Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Time-domain least-squares RTM with sparsity promotion on field data Philipp A. Witte and Felix J. Herrmann

Tuesday, October 25, 2016

Motivation

Our first steps with sparsity promoting LSRTM in the time-domain: • develop robust workflow with little user interaction • experiments with increasing difficulty

Synthetic data set: linearized data, (non-) inversion crime

Synthetic data set: non-linearized data

Field data set: Machar 2D

Motivation

Solve sparsity promoting LSRTM w/ linearized Bregman

minimize $\lambda ||\mathbf{C}\delta\mathbf{m}||_1 + \frac{1}{2}||\mathbf{C}\delta\mathbf{m}||_2^2$ subject to $|| \mathbf{J}\delta\mathbf{m} - \delta\mathbf{d} ||_2 \leq \sigma$

Basic implementation of SP-LSRTM

Motivation

Solve sparsity promoting LSRTM w/ linearized Bregman

minimize $\lambda ||\mathbf{C}\delta\mathbf{m}||_1 + \frac{1}{2}||\mathbf{C}\delta\mathbf{m}||_2^2$ subject to $|| \mathbf{J}\delta\mathbf{m} - \delta\mathbf{d} ||_2 \leq \sigma$

Pre-conditioned SP-LSRTM w/ λ auto-tuning

Sparsity promoting LSRTM

Problem formulation:

subject to $|| \mathbf{J} \delta \mathbf{m} - \delta \mathbf{d} ||_2 \leq \sigma$

 $\delta \mathbf{m}$: model perturbation/image

- $\delta \mathbf{d}$: linearized data (single scattered data)
 - J: linearized forward modeling operator (Jacobian)
- C: curvelet transform

minimize $\lambda ||\mathbf{C}\delta\mathbf{m}||_1 + \frac{1}{2}||\mathbf{C}\delta\mathbf{m}||_2^2$

Sparsity promoting LSRTM

Problem formulation:

subject to $|| \mathbf{J}\delta\mathbf{m} - \delta\mathbf{d} ||_2 \leq \sigma$

Left- and right-hand preconditioning: $\delta \mathbf{m} = \mathbf{M}_{B}^{-1} \mathbf{x}$

 $\mathbf{M}_{L}^{-1}\mathbf{J}\mathbf{M}_{R}^{-1}\mathbf{x} = \mathbf{M}_{L}^{-1}\delta\mathbf{d}$

minimize $\lambda ||\mathbf{C}\delta\mathbf{m}||_1 + \frac{1}{2}||\mathbf{C}\delta\mathbf{m}||_2^2$

Preconditioning

Left-hand preconditioning (data space)

$$\mathbf{M}_L^{-1} = \mathbf{T}_d \mathbf{F} \qquad \mathbf{T}_d$$

Right-hand preconditioning (model space)

$$\mathbf{M}_R^{-1} = \mathbf{T}_m \mathbf{A} \qquad \mathbf{T}_n$$

- Γ_d : Topmute
- **F** : Fractional integration $\partial_{|t|}^{-1/2}$
- n: Topmute
- A : Depth scaling

Preconditioned SP-LSRTM

minimize $\lambda ||\mathbf{Cx}||_1 + \frac{1}{2} ||\mathbf{Cx}||_2^2$

Algorithm:

for $k = 0, 1, \cdots$ 1. 3. $\mathbf{x}_{k+1} = \mathbf{C}^* S_{\lambda}(\mathbf{C} \mathbf{z}_{k+1})$ end for 4.

subject to $|| \mathbf{M}_L^{-1} \mathbf{J} \mathbf{M}_R^{-1} \mathbf{x} - \mathbf{M}_L^{-1} \delta \mathbf{d} ||_2 \leq \sigma$ b

2. $\mathbf{z}_{k+1} = \mathbf{z}_k - t_k \hat{\mathbf{J}}_{r(k)}^* (\hat{\mathbf{J}}_{r(k)} \mathbf{x}_k - \mathbf{b}_{r(k)}) \cdot \max(0, 1 - \frac{\sigma}{||\hat{\mathbf{J}}_{r(k)} \mathbf{x}_k - \mathbf{b}_{r(k)}||_2})$

SP-LSRTM examples w/linearized data

Marmousi model

- 320 shots, 4 seconds recording time
- 30 Hz Ricker wavelet
- 25 m source spacing
- OBNs with 10 m receiver spacing

Inversion parameters

- 40 iterations
- 8 shots per iteration (1 data pass)
- linearized observed data (inversion crime)
- no data preprocessing

Velocity model

Linearized data

Problem:

- ocean bottom reflection
- backscattered energy in background model —> low frequency updates

Data-topmute

- mute data outside window of OB reflection
- apply mute at each iteration to observed + synthetic data

Linearized data

Muted linearized data

Result after 40 iterations with data topmute

Inverse crime

Non-inverse crime (observed data modeled with i-wave)

Influence of pre-conditioners on model error:

SP-LSRTM examples w/linearized data

Overthrust model

- 360 shots, 4 seconds recording time
- 30 Hz Ricker wavelet
- 25 m source spacing
- OBNs with 10 m receiver spacing

Inversion parameters

- 30 iterations
- 16 shots per iteration (1.3 data passes)
- linearized observed data (inversion crime)

Velocity model

Sparsity promoting LSRTM with linearized data:

- inverted image close to true image
- noticeable improvement compared to RTM
- How does our algorithm behave for non-linearized data?
 - Amplitudes of observed data and modeled linearized data can never match

Sparsity promoting LSRTM with linearized data:

- inverted image close to true image
- noticeable improvement compared to RTM
- How does our algorithm behave for non-linearized data?
 - Amplitudes of observed data and modeled linearized data can never match

Sparsity promoting LSRTM with linearized data:

- inverted image close to true image
- noticeable improvement compared to RTM

How does our algorithm behave for non-linearized data?

