University of British Columbia

LIMe
SIMA

\longrightarrow

Abstract

20 ．

2

Abstract

\square

．
\square

[^0]

\qquad
都

 \square －\author{
P
 \author{

Time－domain least－squares RTM with sparsity promotion on field data

 Philipp A．Witte and Felix J．Herman

}
}
\square

．
－（

－ ．

號

（
\qquad
\square
\qquad

Motivation

Our first steps with sparsity promoting LSRTM in the time-domain:

- develop robust workflow with little user interaction
- experiments with increasing difficulty

Motivation

Solve sparsity promoting LSRTM w/ linearized Bregman

$$
\begin{aligned}
& \operatorname{minimize} \quad \lambda\|\mathbf{C} \delta \mathbf{m}\|_{1}+\frac{1}{2}\|\mathbf{C} \delta \mathbf{m}\|_{2}^{2} \\
& \text { subject to }\|\mathbf{J} \delta \mathbf{m}-\delta \mathbf{d}\|_{2} \leq \sigma
\end{aligned}
$$

Motivation

Solve sparsity promoting LSRTM w/ linearized Bregman

$$
\begin{aligned}
& \operatorname{minimize} \\
& \text { subject to }\|\mathbf{J} \delta \mathbf{C} \delta \mathbf{m}-\delta \mathbf{m}\|_{1}+\frac{1}{2}\|\mathbf{C} \delta \mathbf{m}\|_{2}^{2} \\
& \leq \sigma
\end{aligned}
$$

Sparsity promoting LSRTM

Problem formulation:

$$
\begin{aligned}
& \operatorname{minimize} \quad \lambda\|\mathbf{C} \delta \mathbf{m}\|_{1}+\frac{1}{2}\|\mathbf{C} \delta \mathbf{m}\|_{2}^{2} \\
& \text { subject to }\|\mathbf{J} \delta \mathbf{m}-\delta \mathbf{d}\|_{2} \leq \sigma
\end{aligned}
$$

$\delta \mathbf{m}$: model perturbation/image
$\delta \mathbf{d}$: linearized data (single scattered data)
J: linearized forward modeling operator (Jacobian)
C: curvelet transform

Sparsity promoting LSRTM

Problem formulation:

$$
\begin{aligned}
& \text { minimize } \quad \lambda\|\mathbf{C} \delta \mathbf{m}\|_{1}+\frac{1}{2}\|\mathbf{C} \delta \mathbf{m}\|_{2}^{2} \\
& \text { subject to }\|\mathbf{J} \delta \mathbf{m}-\delta \mathbf{d}\|_{2} \leq \sigma
\end{aligned}
$$

Left- and right-hand preconditioning:

$$
\begin{aligned}
& \delta \mathbf{m}=\mathbf{M}_{R}^{-1} \mathbf{x} \\
& \mathbf{M}_{L}^{-1} \mathbf{J M}_{R}^{-1} \mathbf{x}=\mathbf{M}_{L}^{-1} \delta \mathbf{d}
\end{aligned}
$$

Preconditioning

Left-hand preconditioning (data space)

$$
\begin{aligned}
\mathbf{M}_{L}^{-1}=\mathbf{T}_{d} \mathbf{F} & \mathbf{T}_{d}: \text { Topmute } \\
& \mathbf{F}: \text { Fractional integration } \partial_{|t|}^{-1 / 2}
\end{aligned}
$$

Right-hand preconditioning (model space)

$$
\begin{aligned}
\mathbf{M}_{R}^{-1}=\mathbf{T}_{m} \mathbf{A} \quad & \mathbf{T}_{m}: \text { Topmute } \\
& \mathbf{A}: \text { Depth scaling }
\end{aligned}
$$

Preconditioned SP-LSRTM

$\operatorname{minimize} \quad \lambda\|\mathbf{C x}\|_{1}+\frac{1}{2}\|\mathbf{C x}\|_{2}^{2}$
subject to $\|\underbrace{\mathbf{M}_{L}^{-1} \mathbf{J M}_{R}^{-1}}_{\hat{\mathbf{J}}} \mathbf{x}-\underbrace{\mathbf{M}_{L}^{-1} \delta \mathbf{d}}_{\mathbf{b}}\|_{2} \leq \sigma$

Algorithm:

