A Guide For Successful Low Rank Matrix Recovery In Seismic Applications

Oscar López Dr. Kumar

SLIMe
University of British Columbia

Motivation

- acquisition challenges
- missing data (subsampled or coverage holes)
- need efficient acquisition design
- exploit low-rank structure of seismic data
- matrix completion for trace interpolation
- industrial-scale implementations available
- need analytical tools
- how should we subsample?
- results in literature are not applicable

Contributions

- Quantification of subsampling
- "generalized spectral gap" (GSP)
- computationally cheap

$$
\mathrm{GSP}=\frac{\sqrt{n m}}{|\Omega|} \sigma_{1}\left(A-\frac{|\Omega|}{n m} \mathbf{1}_{n \times m}\right)
$$

- Applications to seismic data acquisition
- multi-use tool for acquisition design

Outline

- Matrix Completion
- literature
- seismic trace interpolation
- Universal Matrix Completion
- generalized spectral gap
- uses in seismic data acquisition

Outline

- Matrix Completion
-literature
- seismic trace interpolation
- Universal Matrix Completion
- generalized spectral gap
- uses in seismic data acquisition

Matrix Completion Literature

Goal is to approximate $\mathbf{X} \in \mathbb{R}^{n \times m}$, given
noisy observed entries $\Omega \subset\{1,2, \ldots, n\} \times\{1,2, \ldots, m\}$
via

$$
\mathbf{b}_{i, j}=P_{\Omega}(\mathbf{X})_{i, j}=\left\{\begin{aligned}
\mathbf{X}_{i, j} & \text { if }(i, j) \in \Omega \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Matrix Completion Literature

If rank $\approx r \ll \min (n, m)$, we attempt to recover unobserved or noisy entries via

$$
\left.\underset{\mathbf{Y}}{\operatorname{minimize}}\|\mathbf{Y}\|_{*} \text { subject to }\left\|P_{\Omega}(\mathbf{Y})-\mathbf{b}\right\|_{F} \leq \epsilon, \quad\right\} \quad \mathbf{N} \mathbf{N}(b, \epsilon)
$$

where $\|\mathbf{Y}\|_{*}=\sum_{k} \sigma_{k}(\mathbf{Y})$.

Matrix Completion Literature

Typical Assumptions:

1. Construct Ω by observing entries uniformly at random.
2. $\mathbf{X}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{*}$ is μ-"incoherent".

$$
\|\mathbf{U}(k,:)\|_{2}^{2} \leq \frac{\mu r}{n} \quad\|\mathbf{V}(\ell,:)\|_{2}^{2} \leq \frac{\mu r}{m}
$$

Assumption 1: Uniform Random Sampling

Sampling Mask: $A_{i, j}= \begin{cases}1 & \text { if }(i, j) \in \Omega \\ 0 & \text { otherwise }\end{cases}$

Assumption 2: μ-Incoherence

$$
\|\mathbf{U}(k,:)\|_{2}^{2} \leq \frac{\mu r}{n} \quad\|\mathbf{V}(\ell,:)\|_{2}^{2} \leq \frac{\mu r}{m}
$$

Parameter μ measures how "spread" the energy of data matrix is.

Outline

- Matrix Completion
- literature
seismic trace interpolation
- Universal Matrix Completion
- generalized spectral gap
- uses in seismic data acquisition

3D Seismic Data Interpolation

- Consider a 3D seismic survey with coordinates (src x, src y, rec x, rec y, time)
- Take a Fourier transform in time and restrict ourselves to a single frequency slice.

3D Seismic Data Interpolation

- Consider a 3D seismic survey with coordinates (src x, src y, rec x, rec y, time)
- Take a Fourier transform in time and restrict ourselves to a single frequency slice.
- Unfold into matrix to apply matrix completion (i.e.,"matricize")

Many options on how to matricize

3D Data: Matricized

Canonical

Incoherence: energy of matrices is evenly distributed

Non-Canonical

3D Data: Matricized - (rec,rec) form

3D Data Matricized - (rec,rec) form

3D Seismic Masks: Missing Receivers

(rec,rec)-form

(src,src)-form

(mid,off)-domain

Sampling mask depends on acquisition: uniform random?

