Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Time domain sparsity promoting LSRTM with source estimation

Mengmeng Yang, Philipp Witte, Zhilong Fang & Felix J. Herrmann

Tuesday, October 25, 2016

Motivation

Features of RTM:

pros

- no dip limitation
- strong lateral velocity variations
- cons
 - inaccurate amplitudes & low resolution

Problems of LS-RTM:

- iterations that touch all shots are too expensive
- data can be overfitted

RTM w/ correct wavelet

8000 6000 4000 2000 -2000 -4000 -6000

Sparsity promoting LS-RTM w/ correct wavelet

4

Sparsity promoting LS-RTM w/ wrong wavelet

LS-RTM

$$\min_{\delta \mathbf{m}} \sum_{i=1}^{n_s} \| \mathbf{J}_i[\mathbf{m}_0, \mathbf{q}_i] \delta \mathbf{m} - \mathbf{k}$$

- \mathbf{m}_0 : background model
- J_i : Born modelling operator for i^{th} shot
- $\delta \mathbf{m}$: model perturbation
 - \mathbf{q}_i : source wavelet for i^{th} shot
 - \mathbf{b}_i : vectorized reflections for i^{th} shot

$|\mathbf{b}_i||^2$

Herrmann F J, Li X. Efficient least-squares imaging with sparsity promotion and compressive sensing[J]. Geophysical prospecting, 2012, 60(4): 696-712.

Sparsity promoting inversion

$$\min_{\mathbf{x}} \|\mathbf{x}\|_{1}$$

s.t.
$$\sum_{i=1}^{ns} \|\underbrace{\mathbf{J}_{i}[\mathbf{m}_{0},\mathbf{q}_{i}]\mathbf{C}^{*}}_{\mathbf{\hat{J}}}\mathbf{x} - \underbrace{\mathbf{J}_{i}[\mathbf{m}_{0},\mathbf{q}_{i}]\mathbf{C}^{*}}_{\mathbf{\hat{J}}}\mathbf{x} - \underbrace{\mathbf{J}_{i}[\mathbf{m}_{0},\mathbf{q}_{i}]\mathbf{L}^{*}}_{\mathbf{J}}\mathbf{x} - \underbrace{\mathbf{J}_{i}[\mathbf{m}_{0},\mathbf{q}_{i}$$

C*: the transpose of Curvelet transform

x : Curvelet coefficients

 σ : tolerance for noise or modelling error

Felix J. Herrmann, Ning Tu and Ernie Esser, "Fast 'online' migration with Compressive Sensing", EAGE Annual Conference Proceeding, 2015, vol. 60, p. 696-712, 2012 Lorenz, Dirk A.; Wenger, Stephan; A sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing. arXiv:1403.7543

Randomized subsampling

W, Yin. Analysis and generalizations of the linearized Bregman method. SIAM J. Imaging Sci., 3(4):856–877, 2010. Herrmann F J, Tu N, Esser E. Fast "online" migration with Compressive Sensing[J].

Solvers for sparsity promoting inversion

Many solvers for sparse. inversion:

- Iterative soft thresholding (simple, but slow convergence, cooling of threshold ...)
- Spectral projected gradients w/L1 constraint SPGL1 (expensive, difficult to implement, slow convergence)
- Linearized Bregman (LB)

(easy to implement, proven convergence w/ subsampling)

Sparsity promoting LS-RTM w/ correct wavelet & SPGL1

Sparsity promoting LS-RTM w/correct wavelet & LB

W, Yin. Analysis and generalizations of the linearized Bregman method. SIAM J. Imaging Sci., 3(4):856–877, 2010. Herrmann F J, Tu N, Esser E. Fast "online" migration with Compressive Sensing[J].

Modification

- $\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & \lambda \|\mathbf{x}\|_{1} + \frac{1}{2} \|\mathbf{x}\|^{2} \\ \text{s.t.} & \|\mathbf{\hat{J}}\mathbf{x} \mathbf{b}\|_{2} \leq \sigma \end{array}$

 - for big enough λ solves BP problem

strongly convex objective function because of additional 2-norm term

Workflow for LB

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & \lambda \|\mathbf{x}\|_{1} + \frac{1}{2} \|\mathbf{x}\|^{2}\\ \text{s.t.} & \|\mathbf{\hat{J}}\mathbf{x} - \mathbf{b}\|_{2} \le \sigma \end{array}$$

Initialize $\mathbf{x}_0 = \mathbf{0}, \mathbf{z}_0 = \mathbf{0}, q, \lambda$, batchsize $n'_s \ll n_s$ 1. for $k = 0, 1, \cdots$ 2. Randomly choose shot subsets 3. $\hat{\mathbf{J}}_k = \{\mathbf{J}_i(\mathbf{m}_0, q_i)\mathbf{C}^*\}_{i \in \mathcal{I}}$ 4. 5. $\mathbf{b}_k = {\mathbf{b}_i}_{i \in \mathcal{I}}$ 6. $\mathbf{z}_{k+1} = \mathbf{z}_k - t_k \mathbf{\hat{J}}_k^T P_\sigma(\mathbf{\hat{J}}_k \mathbf{x}_k - \mathbf{b}_k)$ 7. $\mathbf{x}_{k+1} = S_{\lambda}(\mathbf{z}_{k+1})$ 8. end **note**: $S_{\lambda}(\mathbf{z}_{k+1}) = \operatorname{sign}(\mathbf{z}_{k+1}) \max\{0, |\mathbf{z}_{k+1}| - \mathcal{P}_{\sigma}(\mathbf{\hat{J}}_{k}\mathbf{x}_{k} - \mathbf{b}_{k}) = \max\{0, 1 - \frac{\sigma}{\|\mathbf{\hat{J}}_{k}\mathbf{x}_{k} - \mathbf{b}_{k}\|}\} \cdot (\mathbf{\hat{J}}_{k}\mathbf{x}_{k} - \mathbf{b}_{k})$

