Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

A Guide For Successful Low Rank Matrix Recovery In Seismic Applications

Oscar López Dr. Kumar

SLM University of British Columbia

Motivation

- acquisition challenges
 - missing data (subsampled or coverage holes)
 - need efficient acquisition design
- exploit low-rank structure of seismic data
 - matrix completion for trace interpolation
 - industrial-scale implementations available

need analytical tools

- how should we subsample?
 results in literature are not applicable

Contributions

- Quantification of subsampling
 - "generalized spectral gap" (GSP)
 - computationally cheap
- Applications to seismic data acquisition - multi-use tool for acquisition design

$\mathsf{GSP} = \frac{\sqrt{nm}}{|\Omega|} \sigma_1 \left(A - \frac{|\Omega|}{nm} \mathbf{1}_{n \times m} \right)$

Outline

Matrix Completion – literature

- seismic trace interpolation

 Universal Matrix Completion - generalized spectral gap - uses in seismic data acquisition

Outline

 Universal Matrix Completion - generalized spectral gap - uses in seismic data acquisition

Matrix Completion Literature

Goal is to approximate $\mathbf{X} \in \mathbb{R}^{n \times m}$, given

noisy observed entries $\Omega \subset \{1, 2, ..., n\} \times \{1, 2, ..., m\}$

via

$\mathbf{b}_{i,j} = P_{\Omega}(\mathbf{X})_{i,j} = \begin{cases} \mathbf{X}_{i,j} & \text{if } (i,j) \in \Omega \\ 0 & \text{otherwise} \end{cases}$

Matrix Completion Literature

If rank $\approx r \ll \min(n, m)$, we attempt to recover unobserved or noisy entries via

).

 $\underset{\mathbf{Y}}{\operatorname{minimize}} \|\mathbf{Y}\|_{*} \operatorname{subject}$

where
$$\|\mathbf{Y}\|_* = \sum_k \sigma_k(\mathbf{Y})$$

to
$$||P_{\Omega}(\mathbf{Y}) - \mathbf{b}||_F \leq \epsilon$$
, $\mathbf{NN}(b,\epsilon)$

Matrix Completion Literature

Typical Assumptions:

2. $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$ is μ -"incoherent".

$$\|\mathbf{U}(k,:)\|_2^2 \le \frac{\mu r}{n}$$

1. Construct Ω by observing entries uniformly at random.

$$\|\mathbf{V}(\ell,:)\|_2^2 \le \frac{\mu r}{m}$$

Assumption 1: Uniform Random Sampling Sampling Mask: $A_{i,j} = \begin{cases} 1 & \text{if } (i,j) \in \Omega \\ 0 & \text{otherwise} \end{cases}$

Assumption 2:
$$\mu$$
-Incohe $\|\mathbf{U}(k,:)\|_2^2 \leq \frac{\mu r}{n}$

Parameter μ measures how "spread" the energy of data matrix is.

bad for matrix completion

erence $\|\mathbf{V}(\ell,:)\|_2^2 \le \frac{\mu r}{m}$

small
$$\mu \sim \mathcal{O}(1)$$

good for matrix completion

Outline

Matrix Completion – literature < seismic trace interpolation >

 Universal Matrix Completion - generalized spectral gap - uses in seismic data acquisition

3D Seismic Data Interpolation

- Consider a 3D seismic survey with coordinates (src x, src y, rec x, rec y, time)
- Take a Fourier transform in time and restrict ourselves to a single frequency slice.

3D Seismic Data Interpolation

- Consider a 3D seismic survey with coordinates (src x, src y, rec x, rec y, time)
- Take a Fourier transform in time and restrict ourselves to a single frequency slice.
- Unfold into matrix to apply matrix completion (i.e., "matricize")

3D Data: Matricized

Many options on how to matricize

3D Data: Matricized Canonical

Incoherence: energy of matrices is evenly distributed

Non-Canonical

(rec,rec)-form

(src,src)-form

3D Data: Matricized - (rec,rec) form

16

3D Data Matricized - (rec,rec) form

17

similar low-rank structure for other matricizations

3D Seismic Masks: Missing Receivers

(rec,rec)-form (src,src)-form

Sampling mask depends on acquisition: uniform random?

(mid,off)-domain

3D Seismic Data Interpolation

• Incoherence (small μ)

Outline

Matrix Completion – literature

- seismic trace interpolation

How should we subsample?

Consider our sampling mask

$$A_{i,j} = \begin{cases} 1 & \text{if } (x_{i,j}) \\ 0 & \text{oth} \end{cases}$$

What determines if $A\,$ is good for matrix completion?

$(i,j) \in \Omega$ nerwise

Example: Ideal Mask Samples chosen uniformly at random

$\blacksquare = 0$

 $\Box = 1$

Example: Ideal Mask Choose any sub matrix

 $\blacksquare = 0$

 $\Box = 1$

Example: Ideal Mask All sub matrices are nicely sampled!

A =		

$\blacksquare = 0$

 $\Box = 1$

Spectral Gap Bhojanapalli, Jain. "Universal Matrix Completion" ICML 2014.

of

$$\frac{\sigma_2(A)}{\sigma_1(A)} = \begin{cases} \approx 1 & \text{s} \\ \ll 1 & \text{l} \end{cases}$$

- Consider the gap between the two largest singular values A
 - small spectral gap arge spectral gap

Spectral Gap Bhojanapalli, Jain. "Universal Matrix Completion" ICML 2014. $\frac{\sigma_2(A)}{\sigma_1(A)} = \begin{cases} \approx 1 & \text{small spectral gap} \\ \ll 1 & \text{large spectral gap} \end{cases}$

From graph theory:

A with Large Spectral Gap \implies all "sub matrices" are nicely sampled

better results for matrix completion

Spectral Gap Bhojanapalli, Jain. "Universal Matrix Completion" ICML 2014.