3D Seismic Data Interpolation

- Low-rank structure
- Incoherence (small μ)
, Uniform random sampling X

Outline

- Matrix Completion
- literature
- seismic trace interpolation
- Universal Matrix Completion - generalized spectral gap
- uses in seismic data acquisition

How should we subsample?

Consider our sampling mask

$$
A_{i, j}= \begin{cases}1 & \text { if }(i, j) \in \Omega \\ 0 & \text { otherwise }\end{cases}
$$

What determines if A is good for matrix completion?

Example: Ideal Mask

Samples chosen uniformly at random

Example: Ideal Mask

Choose any sub matrix

Example: Ideal Mask

All sub matrices are nicely sampled!

Spectrall Gap Bhojanapalli, Jain. "Universal Matrix Completion" ICML 2014.
Consider the gap between the two largest singular values A of

$$
\frac{\sigma_{2}(A)}{\sigma_{1}(A)}=\left\{\begin{array}{cc}
\approx 1 & \text { small spectral gap } \\
\ll 1 & \text { large spectral gap }
\end{array}\right.
$$

Spectrall Gap Bhojanapalli, Jain. "Universal Matrix Completion" ICML 2014.

$$
\frac{\sigma_{2}(A)}{\sigma_{1}(A)}=\left\{\begin{array}{cc}
\approx 1 & \text { small spectral gap } \\
\ll 1 & \text { large spectral gap }
\end{array}\right.
$$

From graph theory:
A with Large Spectral Gap \Rightarrow all "sub matrices" are nicely sampled
$\Rightarrow \quad$ better results for matrix completion

Spectrall Gap Bhojanapalli, Jain. "Universal Matrix Completion" ICML 2014.

$$
\frac{\sigma_{2}(A)}{\sigma_{1}(A)}=\left\{\begin{array}{cc}
\approx 1 & \text { small spectral gap } \\
\ll 1 & \text { large spectral gap }
\end{array}\right.
$$

Restriction: Results only apply to regular graphs

equivalent to having same number of samples in each row and column

Generalized Spectral Gap

Extend the results by introducing "generalized spectral gap":
$\mathrm{GSP}=\frac{\sqrt{n m}}{|\Omega|} \sigma_{1}\left(A-\frac{|\Omega|}{n m} \mathbf{1}_{n \times m}\right) \approx \frac{\sigma_{2}(A)}{\sigma_{1}(A)}$

As before, small GSP is better for matrix completion.
Only assume that each row/column is sampled.

Generalized Spectral Gap

Theorem:
Let $\mathbf{X} \in \mathbb{R}^{n \times m}$ be rank- r, μ-incoherent and "strongly incoherent" matrix.
Let Ω contain at least one entry from each row and column.
Then \mathbf{X} is the unique solution of $\mathbf{N N}\left(P_{\Omega}(\mathbf{X}), 0\right)$ given that

$$
\mathrm{GSP} \leq \frac{1}{6 \mu r}
$$

Generalized Spectral Gap

Theorem:
Let $\mathbf{X} \in \mathbb{R}^{n \times m}$ be rank- r, μ-incoherent and "strongly incoherent" matrix.
Let Ω contain at least one entry from each row and column.
Then \mathbf{X} is the unique solution of $\mathbf{N N}\left(P_{\Omega}(\mathbf{X}), 0\right)$ given that

$$
\mathrm{GSP} \leq \frac{1}{6 \mu r} \Longleftrightarrow|\Omega| \geq 6 \mu r \sqrt{n m} \sigma_{1}\left(A-\frac{|\Omega|}{n m} \mathbf{1}_{n \times m}\right)
$$

Generalized Spectral Gap

Bad Case (e.g., periodic sampling):

