Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Highly repeatable 3D compressive full-azimuth towed-streamer time-lapse acquisition-a numerical feasibility study at scale

Felix J. Herrmann

Thursday, October 5, 2017

Highly repeatable 3D compressive full-azimuth towed-streamer time-lapse acquisition-a numerical feasibility study at scale

Rajiv Kumar, Haneet Wason, Shashin Sharan

SLIM University of British Columbia

"Highly repeatable 3D compressive full-azimuth towed-streamer time-lapse acquisition --- a numerical feasibility study at scale", The Leading Edge, vol. 36, p. 677-687, 2017

Motivation

How to minimize costs of time-lapse seismic w/o impacting repeatability?

Solution:

- sample w/ insights from Compressive Sensing to lower cost
- w/o need to replicate surveys (e.g. w/ expensive OBC/OBN)

New paradigm:

- give up on dense & replicated acquisition
- sample coarsely at random
- works as long as we know where we were in the field

Compressive Sensing = design method to increase acquisition productivity

Interval information shared amongst vintages to improve data quality & repeatability

Felix J. Herrmann, Michael P. Friedlander, and Ozgur Yilmaz, "Fighting the Curse of Dimensionality: Compressive Sensing in Exploration Seismology", Signal Processing Magazine, IEEE, vol. 29, p. 88-100, 2012. Felix J. Herrmann, "Randomized sampling and sparsity: Getting more information from fewer samples", Geophysics, vol. 75, p. WB173-WB187, 2010. Gilles Hennenfent and Felix J. Herrmann, "Simply denoise: wavefield reconstruction via jittered undersampling", Geophysics, vol. 73, p. V19-V28, 2008. Felix J. Herrmann and Gilles Hennenfent, "Non-parametric seismic data recovery with curvelet frames", Geophysical Journal International, vol. 173, p. 233-248, 2008.

Compressive sensing paradigm

Sample to break structure = renders interference into incoherent noise

- destroys sparsity/low rank

Find representations that reveal structure = separate signal from "noise"

- transform-domain sparsity (e.g., Fourier, curvelets, etc.)
- Iow-rank revealing matrix or tensor representations

Recover by structure promotion = obtain artifact-free densely sampled data

- sparsity via one-norm minimization, or
- nuclear-norm minimization

randomized acquisition (e.g., time-jittered, over/under, continuous recording etc.)

Mosher, C. C., Keskula, E., Kaplan, S. T., Keys, R. G., Li, C., Ata, E. Z., ... & Sood, S. (2012, November). Compressive Seismic Imaging. In 2012 SEG Annual Meeting. Society of Exploration Geophysicists.

Randomized acquisition examples from industry (ConocoPhilips)

Deliberate & natural randomness in acquisition

(thanks to Chuck Mosher)

Bottom line examples from industry (ConocoPhilips)

Randomized subsampling:

- exploits (natural) randomness & structure in seismic
- recovers dense data via structurepromoting inversion

Output:

- improved quality artifact-free long-offset wide-azimuth data
- ► 5 X 10 X cost & environmental impact reduction

Standard Production vs. CSI Production

Breaking structure

randomly jittered sampled spatial grid (time-jittered acquisition; static acquisition geometry: OBC/OBN)

[Wason and Herrmann, 2013] [Mansour et al., 2012]

NONE

HIGH

shot-time

Time-jittered OBC/OBN acquisition

Felix Oghenekohwo, Haneet Wason, Ernie Esser, and Felix J. Herrmann, "Cheap time lapse with distributed Compressive Sensing–-exploiting common information among the vintages". 2016. To appear in GEOPHYSICS. Haneet Wason, Felix Oghenekohwo, and Felix J. Herrmann, "Cheap time lapse with distributed Compressive Sensing–-impact on repeatability". 2016. To appear in GEOPHYSICS.

