Low-rank representation of omnidirectional subsurface extended image volumes

Marie Graff-Kray, Rajiv Kumar and Felix J. Herrmann

SLIM +
University of British Columbia

Seismic imaging

- Forward propagate source wavefields
- Back propagate receiver wavefields
- Cross-correlate wavefields at subsurface locations

Seismic imaging w/ extensions

- Conventional imaging extracts zero-offset section only
- Extension/lifting corresponds to new experiment w/ sources/receivers anywhere in subsurface
- Near isometry

Seismic imaging w/ extensions

- Parametrized by subsurface horizontal offset or angles
- Computed \& stored for small subsets of offsets/angles
- Do not explore underlying low-rank structure

Motivation and applications

Form subsurface offset image volumes

Wave-equation migration velocity analysis \& continuation

Targeted imaging

Image gather for QC

Extended images in 2D

Marmousi model
T. Common image point

- . - Source / Receiver location

Extended images in 2D

Common image point gather, $3-30 \mathrm{~Hz}$

Extended images in 3D

3D BG Compass model

Experimental details

- I200 source (75 m spacing)
- 2500 receivers (50 m spacing)
- $5-12 \mathrm{~Hz}$
- OBN acquisition
- peak frequency 15 Hz
- One probing vector
- I500 times faster than conventional method

Extended images in 3D

3D BG Compass model

Common-image point gather

Extended images in 3D

Cross section across common-image point gather

Extended images: difficulties

- use all subsurface offsets (6D volume for 3D model)
- 2-way wave-equation
but.... we can never hope to compute or store such an image volume!

Can we work with the volume implicitly?

When the dream comes true

Computation of full-subsurface offset volumes is prohibitively expensive in 3D (storage \& computation time)

Past
Can not form full E but action on (random) vectors allows us to get information from all or subsets of subsurface points

When the dream comes true

Computation of full-subsurface offset volumes is prohibitively expensive in 3D (storage \& computation time)

Past

Can not form full E but action on (random) vectors allows us to get information from all or subsets of subsurface points

Present

Can hot form full E using action on (random) vectors allows us to get information from all or subsets of subsurface points

Efficient ways to extract information from highly compressed image volumes

Extended images via probing

Extended images

Given two-way wave equations, source and receiver wavefields are defined as

$$
\begin{aligned}
& H(\mathbf{m}) U=P_{s}^{T} Q \\
& H(\mathbf{m})^{*} V=P_{r}^{T} D
\end{aligned}
$$

where
$H(\mathbf{m})$: discretization of the Helmholtz operator
Q : source
D : data matrix
P_{s}, P_{r} : samples the wavefield at the source and receiver positions
m : slowness

Extended images

Organize wavefields in monochromatic data matrices where each column represents a common shot gather

Express image volume tensor for single frequency as a matrix

$$
E=V U^{*}
$$

Extended images

sources

In 3D, E is 6D tensor for each monochromatic slice

Extended images (Past)

Too expensive to compute (storage and computational time)

Instead, probe volume with tall matrix $W=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{\ell}\right]$

$$
\widetilde{E}=E W=H^{-*} P_{r}^{\top} D Q^{*} P_{s} H^{-*} W
$$

where $\mathbf{w}_{i}=[0, \ldots, 0,1,0, \ldots, 0]$ represents single scattering points

Extended images (Present)

Too expensive to compute (storage and computational time)

Instead, probe volume with tall matrix $W=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{\ell}\right]$

$$
\widetilde{E}=E W=H^{-*} P_{r}^{\top} D Q^{*} P_{s} H^{-*} W
$$

where $\mathbf{w}_{i}=[0, \ldots, 0,1,0, \ldots, 0]$ represents single scattering points

Other choice for W ? And how many vectors are needed ?

- random (Gaussian or Rademacher) vectors
- singular vectors from (randomized) SVD

Low-rank representation (5 Hz)

SVD on the monochromatic extended image volume

Rank of the extended image volume

From the formula

$$
\widetilde{E}=E W=H^{-*} P_{r}^{\top} D Q^{*} P_{s} H^{-*} W
$$

the rank of E is given by the rank of the data matrix D

So, we take r probing vector $W=\left[w_{1}, \ldots, w_{r}\right]$
— random + I/-I with probability 0.5

- Gaussian random with 0 mean and variance I
- our contribution: orthogonal basis of the range of E

Orthogonal basis of the range of E

Algorithm:

I. Let $W=\left[w_{1}, \ldots, w_{r}\right]$ be r Gaussian random vectors
2. Compute $Z=E^{*} W$
3. Compute $[Q, R]=\operatorname{qr}(Z)$
4. E is fully described by Q
and $E Q \quad$ (action of E on Q)

Extraction of information of E
— randomized SVD algorithm [I]
Notation: $[Q, E Q]$
— randomized diagonal extraction [2]

Randomized SVD algorithm

Algorithm from [1]:

1.

