm (5)

Iterations	for	our	problem:	(equivalent	to	SDMM	+	over/under	relaxation)
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New algorithm (6)

• Converges	for																and

• Automatic	updating	of							and						,	based	on	Barzilai-Borwein
• Uses	equivalence	between	ADMM	for

and	Douglas-Rachford	splitting	on	its	dual	problem

• Fewer	iterations
• Strong	empirical	performance	on	non-convex	problems

31

⇢i

⇢i > 0

�i

min
x,y

f(x) + g(y) s.t. Ax+By = c

[Xu	et.	al.	,2016a	;	Xu	et.	al.	,2017]	

[Xu	et.	al.	,2016a	;	Xu	et.	al.	,2017]	

[Xu	et.	al.	,2016b]

�i 2 (0, 2)
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New algorithm (7)

Iterations	for	our	problem:	(equivalent	to	SDMM	+	over/under	relaxation)
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simple	projection	onto	set:													
norm-ball/bounds/cardinality/rank	
(all	closed-form	solutions)

warm-start	CG
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New algorithm vs black-box approach

• Black-box	version	of	the	new	algorithm	can	be	derived	as	well
• Similar	to	parallel	Dykstra

• Moves					from	x-computation	to	y-computation
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iterative	algorithm)
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system
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Mixing column/row/fibre, matrix & tensors constraints

Consider	prior	knowledge:	5	main	geological	units
We	expect	max	4	large	discontinuities	in	depth	direction:

• 1	matrix	based	constraint:

or	

• 																												vector	based	constraints

• Software	can	use	both	simultaneously,	both	offer	complementary	information.
• Restriction	matrix								drops	out,	does	not	occur	in	computations.	
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Timing 2D (serial)

Same constraints as in example:
• bounds	on	lateral	gradient
• approximate	vertical	monotonicity	
• bound	constraints

35

341	X	50

341	X	1600

Friday, October 6, 2017



Timing 3D (serial)

Same constraints as in example:
• bounds	on	lateral	gradient
• approximate	vertical	monotonicity	
• bound	constraints

• use	domain-decomposition	and/or						
multi-grid	for	larger	domains
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50	X	50	X	50

350	X	350	X	350
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Software design (1)

Each	set	has	two	elementary	components:	
• transform-domain	operator	
• sub-problem	projection	(closed-form)	(norm-ball,	cardinality,	bounds,	...)

For	example:
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A

Pk·kC ⌘ {m | kAmk1  �}

C ⌘ {mi | bl
i  mi  bu

i } A = I PC(mi) = median{bl
i,mi,b

u
i }&

C ⌘ {m | card(Am)  k} keep	largest	k	elements

A = A&

A = A&Pcard =
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Software design (2)

Algorithm	input:

• pairs	of	(transform-domain	operator,	sub-problem	projection)

• point	to	project	onto	the	intersection:	
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(Ai,PC i)

m
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Conclusions

• add	arbitrarily	many	constraints	to	existing	FWI	algorithms
• simpler,	faster	algorithms,	also	for	non-convex	sets	(empirically)
• Julia	implementation	will	be	on	SLIM	git	soon
• applies	to	other	inverse	problems	as	well
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