• Amplitudes of observed data and modeled linearized data can never match

Sparsity promoting LSRTM with linearized data:

- inverted image close to true image
- noticeable improvement compared to RTM
- How does our algorithm behave for non-linearized data? • Amplitudes of observed data and modeled linearized data can never match

What is the influence of having a correct Jacobian pair?

versus

SP-LSRTM algorithm w/o Jacobians:

for $k = 0, 1, \cdots$ 1. 2. Demigration: $\delta \mathbf{d}_k = \mathbf{M}_L^{-1} \mathbf{F}_{r(k)} (\mathbf{m})$ Migration of data resid 3. $\delta \mathbf{m}_k = (\mathbf{M}_R^{-1})^T \mathbf{F}_{r(k)}^T$ Vertical derivative: 4. $\delta \mathbf{m}_k = \mathbf{D}_z \delta \mathbf{m}_k$ 5. Update z: $\mathbf{z}_{k+1} = \mathbf{z}_k - t_k \cdot \delta \mathbf{m}_k$ 6. Update x: $\mathbf{x}_{k+1} = \mathbf{C}^* S_{\lambda} (\mathbf{C} \mathbf{z}_{k-1})$ 7. Bound projections: $(\mathbf{z}_{k+1}, \mathbf{x}_{k+1}) = \mathcal{P}_{Breg}(\mathbf{z}_{k+1}, \mathbf{x}_{k+1})$ 8. 9. end for

$$\mathbf{n}_{0} + \mathbf{M}_{R}^{-1} \mathbf{x}_{k}) - \mathbf{M}_{L}^{-1} \mathbf{b}_{r(k)}$$

dual:
$$\mathbf{M}_{k} \left((\mathbf{M}_{L}^{-1})^{T} \delta \mathbf{d}_{k} \right)$$

$$+1)$$

Projection operator

Projection operator for bound constraints w/ linearized Bregman:

$$(\tilde{\mathbf{z}}, \tilde{\mathbf{x}}) = \mathcal{P}_{Breg}(\mathbf{z}, \mathbf{x})$$

$$\tilde{\mathbf{x}} = \mathcal{P}_B(S_\lambda(\mathbf{x})) = \mathrm{median}(\mathbf{a}, S_\lambda(\mathbf{x}), \mathbf{b})$$

$$\tilde{\mathbf{z}}_{j} = \begin{cases} \mathbf{z}_{j} & \mathbf{a}_{j} \leq S_{\lambda}(\tilde{\mathbf{x}})_{j} \leq \mathbf{b}_{j} \\ \mathbf{b}_{j} + \lambda & S_{\lambda}(\tilde{\mathbf{x}})_{j} > \mathbf{b}_{j} \\ \mathbf{a}_{j} - \lambda & S_{\lambda}(\tilde{\mathbf{x}})_{j} < \mathbf{a}_{j} \end{cases}$$

a: lower bound **b**: upper bound

Background velocity model

Linearized data

Non-linearized data

Muted linearized data

Muted non-linearized data

LSRTM: J, J^T

Sparsity promoting LSRTM w/ correct and incorrect gradient:

- model error decays w/ incorrect gradient
- but: decay w/ correct gradient is much faster

Field data example

Sparsity promoting least squares RTM on BP Machar field data set:

- Machar oil field in North sea
- 330 shots w/ 8 seconds recording time
- maximum no. of 505 receivers (OBN)

Preprocessing by BP:

- source designature
- mute of direct wave
- multiple removal

Software:

- Matlab 2D code w/ pseudo-acoustic wave equation
- through data)
- on the fly source estimation (starting wavelet: 50 Hz Ricker)

• 10 iterations of linearized Bregman w/ 100 shots per iteration (3 passes

Image updates

Iteration 1: z variable

Image updates

Iteration 1: x variable

Observed data

51

Iteration 1: modeled data before source estimation

Observed data

52

Iteration 1: modeled data after source estimation

Observed data

Tuesday, October 25, 2016

53

Iteration 10: modeled data before source estimation

Observed data

54

Iteration 10: modeled data after source estimation

55

Observed data

Iteration 10: modeled data after source estimation

Final SP-LSRTM image

RTM image

RTM image w/ depth weighting

SP-LSRTM image

RTM image

SP-LSRTM image

Summary

Introduction of our time-domain LSRTM workflow w/ sparsity promotion: • Matlab implementation with (pseudo-)acoustic wave equation

- linearized Bregman method as solver
- various pre-conditioners to improve convergence
- source estimation

Influence of correct gradients for LSRTM: • incorrect gradients + non-linearized data worsen convergence • still significantly better convergence w/ correct gradient

Outlook

Future projects:

- Application to a sparse data set w/ aliasing
- 3D imaging with our new Julia/Devito workflow

w/ aliasing
evito workflow

Acknowledgements

support of the member organizations of the SINBAD Consortium.

This research was carried out as part of the SINBAD project with the

Acknowledgements

The authors wish to acknowledge the SENAI CIMATEC Supercomputing Center for Industrial Innovation, with support from BG Brasil, Shell, and the Brazilian Authority for Oil, Gas and Biofuels (ANP), for the provision and operation of computational facilities and the commitment to invest in Research & Development.

Acknowledgements

Many thanks to BP for providing us the Machar data set and for letting us show the results

