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Seismic imaging

2

‣ Forward propagate source wavefields

‣ Back propagate receiver wavefields

‣ Cross-correlate wavefields at subsurface locations

Thursday, October 5, 2017



Seismic imaging w/ extensions

3

‣ Conventional imaging extracts zero-offset section only

‣ Extension/lifting corresponds to new experiment w/ sources/receivers 
anywhere in subsurface

‣ Near isometry
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Seismic imaging w/ extensions

4

‣ Parametrized by subsurface horizontal offset or angles

‣ Computed & stored for small subsets of offsets/angles

‣ Do not explore underlying low-rank structure 

Thursday, October 5, 2017



Form subsurface offset image volumes 

Wave-equation migration velocity analysis & continuation

Targeted imaging

Image gather for QC

Motivation and applications

5
Thursday, October 5, 2017



Extended images in 2D
Marmousi model
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Common image point gather,   3-30 Hz

7

Extended images in 2D
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Extended images in 3D
Example
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‣ 1200 source (75 m spacing) 

‣ 2500 receivers (50 m spacing)

‣ 5-12 Hz

‣ OBN acquisition

‣ peak frequency 15 Hz

‣ One probing vector

‣ 1500 times faster than 
conventional method

Experimental details

3D BG Compass model
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Extended images in 3D
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        3D BG Compass model                                Common-image point gather
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Cross section across common-image point gather
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Extended images in 3D
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‣ use all subsurface offsets 
   (6D volume for 3D model)
‣ 2-way wave-equation

but…. we can never hope to compute 
or store such an image volume!

Can we work with the volume
implicitly?

11

Extended images: difficulties
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When the dream comes true
Computation of full-subsurface offset volumes is prohibitively expensive in 3D
(storage & computation time)

Can not form full E but action on (random) vectors allows us to get 
information from all or subsets of subsurface points

Past

12
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Computation of full-subsurface offset volumes is prohibitively expensive in 3D
(storage & computation time)

Can not form full E but action on (random) vectors allows us to get 
information from all or subsets of subsurface points

Can not form full E using action on (random) vectors allows us to get 
information from all or subsets of subsurface points

Efficient ways to extract information from highly compressed image volumes

Past

Present

13

When the dream comes true
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Extended images via probing
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Given two-way wave equations, source and receiver wavefields are defined as

where

                                                        discretization of the Helmholtz operator  

                                                source

                                                         data matrix

                                              samples the wavefield at the source and receiver positions 

                                                         slowness

                                                        

Extended images

H(m)U = PT
s Q

H(m)⇤V = PT
r D

H(m) :

Q :

D :

Ps, Pr :

m :
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Extended images
Organize wavefields in monochromatic data matrices where each column 
represents a common shot gather

Express image volume tensor for single frequency as a matrix

E = V U⇤

16
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Extended images

gr
id

po
in

ts
sources

4D image volume
 as matrix

nx	x	nz

In 3D, E is 6D tensor for each 
monochromatic slice
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Extended images (Past)
Too expensive to compute (storage and computational time)

Instead, probe volume with tall matrix       

where                                     represents single scattering points

Tristan van Leeuwen, Rajiv Kumar, and Felix J. Herrmann, “Enabling affordable omnidirectional subsurface extended image volumes via probing”, 
Geophysical Prospecting, 2016

wi = [0, . . . , 0, 1, 0, . . . , 0]

eE = EW = H�⇤P>
r DQ⇤PsH

�⇤W

W = [w1, . . . ,w`]
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Extended images (Present)
Too expensive to compute (storage and computational time)

Instead, probe volume with tall matrix       

where                                     represents single scattering points

Other choice for        ?   And how many vectors are needed ?
‣ random (Gaussian or Rademacher) vectors
‣ singular vectors from (randomized) SVD 

Tristan van Leeuwen, Rajiv Kumar, and Felix J. Herrmann, “Enabling affordable omnidirectional subsurface extended image volumes via probing”, 
Geophysical Prospecting, 2016

wi = [0, . . . , 0, 1, 0, . . . , 0]

W

eE = EW = H�⇤P>
r DQ⇤PsH

�⇤W

W = [w1, . . . ,w`]
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Low-rank representation (5 Hz)
         SVD on the monochromatic extended image volume

   Model (101x101)                           Image Volume (IV)                        Singular Values of IV   
20
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Rank of the extended image volume
From the formula

the rank of        is given by the rank of the data matrix

So, we take        probing vector  

— random +1/-1 with probability 0.5

— Gaussian random with 0 mean and variance 1

— our contribution:  orthogonal basis of the range of   

E D

r W = [w1, . . . , wr]