Economical time-lapse acquisition (OBC/OBN)

Observed sampling grid* (m)	Recovered sampling grid* (m)	% Subsampling	Gain in sampling
25	12.5	50	2X
25	6.25	75	4 X

* source/receiver sampling grid

Felix Oghenekohwo, Haneet Wason, Ernie Esser, and Felix J. Herrmann, "Cheap time lapse with distributed Compressive Sensing–-exploiting common information among the vintages". 2016. To appear in GEOPHYSICS. Haneet Wason, Felix Oghenekohwo, and Felix J. Herrmann, "Cheap time lapse with distributed Compressive Sensing–-impact on repeatability". 2016. To appear in GEOPHYSICS.

Economical time-lapse acquisition (OBC/OBN)

Observed sampling grid* (m)	Recovered sampling grid* (m)	% Subsampling	Gain in sampling
25	12.5	50	2X
25	6.25	75	4X

* source/receiver sampling grid

still want more economical

Breaking structure

(time-jittered acquisition;

static acquisition geometry: OBC/OBN)

[Wason and Herrmann, 2013] [Mansour et al., 2012]

almost periodically sampled spatial

grid (dynamic acquisition geometry:

towed arrays)

Goals

Design of economic dense multi-azimuth long-offset 3D time-lapse marine acquisition w/ high degree of repeatability

- w/o replication of source locations
- w/o expensive OBN/OBC
- w/o precise adherence to planned sail lines

Use simulations to demonstrate the potential of cheap dynamic acquisition in 4D seismic for FWI

Acquisition parameters

Underlying grid: Source X, Source Y: 25 m Receiver X, Receiver Y: 25 m Maximum offset: 4 + 4 = 8 km Number of streamers per source vessel: 12 Ricker wavelet with central frequency of 20 Hz

Effective sampling: 25-100 m in X & Y => 3 - 4 X cost reduction

3D baseline BG model

Low-cost marine acquisition

Conventional acquisition

SLO acquisition

----- source domain ----- receiver domain

4 km streamer length ("reduced" acquisition)

Sail lines for baseline survey

Sail lines for baseline survey Sail lines for monitor survey

Data organization

- our preferred domain for data reconstruction is the common-receiver domain as shown below

[Candès and Plan, 2010, Oropeza and Sacchi, 2011]

Matrix completion

Successful reconstruction scheme

- exploit structure
 - *low-rank / fast decay* of singular values
- sampling
 - randomness increases rank in "transform domain"
- optimization
 - via rank minimization (nuclear-norm minimization)

Curt Da Silva, and Felix J. Herrmann, "Optimization on the Hierarchical Tucker manifold - applications to tensor completion", Linear Algebra and its Applications, vol. 481, p. 131-173, 2015. Rajiv Kumar, Curt Da Silva, Okan Akalin, Aleksandr Y. Aravkin, Hassan Mansour, Ben Recht, and Felix J. Herrmann, "Efficient matrix completion for seismic data reconstruction", Geophysics, vol. 80, p. V97-V114, 2015.

Low-rank structure

In which domain?

explore different matricizations

Low-rank structure conventional 5D data, monochromatic slice, Sx-Sy matricization

Low-rank structure conventional 5D data, monochromatic slice, Sx-Rx matricization

Sampling scheme

sample to break the structure

random missing entries break the structure

Low-rank structure

random missing sources, monochromatic slice, Sx-Rx matricization

Data organization

(Sx, Sy) organization

- high rank
- missing sources operator --- removes columns
- missing receivers operator --- removes rows
- poor recovery scenario

(Sx, Rx) organization

- low rank
- missing sources operator --- removes entries in each block
- missing receivers operator --- removes blocks
- closer to ideal recovery scenario

oves columns noves rows

oves entries in each block noves blocks rio

Observed data – 30% monochromatic slice, common-receiver domain

Recover full-azimuth data one common-receiver gather

Multi-azimuth SLO data (observed)

Sx

Full-azimuth data (deblended + interpolated)

Sx

Recover full-azimuth data multiple common-receiver gathers

Multi-azimuth SLO data (observed)

Sx Rx

Full-azimuth data (deblended + interpolated)