$Y=E W$
2. $[Q, R]=\operatorname{qr}(Y)$
3. $\quad Z=Q^{*} E$
4. $[U, S, V]=\operatorname{svd}(Z)$
5.
$U \leftarrow Q U$
probe full extended image volume with virtual sources
QR factorization
probe again with new virtual sources
SVD factorization (first few singular values)
update left singular vectors

Randomized SVD algorithm

Algorithm from [I]:

I. $Y=E W$
2. $[Q, R]=\operatorname{qr}(Y)$
3. $\quad Z=Q^{*} E$
4. $[U, S, V]=\operatorname{svd}(Z)$
5.
probe full extended image volume with virtual sources
QR factorization
probe again with new virtual sources
SVD factorization (first few singular values)
update left singular vectors

Steps I to 3 are given by $[Q, E Q]$ (probing only from the right) if doing so, step 5 becomes an update of right singular vectors: $V \leftarrow Q V$ Finally

$$
\widetilde{E}=E W=U S V^{*}
$$

Randomized diagonal extraction

$$
\text { Formula from [2]: } \quad \operatorname{diag}(E) \approx\left(\sum_{i=1}^{\ell} w_{i} \odot\left(E w_{i}\right)\right) \oslash\left(\sum_{i=1}^{\ell} w_{i} \odot w_{i}\right)
$$

for $W=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{\ell}\right],+\mathrm{I} /-\mathrm{I}$ with probability 0.5 random vectors and $\ell \gg N$ (too expensive)

Randomized diagonal extraction

Formula from [2]:

$$
\operatorname{diag}(E) \approx\left(\sum_{i=1}^{\ell} w_{i} \odot\left(E w_{i}\right)\right) \oslash\left(\sum_{i=1}^{\ell} w_{i} \odot w_{i}\right)
$$

for $W=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{\ell}\right],+\mid /-\mathrm{I}$ with probability 0.5 random vectors and $\ell \gg N$ (too expensive)

With an orthogonal basis Q :

$$
\operatorname{diag}(E)=\sum_{i=1}^{r} q_{i} \odot\left(E q_{i}\right)
$$

Our contribution: take only r vectors spanning an orthogonal basis of the range of E (exact if r is the rank of E)

Orthogonal basis vs random basis

Diagonal extraction of the EIV for different representation $(5 \mathrm{~Hz}, r=15)$

Invariance formula for EIVs

Invariance formulation for EIVs...

For monochromatic data and sources

$$
E=H[m]^{-*} \underbrace{P_{r}^{\top} D Q^{*} P_{s}}_{\text {invariant }} H[m]^{-*}
$$

then for two models m_{1} and m_{2}

$$
H\left[m_{1}\right]^{*} E_{1} H\left[m_{1}\right]^{*}=H\left[m_{2}\right]^{*} E_{2} H\left[m_{2}\right]^{*}
$$

Invariance formulation for EIVs...

For monochromatic data and sources

$$
E=H[m]^{-*} \underbrace{P_{r}^{\top} D Q^{*} P_{s}}_{\text {invariant }} H[m]^{-*}
$$

then for two models m_{1} and m_{2}

$$
H\left[m_{1}\right]^{*} E_{1} H\left[m_{1}\right]^{*}=H\left[m_{2}\right]^{*} E_{2} H\left[m_{2}\right]^{*}
$$

we deduce E_{2} from E_{1}

$$
E_{2}=H\left[m_{2}\right]^{-*} H\left[m_{1}\right]^{*} E_{1} H\left[m_{1}\right]^{*} H\left[m_{2}\right]^{-*}
$$

Only $2 r$ PDEs solves!

...from Low-Rank representation

From $\left[Q_{1}, E_{1} Q_{1}\right]$, we get a low-rank formulation for E_{1}

$$
E_{1}=L_{1} R_{1}^{*}
$$

with L_{1} and R_{1} two $N \times r$ matrices given by

$$
\begin{aligned}
L_{1} & =U_{1} \sqrt{S_{1}} \\
R_{1} & =V_{1} \sqrt{S_{1}}
\end{aligned}
$$

[U_{1}, S_{1}, V_{1}] from randomized SVD

New extended image

Now we deduce

$$
\begin{aligned}
& L_{2}=H\left[m_{2}\right]^{-*} H\left[m_{1}\right]^{*} L_{1} \\
& R_{2}=H\left[m_{2}\right]^{-1} H\left[m_{1}\right] R_{1}
\end{aligned}
$$

to compute

$$
E_{2}=L_{2} R_{2}^{*}
$$

with only $2 r$ extra PDEs solves!

Invariance formula for EIVs (example I)

Invariance formula for EIVs (example I)

background model I (correct)

background model 2 (incorrect)

Invariance formula for EIVs (example I)

Diagonal extraction of the low-rank EIV $(5-30 \mathrm{~Hz}$, step $0.5 \mathrm{~Hz}, r=15-45)$

direct reconstruction model I

direct reconstruction model 2

using invariance formula from model 2 to get model I from wrong to correct!!!