E

eE = EW = H�⇤P>
r DQ⇤PsH

�⇤W

21
Thursday, October 5, 2017



Orthogonal basis of the range of E
Algorithm:
1. Let                                    be         Gaussian random vectors

2. Compute                                       (        is a               matrix)  

3. Compute                                       (take only the      first columns of        )

4.       is fully described by                  (orthogonal probing vectors)       

    and                 (action of      on     )

Extraction of information of                               

— randomized SVD algorithm [1]                          Notation:   

— randomized diagonal extraction [2] 

E

rW = [w1, . . . , wr]

Z = E⇤W Z N ⇥ r

r Q

Q

E

[1] Halko et. al, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, 2010

[2] Bekas et. al, An Estimator for the Diagonal of a Matrix, 2007

EQ

[Q,R] = qr(Z)

E Q

[Q,EQ]

22
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Randomized SVD algorithm

[1] Halko et. al, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, 2010

Algorithm from [1]:

1.                                          probe full extended image volume with virtual sources

2.                                          QR factorization

3.                                          probe again with new virtual sources

4.                                          SVD factorization (first few singular values)

5.                                          update left singular vectors

   

Y = EW

Z = Q⇤E

U  QU

[Q,R] = qr(Y )

[U, S, V ] = svd(Z)

23
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Randomized SVD algorithm

[1] Halko et. al, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, 2010

Algorithm from [1]:

1.                                          probe full extended image volume with virtual sources

2.                                          QR factorization

3.                                          probe again with new virtual sources

4.                                          SVD factorization (first few singular values)

5.                                          update left singular vectors

Steps 1 to 3 are given by                   (probing only from the right)

if doing so, step 5 becomes an update of right singular vectors: 

Finally    

Y = EW

Z = Q⇤E

U  QU

[Q,R] = qr(Y )

[U, S, V ] = svd(Z)

[Q,EQ]

V  QV

eE = EW = USV ⇤
24
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Randomized diagonal extraction
Formula from [2]:

for                                  ,  +1/-1 with probability 0.5 random vectors 
and                 (too expensive)

[2] Bekas et. al, An Estimator for the Diagonal of a Matrix, 2007

W = [w1, . . . ,w`]

` � N

diag(E) ⇡
 
X̀

i=1

wi � (Ewi)

!
↵
 
X̀

i=1

wi � wi

!
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Randomized diagonal extraction
Formula from [2]:

for                                  ,  +1/-1 with probability 0.5 random vectors 
and                 (too expensive)

With an orthogonal basis     :

Our contribution:  take only      vectors spanning an orthogonal basis of the range of
(exact if     is the rank of      )

[2] Bekas et. al, An Estimator for the Diagonal of a Matrix, 2007

W = [w1, . . . ,w`]

` � N

Q

r E

r E

diag(E) ⇡
 
X̀

i=1

wi � (Ewi)

!
↵
 
X̀

i=1

wi � wi

!

26

diag(E) =
rX

i=1

qi � (Eqi)
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Orthogonal basis vs random basis
Diagonal extraction of the EIV for different representation (5 Hz, r = 15)

full EIV                                  with orthogonal basis                       with Gaussian basis

    E                                                 [Q,EQ]                                            [W,EW]
27
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Invariance formula for EIVs
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Invariance formulation for EIVs…
For monochromatic data and sources

then for two models          and

       

29

E = H[m]�⇤ P>
r DQ⇤Ps| {z }
invariant

H[m]�⇤

H[m1]
⇤E1H[m1]

⇤ = H[m2]
⇤E2H[m2]

⇤

m1 m2

Tristan van Leeuwen and Felix J. Herrmann, “Wave-equation extended images: computation and velocity continuation”, in EAGE 
Annual Conference Proceedings, 2012.
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Invariance formulation for EIVs…
For monochromatic data and sources

then for two models          and

we deduce         from

Only      PDEs solves!         
30

E = H[m]�⇤ P>
r DQ⇤Ps| {z }
invariant

H[m]�⇤

H[m1]
⇤E1H[m1]

⇤ = H[m2]
⇤E2H[m2]

⇤

E2 = H[m2]
�⇤H[m1]

⇤E1H[m1]
⇤H[m2]

�⇤

E2 E1

m1 m2

2r
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…from Low-Rank representation
From                    ,  we get a low-rank formulation for

with          and           two                matrices given by 

                      from randomized SVD 

31

N ⇥ r

[Q1, E1Q1] E1

E1 = L1R
⇤
1

L1 R1

L1 = U1

p
S1

R1 = V1

p
S1

[U1, S1, V1]
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New extended image
Now we deduce

to compute 

with only     extra PDEs solves!

