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Motivation

How to minimize costs of time-lapse seismic w/o impacting 
repeatability?
Solution:
‣ sample w/ insights from Compressive Sensing to lower cost
‣ leverage information shared amongst vintages to improve data quality & repeatability 

w/o need to replicate surveys (e.g. w/ expensive OBC/OBN)

New paradigm:
‣ give up on dense & replicated acquisition
‣ sample coarsely at random 
‣ works as long as we know where we were in the field

Compressive Sensing = design method to increase acquisition 
productivity
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Compressive sensing paradigm
Sample to break structure = renders interference into incoherent 
noise
‣ randomized acquisition (e.g., time-jittered, over/under, continuous recording etc.)
‣ destroys sparsity/low rank

Find representations that reveal structure = separate signal from 
“noise”
‣ transform-domain sparsity (e.g., Fourier, curvelets, etc.)
‣ low-rank revealing matrix or tensor representations

Recover by structure promotion = obtain artifact-free densely 
sampled data
‣ sparsity via one-norm minimization, or
‣ nuclear-norm minimization 

Felix J. Herrmann, Michael P. Friedlander, and Ozgur Yilmaz, “Fighting the Curse of Dimensionality: Compressive Sensing in Exploration 
Seismology”, Signal Processing Magazine, IEEE, vol. 29, p. 88-100, 2012.
Felix J. Herrmann, “Randomized sampling and sparsity: Getting more information from fewer samples”, Geophysics, vol. 75, p. WB173-WB187, 2010.
Gilles Hennenfent and Felix J. Herrmann, “Simply denoise: wavefield reconstruction via jittered undersampling”, Geophysics, vol. 73, p. V19-V28, 2008.
Felix J. Herrmann and Gilles Hennenfent, “Non-parametric seismic data recovery with curvelet frames”, Geophysical Journal International, vol. 173, p. 
233-248, 2008. 
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Randomized acquisition
examples from industry (ConocoPhilips)

Deliberate	&	natural	randomness	in	acquisition
(thanks	to	Chuck	Mosher)

Compressive Sensing and Seismic Acquisition 
Sparse Transforms 
Optimal Sampling 
Data Reconstruction 
 
Compressive Sensing = Acquisition Efficiency 

Land / Node 

Marine 

TSuRBSb * 
Data Sparsity Sampling 

Mosher Et Al, SEG 2012; Li Et Al, SEG 2013 

2011 Trial 1: Non-Uniform Optimal Sampling (NUOS) 

Designed Actually Acquired 

Non-Uniform Acquisition Common Offset Reconstruction 

Mosher, C. C., Keskula, E., Kaplan, S. T., Keys, R. G., Li, C., Ata, E. Z., ... & Sood, S. (2012, November). 
Compressive Seismic Imaging. In 2012 SEG Annual Meeting. Society of Exploration Geophysicists.
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Bottom line
examples from industry (ConocoPhilips)

Randomized subsampling:
‣ exploits (natural) randomness & 

structure in seismic
‣ recovers dense data via structure-

promoting inversion

Output:
‣ improved quality artifact-free 

long-offset wide-azimuth data
‣ 5 X – 10 X cost & environmental 

impact reduction

Simultaneous Source CSI Field Trial – Production Comparison 
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randomly jittered sampled spatial grid

periodically sampled spatial grid

(time-jittered acquisition;
static acquisition geometry: OBC/OBN)

Breaking structure

[Wason and Herrmann, 2013]
[Mansour et al., 2012] 

shot-time	
randomness

NONE

HIGH

✗

✓
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conventional jittered structure-promoting	recovery

t	(
s)

x	(m)

periodic–sparse–no	overlap periodic–dense–no	overlap
separation	+	regularization

+	interpolation

aperiodic
compressed
overlapping
irregular

source	sampling	: 25	m	(flip-flop)	jittered 6.25	m25	m	(flip-flop)

4 X

Time-jittered OBC/OBN acquisition
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Economical time-lapse acquisition (OBC/OBN)

Observed sampling 
grid* (m)

Recovered sampling 
grid* (m)

% Subsampling Gain in sampling

25 12.5 50 2X

25 6.25 75 4X

Felix Oghenekohwo, Haneet Wason, Ernie Esser, and Felix J. Herrmann, “Cheap time lapse with distributed Compressive Sensing–-exploiting 
common information among the vintages”. 2016. To appear in GEOPHYSICS.
Haneet Wason, Felix Oghenekohwo, and Felix J. Herrmann, “Cheap time lapse with distributed Compressive Sensing–-impact on 
repeatability”. 2016. To appear in GEOPHYSICS.

* source/receiver sampling grid
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Observed sampling 
grid* (m)

Recovered sampling 
grid* (m)

% Subsampling Gain in sampling

25 12.5 50 2X

25 6.25 75 4X

still want more economical .....

