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Motivation

Features	of	RTM:
‣ pros

- no	dip	limitation
- strong	lateral	velocity	variations

‣ cons
- inaccurate	amplitudes	&	low	resolution

Problems	of	LS-RTM:
‣ iterations	that	touch	all	shots	are	too	expensive
‣ data	can	be	overfitted	
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RTM w/ correct wavelet 
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Sparsity promoting LS-RTM w/ correct wavelet
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Sparsity promoting LS-RTM w/ wrong wavelet
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LS-RTM

									:	background	model
									:	Born	modelling	operator	for									shot
									:	model	perturbation
									:	source	wavelet	for								shot
									:	vectorized	reflections		for								shot	
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Sparsity promoting inversion

											
									:	the	transpose	of	Curvelet	transform	
									:	Curvelet	coefficients
									:	tolerance	for	noise	or	modelling	error
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Herrmann F J, Li X. Efficient least-squares imaging with sparsity promotion and compressive sensing[J]. Geophysical prospecting, 2012, 60(4): 696-712.
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Randomized subsampling
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ns

n0
s ⌧ ns

Felix J. Herrmann,Ning Tu and Ernie Esser, “Fast ‘online’ migration with Compressive Sensing”, EAGE Annual Conference Proceeding, 2015, vol. 60, p. 
696-712, 2012
Lorenz, Dirk A.; Wenger, Stephan; A sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing. arXiv:1403.7543
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Solvers for sparsity promoting inversion

Many	solvers	for	sparse.	inversion:

• Iterative	soft	thresholding	
(simple,	but	slow	convergence,	cooling	of	threshold		...)

• Spectral	projected	gradients	w/	L1	constraint	–	SPGL1
(expensive,	difficult	to	implement,	slow	convergence)

• Linearized	Bregman	(LB)
(easy	to	implement,	proven	convergence	w/	subsampling)
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W, Yin. Analysis and generalizations of the linearized Bregman method. SIAM J. Imaging Sci., 3(4):856–877, 2010.

Herrmann F J, Tu N, Esser E. Fast “online” migration with Compressive Sensing[J].
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Sparsity promoting LS-RTM 
w/ correct wavelet & SPGL1
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Sparsity promoting LS-RTM 
w/ correct wavelet & LB
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Modification

• strongly	convex	objective	function	because	of	additional	2-norm	term
• for	big	enough					solves	BP	problem
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W, Yin. Analysis and generalizations of the linearized Bregman method. SIAM J. Imaging Sci., 3(4):856–877, 2010.

Herrmann F J, Tu N, Esser E. Fast “online” migration with Compressive Sensing[J].
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Workflow for LB
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1. Initialize x0 = 0, z0 = 0, q, �, batchsize n0
s ⌧ ns

2. for k = 0, 1, · · ·
3. Randomly choose shot subsets I 2 [1 · · ·ns], |I| = n0

s

4.

ˆ

Jk = {Ji(m0, qi)C⇤}i2I
5. bk = {bi}i2I
6. zk+1 = zk � tkˆJT
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Jkxk � bk)
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8. end
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Toy example

Sparsity	recovery	with	tall	ill-conditioned	matrix

A:	20000	X	10000,	with	Rank	500
x:	10000	X	1,	with	20	non-zeros
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SPGL1 vs LB
no subsampling
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SPGL1 vs LB
50% subsampling
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SPGL1 vs LB
80% subsampling

17
Tuesday, October 25, 2016



SPGL1 vs LB
90% subsampling
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Estimate	source	by	solving	least-square	problem:

where	
Suppose	that																								,	and							is	the	same	for	all	shots	
				is	the	initial	guess	of	
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What if source signature is unknown?

An analysis of seismic wavelet estimation. Ayon Kumar Dey, 1999, University of Calgary, PhD thesis

q = w ⇤ q0 q

min
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PNtr
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qq = w ⇤ q0
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Initial wavelet setting
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Combine the image inversion & source estimation
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start	with	initial	waveletupdate	
�m

update	wavelet

start	w/	sufficiently	small	threshold	
to	allow	main	reflectors	to	enter	into	solution
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Workflow for sparsity-promoting LS-RTM 
w/ source estimation

1. Initialize x0 = 0, z0 = 0, q0, �, �2, batchsize n0
s ⌧ ns, weights r

2. for k = 0, 1, · · ·
3. Randomly choose shot subsets I 2 [1 · · ·ns], |I| = n0

s

4. ˆ

Jk = {Ji(m0, q0)C⇤}i2I
5. bk = {bi}i2I
6. ˜

bk = ˆ

Jkxk

7. wk = argminw
P

I kw ⇤ b̃k � bkk2 + kr(w ⇤ q0)k2 + �2kw ⇤ q0k2

8. zk+1 = zk � tkˆJ⇤
k

⇣
wk?P�(wk ⇤ ˜

bk � bk)
⌘

9. xk+1 = S�(zk+1)
10. end
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Experiments
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Data:
• 295	shots	with	shot	interval	15m	
• 295	receivers	with	receiver	interval	15m
• 4s	record,	15Hz	peak	frequency	designed	wavelet	
• 	synthetic	linearized	data

Experiments:
• one	pass	through	the	data	with	batch	sizes	2.5%	data
• randomized	subset	of	shots	
• normalized	true	source	wavelet	&	initial	guessed	wavelet
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background model and model perturbation
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Sparsity promoting LS-RTM 
w/ correct wavelet & LB
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Sparsity promoting LS-RTM 
w/ wrong wavelet & LB
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Sparsity promoting LS-RTM 
w/ source estimation w/ LB
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Sparsity promoting LS-RTM 
w/ source estimation
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Residual & model error
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Residuals Relative	model	error
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Robustness of source estimation
starting w/ zero-phase wavelet
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Robustness of source estimation
starting w/ zero-phase wavelet
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Sparsity promoting LS-RTM 
w/ correct wavelet & LB
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Sparsity promoting LS-RTM 
w/ source estimation & LB
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Conclusions 

• LB	with	correct	source	signature	gives	image	with	sharp	interfaces	
w/	correct	amplitudes

• Computational	complexity	is	controlled	to	~1	RTM	w/	randomized	
source	subsampling

• LB	improves	inversion	results	compared	to	other	one-norm	solvers
• LB	can	be	combined	w/	on-the-fly	source	estimation	w/o	a	large	
computational	overhead
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Future work

Accelerate	LB	algorithm	with	faster	decades	on	dual	variables	and	
test	the	performance	especially	on	salt	models
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