32

L2 = H[m2]
�⇤H[m1]

⇤L1

R2 = H[m2]
�1H[m1] R1

E2 = L2R
⇤
2

2r
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Invariance formula for EIVs (example 1)

                             model 1                 model 2
                             (correct)            (incorrect)

33
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            background model 1                                       background model 2
                  (correct)                                                          (incorrect)

Invariance formula for EIVs (example 1)

34
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Invariance formula for EIVs (example 1)
           Diagonal extraction of the low-rank EIV ( 5-30 Hz,   step 0.5Hz,   r = 15-45 )

direct reconstruction                     direct reconstruction                   using invariance formula

           model 1                                      model 2                            from model 2 to get model 1  
35 from wrong to correct!!!
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Invariance formula for EIVs (example 2)

                                                          model 2                model 1
                                                       (incorrect)              (correct)

36
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            background model 1                                       background model 2
                  (correct)                                                          (incorrect)

Invariance formula for EIVs (example 2)

37
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Invariance formula for EIVs (example 2)
           Diagonal extraction of the low-rank EIV ( 5-30 Hz,   step 0.5Hz,   r = 15-45 )

direct reconstruction                     direct reconstruction                   using invariance formula

           model 1                                      model 2                            from model 2 to get model 1  
38 from wrong to correct!!!
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Low-rank formulation for least-squares EIVs
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Least-squares extended image volume
Aim: build an EIV that fits the data

with

Difficulty:   image volume      is too large (storage & computational time)

Our solution:    low-rank factorization of   

                             with      and        two                  matrices

min
E

1

2
kD � F(E)k2F

E

E = LR⇤

L R N ⇥ r

F(E) = PrH
�1EH�1P>

s Q

40
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Low-rank least-squares image volume
Least-squares problem for the LR factorization

for                           

Gradients for least-squares formulation 

Solution by alternating least-squares on       and on 

E = LR⇤

L R

min
L,R

1

2
�(L,R) =

1

2
kD � F(LR⇤)k2F

@�

@L
(L,R) = H�⇤P>

r (D � F(LR⇤))Q⇤PsH
�⇤R

@�

@R
(L,R) = H�1P>

s Q(D � F(LR⇤))⇤PrH
�1L

41
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Full EIV vs low-rank LS image volume
Diagonal extraction of the EIV for frequencies 5-30 Hz, with steps of 0.5 Hz 

                         full EIV                               Low-rank least-squares EIV                             
42

Thursday, October 5, 2017



Full EIV vs low-rank LS image volume
Common image point gather of the EIV for 5-30 Hz, with steps of 0.5 Hz 

                          full EIV                                 Low-rank least-squares EIV                             
43
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Complexity analysis
Full subsurface offset extended images:

Ns = # sources             Nx = # probing points

N  = # grid points         r    = # estimated rank
44

# of PDE solves size of EIV

conventional  E 2Ns N x N

mat-vec   E = EW 2Nx N x Nx

low-rank  L,R 4r 2N x r

Ẽ = EW

E

L,R
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Complexity analysis
Full subsurface offset extended images:

Ns = # sources             Nx = # probing points

N  = # grid points         r    = # estimated rank
45

# of PDE solves size of EIV

conventional  E 2Ns N x N

mat-vec   E = EW 2Nx N x Nx

low-rank  L,R 4r 2N x r

Ẽ = EW

E

L,R

we win when  Nx << Ns
but usually  Nx ~ N 

(Dirac probing  vectors)
Thursday, October 5, 2017



Complexity analysis
Full subsurface offset extended images:

Ns = # sources             Nx = # probing points

N  = # grid points         r    = # estimated rank
46

# of PDE solves size of EIV

conventional  E 2Ns N x N

mat-vec   E = EW 2Nx N x Nx

low-rank  L,R 4r 2N x r

Ẽ = EW

E

L,R

we win when r << Ns
okay from low-rank approx.

of data matrix!
Thursday, October 5, 2017



Observations & Conclusions
Full-offset image volumes can be formed via probing

Form orthonormal basis that spans its range

— low-rank approximation via randomized SVD

— extract (off)diagonals from image volumes

Form least-squares extended images 

— via alternating least-squares on low-rank factors

Natural  “parametrization” from linear algebra
47
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