Sx Rx

Economical 3D time-lapse acquisition

Observed sampling grid* (m)	Recovered sampling grid* (m)	% Subsampling	Gain in sampling
25	25	70	3X - 4X
25	12.5	85	6X - 8X
25	6.25	93	10X - 12X

* source sampling grid; can apply to receiver grid => increased economical gain

Economical 3D time-lapse acquisition

Observed sampling grid* (m)	Recovered sampling grid* (m)	% Subsampling	Gain in sampling
25	25	70	3X - 4X
25	12.5	85	6X - 8X
25	6.25	93	10X - 12X

* source sampling grid; can apply to receiver grid => increased economical gain

Felix Oghenekohwo, Haneet Wason, Ernie Esser, and Felix J. Herrmann, "Low-cost time-lapse seismic with distributed Compressive Sensing–-exploiting common information amongst the vintages". 2016. To appear in GEOPHYSICS Haneet Wason, Felix Oghenekohwo, and Felix J. Herrmann, "Cheap time lapse with distributed Compressive Sensing–-impact on repeatability". 2016. To appear in GEOPHYSICS

Extension to 3D time-lapse acquisition

3D baseline BG model

velocity (m/s)

3D baseline BG model

velocity (m/s)

3D time-lapse BG model

velocity (m/s)

Ideal dense receiver gathers & time lapse

baseline

monitor

time lapse

JRM – Joint Recovery Model

Key idea:

- with sparse recovery
- common component observed by all surveys

invert for common components & innovation w.r.t. common components

Optimization information

Parallelized factorization framework over sources & receivers Number of iterations: 400 Computational time: 3 hours per frequency slice Separation & interpolation to 25 m grid

SENAI Yemoja cluster: 30 nodes w/ 128 GB RAM each, 20-core processors

300 Parallel MATLAB workers (10 per node), multithread, full core utilization

Baseline recovery

(12.6 dB)

Take-away message

Size of final recovered data volume: 800 GB

no need to save fully sampled seismic data volume

Save L and \mathbf{R}^{H} factors

- compression rate: 98.5%
- size of final compressed 5D seismic volume: ~ 12 GB

Conclusions

Randomized sampling (joint) recovery leads to:

- economic acquisition for both static & dynamic acquisitions
- surveys w/ high degree of repeatability w/o replicating the surveys

Preliminary randomized 4D survey design:

- is feasible
- needs more randomness
- leads to at least cost reduction of $3 4 \times$

As long as we know where we were all acquisitions will benefit from embracing randomness in the field...

tic & dynamic acquisitions bility w/o replicating the surveys

Future work

Run more experiments including extensions to off-the-grid acquisition design and processing

Test with realistic noise

Highly repeatable time-lapse seismic with distributed Compressive Sensing--mitigating effects of calibration errors

Felix Oghenekohwo

Felix Oghenekohwo and Felix J. Herrmann, "Highly repeatable time-lapse seismic with distributed Compressive Sensing-mitigating effects of calibration errors", The Leading Edge, vol. 36, p. 688-694, 2017.

- Rajiv Kumar, Haneet Wason, Shashin Sharan, and Felix J. Herrmann, "Highly repeatable 3D compressive full-azimuth towed-streamer time-lapse acquisition --- a numerical feasibility study at scale", The Leading Edge, vol. 36, p. 677-687, 2017.
- 2 Felix Oghenekohwo and Felix J. Herrmann, "Highly repeatable time-lapse seismic with distributed Compressive Sensing--mitigating effects of calibration errors", The Leading Edge, vol. 36, p. 688-694, 2017.
- 3 Haneet Wason, Felix Oghenekohwo, and Felix J. Herrmann, "Low-cost time-lapse seismic with distributed compressive sensing--Part 2: impact on repeatability", Geophysics, vol. 82, p. P15-P30, 2017.
- 4 Felix Oghenekohwo, Haneet Wason, Ernie Esser, and Felix J. Herrmann, "Low-cost time-lapse seismic with distributed compressive sensing--Part 1: exploiting common information among the vintages", Geophysics, vol. 82, p. P1-P13, 2017. **Observations**

Randomized acquisition:

- independent surveys bring extra information
- "exactly" repeated surveys do not add new information
- for independent surveys, independent processing leads to poor recovery quality of vintages & time-lapse difference
- w/ joint recovery, we observe improvements in recovery quality of the vintages for independent surveys

Our joint recovery model exploits the shared information in time-lapse data, improving the **repeatability** of the vintages.