Economical time-lapse acquisition (OBC/OBN)

* source/receiver sampling grid

Felix Oghenekohwo, Haneet Wason, Ernie Esser, and Felix J. Herrmann, “Cheap time lapse with distributed Compressive Sensing–-exploiting 
common information among the vintages”. 2016. To appear in GEOPHYSICS.
Haneet Wason, Felix Oghenekohwo, and Felix J. Herrmann, “Cheap time lapse with distributed Compressive Sensing–-impact on 
repeatability”. 2016. To appear in GEOPHYSICS.
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(dynamic	acquisition	geometry:	
towed	arrays)

almost periodically sampled spatial 
grid

Breaking structure

11

LOW

randomly jittered sampled spatial grid

periodically sampled spatial grid

(time-jittered	acquisition;
static	acquisition	geometry:	OBC/OBN)

[Wason and Herrmann, 2013]
[Mansour et al., 2012] 

shot-time	
randomness

NONE

HIGH

✗

✓

✓

Thursday, October 5, 2017



Goals

Design of economic dense multi-azimuth long-offset 3D time-lapse 
marine acquisition w/ high degree of repeatability 
‣ w/o replication of source locations
‣ w/o expensive OBN/OBC
‣ w/o precise adherence to planned sail lines

Use simulations to demonstrate the potential of cheap 
dynamic acquisition in 4D seismic for FWI
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Acquisition parameters

Underlying grid:
Source X, Source Y: 25 m

Receiver X, Receiver Y: 25 m

Maximum offset: 4 + 4 = 8 km

Number of streamers per source vessel: 12

Ricker wavelet with central frequency of 20 Hz

Effective sampling: 25-100 m in X & Y   =>   3 – 4 X cost 
reduction
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3D baseline BG model
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Conventional acquisition SLO acquisition

16 km
8 km 8 km

Low-cost marine acquisition
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“Reduced“ multi-azimuth SLO acquisition
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acquisition domain

source domain

“Reduced“ multi-azimuth SLO acquisition

4 km streamer length
(“reduced” acquisition)

receiver domain
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“Reduced“ multi-azimuth SLO acquisition

Sail lines for baseline survey
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“Reduced“ multi-azimuth SLO acquisition

Sail lines for baseline survey

Sail lines for monitor survey
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common-channel gather

common-receiver gather

vessel	direction
(single	vessel,	single	source	array,	
single	azimuth)

-	our	preferred	domain	for	data	reconstruction	is	the	common-receiver	domain	as	shown	below

Data organization
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Successful	reconstruction	scheme

‣ exploit	structure
- low-rank	/	fast	decay	of		singular	values

‣ sampling	
- randomness	increases	rank	in	“transform	domain”

	

‣ optimization	
- via	rank	minimization	(nuclear-norm	minimization)	

Matrix completion

[Candès and Plan, 2010, Oropeza and Sacchi, 2011]
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Low-rank structure

In which domain?

explore different matricizations

Curt Da Silva, and Felix J. Herrmann, “Optimization on the Hierarchical Tucker manifold - applications to tensor 
completion”, Linear Algebra and its Applications, vol. 481, p. 131-173, 2015.
Rajiv Kumar, Curt Da Silva, Okan Akalin, Aleksandr Y. Aravkin, Hassan Mansour, Ben Recht, and Felix J. Herrmann, 
“Efficient matrix completion for seismic data reconstruction”, Geophysics, vol. 80, p. V97-V114, 2015.
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Sampling scheme

sample to break the structure

random missing entries break the structure 
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Data organization

(Sx, Sy) organization
- high rank
- missing sources operator --- removes columns
- missing receivers operator --- removes rows
- poor recovery scenario

(Sx, Rx) organization
- low rank
- missing sources operator --- removes entries in each block
- missing receivers operator --- removes blocks
- closer to ideal recovery scenario
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Sx, Rx

200 400 600 800 1000 1200

S y, R
y

200

400

600

800

1000

1200

Recover full-azimuth data 
multiple common-receiver gathers

Sx, Rx

200 400 600 800 1000 1200

S y, R
y

200

400

600

800

1000

1200

Multi-azimuth SLO data
(observed)

Full-azimuth data
(deblended + interpolated)

Sx Rx

Sy
 R

y

Sx Rx
Sy

 R
y

Thursday, October 5, 2017



Observed sampling 
grid* (m)

Recovered sampling 
grid* (m)

% Subsampling Gain in sampling

25 25 70 3X - 4X

25 12.5 85 6X - 8X

25 6.25 93 10X - 12X

Economical 3D time-lapse acquisition

* source sampling grid; can apply to receiver grid => increased economical gain
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Observed sampling 
grid* (m)

Recovered sampling 
grid* (m)

% Subsampling Gain in sampling

25 25 70 3X - 4X

25 12.5 85 6X - 8X

25 6.25 93 10X - 12X

Economical 3D time-lapse acquisition

* source sampling grid; can apply to receiver grid => increased economical gain
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Extension to 3D time-lapse acquisition

