Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Full-azimuth seismic data processing with coil acquisition Rajiv Kumar, Nick Moldoveanu, Keegan Lensink, and Felix J. Herrmann

SLIM University of British Columbia

Thursday, October 5, 2017

Motivation

What are the advantages of exploiting sparse/low-rank structure at global scale?

Should we window seismic data for processing?

Validate SLIM technology on field data

Practical framework to handle production-scale interpolation w/o windowing

Survey information—coil acquisition

Receiver map

Source coverage map (test area)

Overall source coverage : 70% grid discretization : 100 x 100 m

Receiver coverage map (test area)

Thursday, October 5, 2017

Overall receiver coverage : 99% grid discretization : 50 x 50 m

Interpolation objective

sources & receivers

- Sources at every 100m grid in both inline & cross-line directions
- Receivers at every 50m grid in both inline & cross-line directions
- Output of interpolation resulted in full-azimuth OBN type acquisition for both

Quick recap—matrix completion

[Candes and Plan 2010, Oropeza and Sacchi 2011]

Matrix completion

- signal structure
 - low rank/fast decay of singular values
- sampling scheme
 - missing data increase rank in "transform domain"
- recovery using rank penalization scheme

Low-rank structure conventional 5D data, monochromatic slice, Sx-Sy matricization

Low-rank structure conventional 5D data, monochromatic slice, Sx-Rx matricization

Matrix completion

- signal structure
 - low rank/fast decay of singular values
- sampling scheme
 - missing data increase rank in "transform domain"
- recovery using rank penalization scheme

Low-rank structure time-jittered data, monochromatic slice, Sx-Sy matricization

10^{-/}

Low-rank structure time-jittered data, monochromatic slice, Sx-Rx matricization

15

Matrix completion

- signal structure
 - low rank/fast decay of singular values
- sampling scheme
 - missing data increase rank in "transform domain"

recovery using rank penalization scheme

Nuclear-norm minimization convex relaxation of rank-minimization

[Recht et. al., 2010]

17

$\|\mathbf{X}\|_{*}$ s.t. $\|\mathcal{A}(\mathbf{X}) - \mathbf{b}\|_{2} \leq \epsilon$

[Rennie and Srebro 2005]

Factorized formulation

- Upper-bound on nuclear norm is defined as $\|\mathbf{L}\mathbf{R}^{H}\|_{*} \leq \frac{1}{2} \left\| \begin{bmatrix} \mathbf{L} \\ \mathbf{R} \end{bmatrix} \right\|_{F}^{2}$
 - where $\|\cdot\|_F^2$ is sum of squares of all entries
- choose k explicitly & avoid costly SVD's

Case study—coil acquisition

Source-receiver acquisition mask

Optimization information

Parallelized factorization framework over sources & receivers

Number of iterations: 200

Computational time / frequency slice: 2 hours

Computational resource / frequency slice: I nodes w/ I28 GB RAM, 20-core processors, multithreading

Synthetic data

Acquisition information

3D overthrust model, 5km x 12km x 12km

10404 sources @ 100m

40804 receivers @ 50m

Time length : 3 second @ 0.004s

Interpolation from I-50 Hz

Frequency slice @ 7Hz ground truth

25

Frequency slice @ 7Hz subsampled

Thursday, October 5, 2017

Sy-Ry

Frequency slice @ 7Hz interpolated

27

Frequency slice @ 7Hz residual

		×10	4																	
	0.2																			
	0.4																			
	0.6																			
	0.8										· · · ·									
y-Ry	1																			
Ś	1.2														• • •					
	1.4												• • •							
	1.6																			
	1.8																			
	2	-				n <mark>a m m m</mark>	r 18 18 18 18	. A A A	1 (1) (1) (1)		1 0 0 0 0	a 	<u>ന് ന ന</u>	<u>M M M M</u>	1 A A A	18 68 6 9	(A A A A	a a a a		6 6 6
			0.5						1						1.5					
28											Sx	(-F	{X							

Common source gather frequency slice @ 7 Hz

Ground truth

29

Subsampled

Common source gather frequency slice @ 7 Hz

Ground truth

30

Interpolated

Common source gather frequency slice @ 7 Hz

Ground truth

31

Difference

Common source gather frequency slice @ 20 Hz

Ground truth

Subsampled

Common source gather frequency slice @ 20 Hz

Ground truth

Interpolated

Common source gather frequency slice @ 20 Hz

Ground truth

Difference

Common source gather ground truth

Common source gather subsampled

Common source gather interpolated

37

Common source gather ground truth

Common source gather F-K spectrum, ground truth

39

Common source gather F-K spectrum, interpolated

40

Coil acquisition—field data

Acquisition information

Gulf of Mexico, coil acquisition

10404 sources after interpolation @ 100m

40804 receivers after interpolation @ 50m

Time length : 15 second @ 0.008s

Interpolation from 3-20 Hz

Frequency slice @ 5Hz subsampled × 10⁴

Frequency slice @ 5Hz interpolated × 10⁴

Frequency slice @ IOHz subsampled × 10⁴

Frequency slice @ IOHz interpolated × 10⁴

Frequency slice @ 18Hz subsampled × 10⁴

Frequency slice @ 18Hz interpolated × 10⁴

Common source gather observed

I would first show freq slices and start with best

Again things are very noisy.

Rajiv : Yeah I really wanted to investigate the cause of it. I see this in the synthetic examples also.

Common source gather interpolated °

Common source gather observed

Source Map. Star represents the common shot gather location

Common source gather interpolated °

Any comments / suggestions will be highly appreciated

Computational / memory advantages

Size of fully sampled interpolated volume : 2.5 TB

Save low-rank factors

- compression rate: 99.5%
- size of final compressed 5D seismic volume : I5GB

Future work

Investigate the causes of high frequency artifacts in interpolation

Validate the interpolation results using FWI/Migration

• extract sequential/simultaneous sources from low-rank factors

Redesign acquisition mask

Acknowledgements

support of the member organizations of the SINBAD Consortium.

This research was carried out as part of the SINBAD project with the