Restriction: Results only apply to regular graphs

- equivalent to having same number of samples in each row and column

Generalized Spectral Gap

Extend the results by introducing "generalized spectral gap":

$$\mathsf{GSP} = \frac{\sqrt{nm}}{|\Omega|} \sigma_1 \left(A - \frac{|\Omega|}{nm} \mathbf{1}_{n \times m} \right) \approx \frac{\sigma_2(A)}{\sigma_1(A)}$$

As before, small GSP is better for matrix completion. Only assume that each row/column is sampled.

Generalized Spectral Gap

Theorem:

- Let $\mathbf{X} \in \mathbb{R}^{n \times m}$ be rank-r, μ -incoherent and "strongly incoherent" matrix. Let Ω contain at least one entry from each row and column. Then X is the unique solution of $NN(P_{\Omega}(X), 0)$ given that
 - $\mathsf{GSP} \le \frac{1}{6\mu r}$

Generalized Spectral Gap

Theorem:

$$\mathsf{GSP} \leq \frac{1}{6\mu r} \longleftrightarrow |\Omega| \geq 6\mu r \sqrt{nm} \ \sigma_1 \left(A - \frac{|\Omega|}{nm} \mathbf{1}_{n \times m} \right)$$

Let $\mathbf{X} \in \mathbb{R}^{n \times m}$ be rank-*r*, μ -incoherent and "strongly incoherent" matrix. Let Ω contain at least one entry from each row and column. Then X is the unique solution of $NN(P_{\Omega}(X), 0)$ given that

Generalized Spectral Gap Bad Case (e.g., periodic sampling):

$\text{GSP} \approx 1$

Good Case (e.g., random sampling):

 $\mathrm{GSP}\approx \sqrt{\sqrt{nm}}/|\Omega|$

exact recovery not possible

 $|\Omega| \ge 36\mu^2 r^2 \sqrt{nm}$

Generalized Spectral Gap Bad Case (e.g., periodic sampling):

$GSP \approx 1$

Good Case (e.g., random sampling):

 $\mathrm{GSP}\approx \sqrt{\sqrt{nm}}/|\Omega|$

compare to $|\Omega| \ge C \mu^2 r n \log^2(n)$ from literature (non-determinitic)

exact recovery not possible

$|\Omega| \ge 36\mu^2 r^2 \sqrt{nm}$ \rightarrow

3D Interpolation Example

Size: 2005 x 2005

Remove 75 % of Receivers

Compare small and large GSP recovery

3D Interpolation Example: Bad Recovery

Reconstruction

SNR: 3.5 dB

GSP: .9828

3D Interpolation Example: Good Recovery

35

Reconstruction

SNR: 20.7 dB

GSP: .1796

3D Interpolation Experiments

Generate 3D seismic Masks with increasing GSP

Plot correlation with reconstruction SNR

3D Interpolation Experiments

Outline

Matrix Completion – literature

- seismic trace interpolation

 Universal Matrix Completion - generalized spectral gap - uses in seismic data acquisition >

Example 1: How to Matricize?

Example 1: How to Matricize?

Use GSP to decide which matricization works best for given subsampling

Example 2: To window or not to window?

Full matrix is too large

Example 2: To window or not to window?

- Full matrix is too large
- Split volume into smaller windows
- Solve in parallel

Example 2: To window or not to window?

- Which matricization?
- What size windows?

Example 2: To window or not to window?

Average GSP for various window sizes

Example 2: To window or not to window?

Average GSP for various window sizes

- (rec,rec) is best in this example
- GSP is stable as window size decreases

Desired Sampling

Example 3: Infill Management ☆ Ο Ο О Ο О О О О \mathbf{O} Ο \bigcirc \cap Ò Ó Ó Ο Ο О О Ο O Ο О Ο Ο O ()Ο O Ο \cap \bigcirc Ο Ο O О О Ó Ò ΟÒ Ó Ο Ò О Ο

Ò

Ò

Ò

Ò

Ò

Ò

O

Q

Q

Ò

Coverage Hole:

additional infill acquisition?

Example 3: Infill Management

Form local mask:

use GSP as decision tool

☆ Ο O Ο O () \circ Ò Q Ò Ò O

Example 3: Infill Management

Additional infill acquisition:

use GSP to minimize sampling

Goal: interpolate coil data onto equispaced grid

equispaced sources

What grid density for sources and receivers?

equispaced sources

Example 4: Coil Sampling Interpolation

Receiver Spacing	Source Spacing	Mask
100 m	200 m	0.7
50 m	100 m	0.
50 m	50 m	0.8

not dense enough: too many sources map to the same grid locations

sweet spot?

too dense: poor sampling ratio

Conclusion

Good understanding of how to subsample

- - useful tool for acquisition design

Simple procedure to quantify acquisition design
 compute only largest singular value of A - ^{|Ω|}/_{nm} 1_{n×m}

Future Work

- Generalize theorem to full rank and noisy case: $NN(P_{\Omega}(X), \epsilon)$
- Suggestions? Ideas?

Acknowledgements

This research was carried out as part of the SINBAD project with the support of the member organizations of the SINBAD Consortium.

Thank you for your attention!