Invariance formula for EIVs (example 2)

Invariance formula for EIVs (example 2)

background model 2 (incorrect)

Invariance formula for EIVs (example 2)

Diagonal extraction of the low-rank EIV ($5-30 \mathrm{~Hz}$, step $0.5 \mathrm{~Hz}, r=15-45$)

direct reconstruction model I

direct reconstruction model 2

using invariance formula from model 2 to get model I from wrong to correct!!!

Low-rank formulation for least-squares EIVs

Least-squares extended image volume

Aim: build an EIV that fits the data

$$
\min _{E} \frac{1}{2}\|D-\mathcal{F}(E)\|_{F}^{2}
$$

with

$$
\mathcal{F}(E)=P_{r} H^{-1} E H^{-1} P_{s}^{\top} Q
$$

Difficulty: image volume E is too large (storage \& computational time)

Our solution: low-rank factorization of $E=L R^{*}$ with L and R two $N \times r$ matrices

Low-rank least-squares image volume

Least-squares problem for the LR factorization

$$
\min _{L, R} \frac{1}{2} \Phi(L, R)=\frac{1}{2}\left\|D-\mathcal{F}\left(L R^{*}\right)\right\|_{F}^{2}
$$

for $E=L R^{*}$

Gradients for least-squares formulation

$$
\begin{aligned}
& \frac{\partial \Phi}{\partial L}(L, R)=H^{-*} P_{r}^{\top}\left(D-\mathcal{F}\left(L R^{*}\right)\right) Q^{*} P_{s} H^{-*} R \\
& \frac{\partial \Phi}{\partial R}(L, R)=H^{-1} P_{s}^{\top} Q\left(D-\mathcal{F}\left(L R^{*}\right)\right)^{*} P_{r} H^{-1} L
\end{aligned}
$$

Solution by alternating least-squares on L and on R

Full EIV vs low-rank LS image volume

Diagonal extraction of the EIV for frequencies $5-30 \mathrm{~Hz}$, with steps of 0.5 Hz

full EIV

Low-rank least-squares EIV

Full EIV vs low-rank LS image volume

Common image point gather of the EIV for $5-30 \mathrm{~Hz}$, with steps of 0.5 Hz

full EIV

Low-rank least-squares EIV

Complexity analysis

Full subsurface offset extended images:

	\# of PDE solves	size of EIV
conventional E	2 Ns	$\mathrm{N} \times \mathrm{N}$
mat-vec $\tilde{E}=E W$	2 Nx	$\mathrm{N} \times \mathrm{Nx}$
low-rank L, R	4 r	$2 \mathrm{~N} \times \mathrm{r}$

Ns = \# sources
Nx = \# probing points
N = \# grid points
r = \# estimated rank

Complexity analysis

Full subsurface offset extended images:

	\# of PDE solves	size of EIV
conventional E	2 Ns	$\mathrm{N} \times \mathrm{N}$
mat-vec $\tilde{E}=E W$	2 Nx	$\mathrm{N} \times \mathrm{Nx}$
low-rank L, R	4 r	$2 \mathrm{~N} \times \mathrm{r}$

$$
\begin{array}{ll}
\text { Ns }=\# \text { sources } & N x=\# \text { probing points } \\
N=\# \text { grid points } & r=\# \text { estimated rank }
\end{array}
$$

we win when $N x \ll N s$
but usually $\mathrm{Nx} \sim \mathrm{N}$

Complexity analysis

Full subsurface offset extended images:

	\# of PDE solves	size of EIV
conventional E	2 Ns	$\mathrm{N} \times \mathrm{N}$
mat-vec $\tilde{E}=E W$	2 Nx	$\mathrm{N} \times \mathrm{Nx}$
low-rank L, R	4 r	$2 \mathrm{~N} \times \mathrm{r}$

$$
\begin{array}{ll}
\text { Ns }=\# \text { sources } & N x=\# \text { probing points } \\
N=\# \text { grid points } & r=\# \text { estimated rank }
\end{array}
$$

we win when $r \ll$ Ns okay from low-rank approx. of data matrix!

Observations \& Conclusions

Full-offset image volumes can be formed via probing

Form orthonormal basis that spans its range

- low-rank approximation via randomized SVD
— extract (off)diagonals from image volumes

Form least-squares extended images
— via alternating least-squares on low-rank factors

Natural "parametrization" from linear algebra

Acknowledgements

This research was carried out as part of the SINBAD project with the support of the member organizations of the SINBAD Consortium.

Acknowledgements

The authors wish to acknowledge the SENAI CIMATEC Supercomputing Center for Industrial Innovation, with support from BG Brasil, Shell, and the Brazilian Authority for Oil, Gas and Biofuels (ANP), for the provision and operation of computational facilities and the commitment to invest in Research \& Development.

Acknowledgements

The speaker wishes to acknowledge the Swiss National Science Foundation, which partly funded this work.

FNSNF

Fonds national suisse
Schweizerischer Nationalfonds
FONDO NAZIONALE SVIZZERO Swiss National Science Foundation

Thank you for your attention