GSP ≈ 1

exact recovery not possible

Good Case (e.g., random sampling):
GSP $\approx \sqrt{\sqrt{n m} /|\Omega|} \quad \Longrightarrow \quad|\Omega| \geq 36 \mu^{2} r^{2} \sqrt{n m}$

Generalized Spectral Gap

Bad Case (e.g., periodic sampling):

GSP ≈ 1

exact recovery not possible

Good Case (e.g., random sampling):
$\mathrm{GSP} \approx \sqrt{\sqrt{n m} /|\Omega|} \quad \Longrightarrow \quad|\Omega| \geq 36 \mu^{2} r^{2} \sqrt{n m}$
compare to $|\Omega| \geq C \mu^{2} r n \log ^{2}(n)$ from literature (non-determinitic)

3D Interpolation Example

Size: 2005×2005

Remove 75 \% of Receivers

Compare small and large GSP recovery

3D Interpolation Example: Bad Recovery

Reconstruction

SNR: 3.5 dB

GSP: . 9828

3D Interpolation Example: Good Recovery

Reconstruction

SNR: $\quad 20.7$ dB

GSP: . 1796

3D Interpolation Experiments

Generate 3D seismic Masks with increasing GSP

Plot correlation with reconstruction SNR

3D Interpolation Experiments

Outline

- Matrix Completion
- literature
- seismic trace interpolation
- Universal Matrix Completion
- generalized spectral gap
uses in seismic data acquisition

Example 1: How to Matricize?

(src,src)-form
 ${ }_{100}$ v. v. w veve veve v.w w w
${ }^{200}$ w w w eve

${ }_{500}$ v v v
w. w w w w w w w w w w w

Example 1: How to Matricize?

(mid,off)-domain

(rec,rec)-form

(src,src)-form

Use GSP to decide which matricization works best for given subsampling
R. Kumar, et al. "Efficient matrix completion for seismic data reconstruction" Geophysics 2014.

Example 2: To window or not to window?

- Full matrix is too large

R. Kumar, et al. "Efficient matrix completion for seismic data reconstruction" Geophysics 2014.

Example 2: To window or not to window?

- Full matrix is too large
- Split volume into smaller windows
- Solve in parallel

R. Kumar, et al. "Efficient matrix completion for seismic data reconstruction" Geophysics 2014.

Example 2: To window or not to window?

- Which matricization?
- What size windows?
 reconstruction" Geophysics 2014.

Example 2: To window or not to window?

Average GSP for various window sizes

R. Kumar, et al. "Efficient matrix completion for seismic data reconstruction" Geophysics 2014.

Example 2: To window or not to window?

Average GSP for various window sizes

- (rec,rec) is best in this example
- GSP is stable as window size decreases

Example 3: Infill Management

Desired
 Sampling

Example 3: Infill Management

Coverage Hole:
additional infill acquisition?

Example 3: Infill Management

Example 3: Infill Management

Additional infill acquisition:
use GSP to minimize
sampling

Example 4: Coil Sampling Interpolation

Goal: interpolate coil data onto equispaced grid

Example 4: Coil Sampling Interpolation

What grid density for sources and receivers?

Example 4: Coil Sampling Interpolation

Receiver Spacing	Source Spacing	Mask GSP
100 m	200 m	0.77
50 m	100 m	0.4
50 m	50 m	0.88

not dense enough: too many sources map to the same grid locations
sweet spot?
too dense: poor sampling ratio

Example 4: Coil Sampling Design

Conclusion

- Good understanding of how to subsample
- Simple procedure to quantify acquisition design
- compute only largest singular value of $A-\frac{|\Omega|}{n m} \mathbf{1}_{n \times m}$
- useful tool for acquisition design

Future Work

- Generalize theorem to full rank and noisy case: $\mathbf{N N}\left(P_{\Omega}(X), \epsilon\right)$
- Suggestions? Ideas?

Acknowledgements

This research was carried out as part of the SINBAD project with the support of the member organizations of the SINBAD Consortium.

Thank you for your attention!