2

$$\mathcal{I} \in [1 \cdots n_s], \, |\mathcal{I}| = n'_s$$

$$egin{array}{l} -\lambda \ {f \hat{J}}_k {f x}_k - {f b}_k \end{pmatrix}$$

Toy example

Sparsity recovery with tall ill-conditioned matrix

A: 20000 X 10000, with Rank 500 x: 10000 X 1, with 20 non-zeros

SPGL1 vs LB no subsampling

SPGL1 vs LB 50% subsampling

SPGL1 vs LB 80% subsampling

SPGL1 vs LB 90% subsampling

An analysis of seismic wavelet estimation. Ayon Kumar Dey, 1999, University of Calgary, PhD thesis

What if source signature is unknown?

Estimate source by solving least-square problem:

$$\min_{\mathbf{w}} \sum_{j}^{Ntr} \|\mathbf{w} * \tilde{\mathbf{b}}_j - \mathbf{b}_j\|^2 \quad \text{s.t.} \|\mathbf{w}\|^2 = 1$$

where $\widetilde{\mathbf{b}} = \mathbf{J}(\mathbf{m_0}, \mathbf{q_0}) \widetilde{\delta \mathbf{m}}$ Suppose that $q = w * q_0$, and q is the same for all shots **q**₀ is the initial guess of **q**

Initial wavelet setting

Workflow for sparsity-promoting LS-RTM w/ source estimation

1.	Initialize $\mathbf{x}_0 = 0, \ \mathbf{z}_0 = \mathbf{z}_0 = 0, \ \mathbf{z}_0 = \mathbf{z}_0, \ \mathbf{z}_0 = \mathbf{z}_0 = \mathbf{z}_0, \ \mathbf{z}_0 = \mathbf{z}_0 = \mathbf{z}_0 = \mathbf{z}_0, \ \mathbf{z}_0 = \mathbf{z}_0$
2.	for $k = 0, 1, \cdots$
3.	Randomly choose sho
4.	$\mathbf{\hat{J}}_{k} = \{\mathbf{J}_{i}(\mathbf{m}_{0}, q_{0})\mathbf{C}^{*}\}_{i \in \mathcal{I}}$
5.	$\mathbf{b}_k = \{\mathbf{b}_i\}_{i \in \mathcal{I}}$
6.	$ ilde{\mathbf{b}}_k = \mathbf{\hat{J}}_k \mathbf{x}_k$
7.	$\mathbf{w}_k = rgmin_{\mathbf{w}} \sum_{\mathcal{I}} \ \mathbf{w}\ $
8.	$\mathbf{z}_{k+1} = \mathbf{z}_k - t_k \mathbf{\hat{J}}_k^* \Big(\mathbf{w}_k \star P_d \Big) \Big]$
9.	$\mathbf{x}_{k+1} = S_{\lambda}(\mathbf{z}_{k+1})$
10.	end

 $\mathbf{q}_0, \, \lambda, \, \lambda_2, \, \mathbf{batchsize} \, n'_s \ll n_s, \, \mathbf{weights} \, r$ ot subsets $\mathcal{I} \in [1 \cdots n_s], |\mathcal{I}| = n'_s$

 $\tilde{\mathbf{b}}_{k} - \mathbf{b}_{k} \|^{2} + \|r(\mathbf{w} * \mathbf{q}_{0})\|^{2} + \lambda_{2} \|\mathbf{w} * \mathbf{q}_{0}\|^{2}$ $\tilde{\mathbf{b}}_{k} (\mathbf{w}_{k} * \tilde{\mathbf{b}}_{k} - \mathbf{b}_{k}))$

Experiments

Data:

- 295 shots with shot interval 15m
- 295 receivers with receiver interval 15m
- 4s record, 15Hz peak frequency designed wavelet
- synthetic linearized data

Experiments:

- one pass through the data with batch sizes 2.5% data
- randomized subset of shots
- normalized true source wavelet & initial guessed wavelet

24

Tuesday, October 25, 2016

Sparsity promoting LS-RTM w/correct wavelet & LB

Sparsity promoting LS-RTM w/wrong wavelet & LB

Sparsity promoting LS-RTM w/source estimation w/LB

27

Sparsity promoting LS-RTM w/source estimation

Residual & model error

Relative model error

Robustness of source estimation starting w/ zero-phase wavelet

Robustness of source estimation starting w/ zero-phase wavelet

Sparsity promoting LS-RTM w/ correct wavelet & LB

Sparsity promoting LS-RTM w/source estimation & LB

Conclusions

- LB with correct source signature gives image with sharp interfaces w/ correct amplitudes
- Computational complexity is controlled to ~1 RTM w/ randomized source subsampling
- LB improves inversion results compared to other one-norm solvers • LB can be combined w/ on-the-fly source estimation w/o a large
- computational overhead

Future work

test the performance especially on salt models

Accelerate LB algorithm with faster decades on dual variables and

Acknowledgements

support of the member organizations of the SINBAD Consortium.

This research was carried out as part of the SINBAD project with the