"Exact" replicability of the surveys seems essential for good recovery of the time-lapse signal...

What is the impact of calibration errors?

Thursday, October 5, 2017

Goal

on time-lapse repeatability & quality of the vintages

- w/o survey replication in the shot locations
- w/our joint recovery model
- compared to conventional (non-replicated) dense surveys

In the idealized setting where nothing changes in the earth but acquisition & unknown calibration errors differ.

Evaluate the impact of deviations between true & recorded post-plot

w/ our low-cost marine acquisition (e.g. time-jittered sources in marine)

4-D time-jittered marine acquisition

Recovery & repeatability

NRMS

Recovery - w/ up to 20% error (~ 2.5m) in shot position

Recovery of 2nd survey

Difference between pairs (1st & 2nd survey)

Conventional dense survey (after regularization)

Thursday, October 5, 2017

Low-cost w/ Joint recovery model (JRM)

Summary

- High-cost densely sampled surveys absence of calibration errors
- Quality of dense surveys decay rapidly in presence of small errors
 Independently recovering the CS-based surveys leads to the worst recovery
- Independently recovering the CS-b quality & repeatability
- Low-cost randomized surveys show modest decay in quality & repeatability when recovered with the joint recovery model

Recovery with the JRM is stable with respect to calibration errors.

Acknowledgements

The authors wish to acknowledge the SENAI CIMATEC Supercomputing Center for Industrial Innovation, with support from BG Brasil, Shell, and the Brazilian Authority for Oil, Gas and Biofuels (ANP), for the provision and operation of computational facilities and the commitment to invest in Research & Development.

Acknowledgements

We would like to acknowledge Nick Moldoveanu from Schlumberger for useful discussions on 3D time-lapse acquisition and BG Group for providing the Compass 3D time-lapse model.

This research was carried out as part of the SINBAD project with the support of the member organizations of the SINBAD Consortium.

van den Berg, E., and Friedlander, M. P., 2008, Probing the Pareto frontier for basis pursuit solutions, SIAM Journal on Scientific Computing, 31, 890-912.

Candès, E. J., and Plan, Y., 2009, Matrix completion with noise, *Proceedings of the IEEE*, 98, 925-936. Donoho, D. L., 2006, Compressed sensing, *IEEE Transactions Information Theory*, 52, 1289–1306. Hennenfent, G., and Herrmann, F. J., 2008, Simply denoise: wavefield reconstruction via jittered undersampling, *Geophysics*, 73, V19–V28.

Herrmann, F. J., 2010, Randomized sampling and sparsity: getting more information from fewer samples, *Geophysics*, 75, WB173–WB187.

Kumar, R., Da Silva, C., Akalin, O., Aravkin, A. Y., Mansour, H., Recht, B., and Herrmann, F. J., 2015a, Efficient matrix completion for seismic data reconstruction, *Geophysics*, 80, V97–V114. Kumar, R., Wason, H., and Herrmann, F. J., 2015b, Source separation for simultaneous towed-streamer marine acquisition ---- a compressed sensing approach, *Geophysics*, 80, WD73–WD88.

Mansour, H., Wason, H., Lin, T. T. Y., and Herrmann, F. J., 2012, Randomized marine acquisition with compressive sampling matrices: *Geophysical Prospecting*, 60, 648–662.

Oropeza, V., and Sacchi, M., 2011, Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis, *Geophysics*, 76(3), V25-V32.

Recht, B., Fazel, M., and Parrilo, P. A., 2010, Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization, SIAM Review, 52(3), 471–501.

Wason, H., and Herrmann, F. J., 2013, Time-jittered ocean bottom seismic acquisition, SEG Technical Program Expanded Abstracts, 32, 1–6.