Felix Oghenekohwo, Haneet Wason, Ernie Esser, and Felix J. Herrmann, “Low-cost time-lapse seismic with distributed 
Compressive Sensing–-exploiting common information amongst the vintages”. 2016. To appear in GEOPHYSICS 
Haneet Wason, Felix Oghenekohwo, and Felix J. Herrmann, “Cheap time lapse with distributed Compressive Sensing–-
impact on repeatability”. 2016. To appear in GEOPHYSICS
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3D baseline BG model
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3D time-lapse BG model

velocity	(m/s)
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Ideal dense receiver gathers

baseline monitor
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baseline monitor

Ideal dense receiver gathers
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Key idea:
‣ invert for common components & innovation w.r.t. common components 

with sparse recovery
‣ common component observed by all surveys

common 
component

differences
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x2 = z0 + z2
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model 

baseline

forward
model 

monitor

JRM – Joint Recovery Model
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Optimization information

Parallelized factorization framework over sources & receivers

Number of iterations: 400

Computational time: 3 hours per frequency slice

Separation & interpolation to 25 m grid

SENAI Yemoja cluster:
30 nodes w/ 128 GB RAM each, 20-core processors

300 Parallel MATLAB workers (10 per node), multithread, full core utilization
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Baseline recovery

100% overlap

0 2 4 6 8
Sx (km)

1

2

3

4

5

6

7

8

tim
e 

(s
)

30% overlap

IRS IRSJRM JRM

0 2 4 6 8
Sx (km)

1

2

3

4

5

6

7

8

tim
e 

(s
)

0 2 4 6 8
Sx (km)

1

2

3

4

5

6

7

8
tim

e 
(s

)

0 2 4 6 8
Sx (km)

1

2

3

4

5

6

7

8

tim
e 

(s
)

(12.6 dB) (13.4 dB) (12.6 dB) (15.4 dB)

Thursday, October 5, 2017



Residual
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Monitor recovery
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Residual
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Size of final recovered data volume: 800 GB
‣ no need to save fully sampled seismic data volume

Save      and       factors 
‣ compression rate: 98.5%
‣ size of final compressed 5D seismic volume: ∼ 12 GB

RH

Take-away message

L
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Conclusions

Randomized sampling (joint) recovery leads to: 
‣ economic acquisition for both static & dynamic acquisitions
‣ surveys w/ high degree of repeatability w/o replicating the surveys

Preliminary randomized 4D survey design:
‣ is feasible
‣ needs more randomness
‣ leads to at least cost reduction of 3 – 4 X

As long as we know where we were all acquisitions will 
benefit from embracing randomness in the field...
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Future work

Run	more	experiments	including	extensions	to	off-the-grid	acquisition	
design	and	processing

Test	with	realistic	noise
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Observations

Randomized	acquisition:
‣ independent	surveys	bring	extra	information
‣ “exactly”	repeated	surveys	do	not	add	new	information
‣ for	independent	surveys,	independent	processing	leads	to	poor	recovery	quality	of	

vintages	&	time-lapse	difference
‣ w/	joint	recovery,	we	observe	improvements	in	recovery	quality	of	the	vintages	for	

independent	surveys
Our	joint	recovery	model	exploits	the	shared	information	in	time-lapse	data,	improving	
the	repeatability	of	the	vintages.

“Exact”	replicability	of	the	surveys	seems	essential	for	good	recovery	of	the	
time-lapse	signal...
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(Ap 6= At)

What	is	the	impact	of	calibration	errors?
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postplot 
acquisition

true field 
acquisition
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Goal

53

Evaluate	the	impact	of	deviations	between	true	&	recorded	post-plot		
on	time-lapse	repeatability	&	quality	of	the	vintages

‣ w/	our	low-cost	marine	acquisition	(e.g.	time-jittered	sources	in	marine)	
‣ w/o	survey	replication	in	the	shot	locations
‣ w/	our	joint	recovery	model
‣ compared	to	conventional	(non-replicated)	dense	surveys	

In	the	idealized	setting	where	nothing	changes	in	the	earth	but	
acquisition	&	unknown	calibration	errors	differ.
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4-D time-jittered marine acquisition

Thursday, October 5, 2017



55

Recovery & repeatability
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Low-cost	w/	Independent	
recovery	(IRS)

Conventional	dense	survey
(after	regularization)

Recovery
 - w/ up to 20% error (~ 2.5m) in shot position

56
Low-cost	w/	Joint	recovery	

model	(JRM)

Recovery	of	
2nd	survey

Difference	
between

pairs	(1st	&	2nd	
survey)
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Summary

‣ High-cost	densely	sampled	surveys	give	best	quality	&	repeatability	in	the	
absence	of	calibration	errors

‣ Quality	of	dense	surveys	decay	rapidly	in	presence	of	small	errors
‣ Independently	recovering	the	CS-based	surveys	leads	to	the	worst	recovery	

quality	&	repeatability
‣ Low-cost	randomized	surveys	show	modest	decay	in	quality	&	repeatability	

when	recovered	with	the	joint	recovery	model

Recovery	with	the	JRM	is	stable	with	respect	to	calibration	errors.
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