1. for $k=0,1, \cdots$
2. $\quad \mathbf{z}_{k+1}=\mathbf{z}_{k}-t_{k} \hat{\mathbf{J}}_{r(k)}^{*}\left(\hat{\mathbf{J}}_{r(k)} \mathbf{x}_{k}-\mathbf{b}_{r(k)}\right) \cdot \max \left(0,1-\frac{\sigma}{\left\|\hat{\mathbf{J}}_{r(k)} \mathbf{x}_{k}-\mathbf{b}_{r(k)}\right\|_{2}}\right)$
3. $\quad \mathbf{x}_{k+1}=\mathbf{C}^{*} S_{\lambda}\left(\mathbf{C z}_{k+1}\right)$
4. end for

SP-LSRTM examples w/ linearized data

Marmousi model

- 320 shots, 4 seconds recording time
- 30 Hz Ricker wavelet
- 25 m source spacing
- OBNs with 10 m receiver spacing

Inversion parameters

- 40 iterations
- 8 shots per iteration (1 data pass)
- linearized observed data (inversion crime)
- no data preprocessing

SP-LSRTM: Marmousi

SP-LSRTM: Marmousi

SP-LSRTM: Marmousi

SP-LSRTM: Marmousi

SP-LSRTM: Marmousi

Problem:

- ocean bottom reflection
- backscattered energy in background model \longrightarrow low frequency updates

Data-topmute

- mute data outside window of OB reflection
- apply mute at each iteration to observed + synthetic data

SP-LSRTM: Marmousi

SP-LSRTM: Marmousi

Result after 40 iterations with data topmute

SP-LSRTM: Marmousi

SP-LSRTM: Marmousi

SP-LSRTM: Marmousi

Inverse crime

SP-LSRTM: Marmousi

Non-inverse crime (observed data modeled with i-wave)

SP-LSRTM: Marmousi

SP-LSRTM: Marmousi

Influence of pre-conditioners on model error:

SP-LSRTM examples w/ linearized data

Overthrust model

- 360 shots, 4 seconds recording time
- 30 Hz Ricker wavelet
- 25 m source spacing
- OBNs with 10 m receiver spacing

Inversion parameters

- 30 iterations
- 16 shots per iteration (1.3 data passes)
- linearized observed data (inversion crime)

SP-LSRTM: Overthrust

SP-LSRTM with non-linearized data

Sparsity promoting LSRTM with linearized data:

- inverted image close to true image
- noticeable improvement compared to RTM

How does our algorithm behave for non-linearized data?

- Amplitudes of observed data and modeled linearized data can never match

SP-LSRTM with non-linearized data

Sparsity promoting LSRTM with linearized data:

- inverted image close to true image
- noticeable improvement compared to RTM

How does our algorithm behave for non-linearized data?

- Amplitudes of observed data and modeled linearized data can never match

SP-LSRTM with non-linearized data

Sparsity promoting LSRTM with linearized data:

- inverted image close to true image
- noticeable improvement compared to RTM

How does our algorithm behave for non-linearized data?

- Amplitudes of observed data and modeled linearized data can never match

SP-LSRTM with non-linearized data

Sparsity promoting LSRTM with linearized data:

- inverted image close to true image
- noticeable improvement compared to RTM

How does our algorithm behave for non-linearized data?

- Amplitudes of observed data and modeled linearized data can never match

What is the influence of having a correct Jacobian pair?

SP-LSRTM algorithm w/o Jacobians:

1. for $k=0,1, \cdots$
2. Demigration:

$$
\delta \mathbf{d}_{k}=\mathbf{M}_{L}^{-1} \mathbf{F}_{r(k)}\left(\mathbf{m}_{0}+\mathbf{M}_{R}^{-1} \mathbf{x}_{k}\right)-\mathbf{M}_{L}^{-1} \mathbf{b}_{r(k)}
$$

Migration of data residual:

$$
\delta \mathbf{m}_{k}=\left(\mathbf{M}_{R}^{-1}\right)^{T} \mathbf{F}_{r(k)}^{T}\left(\left(\mathbf{M}_{L}^{-1}\right)^{T} \delta \mathbf{d}_{k}\right)
$$

Vertical derivative:

$$
\delta \mathbf{m}_{k}=\mathbf{D}_{z} \delta \mathbf{m}_{k}
$$

5.
6.

Update z:

$$
\mathbf{z}_{k+1}=\mathbf{z}_{k}-t_{k} \cdot \delta \mathbf{m}_{k}
$$

Update x:

$$
\mathbf{x}_{k+1}=\mathbf{C}^{*} S_{\lambda}\left(\mathbf{C} \mathbf{z}_{k+1}\right)
$$

Bound projections:
8. $\quad\left(\mathbf{z}_{k+1}, \mathbf{x}_{k+1}\right)=\mathcal{P}_{\text {Breg }}\left(\mathbf{z}_{k+1}, \mathbf{x}_{k+1}\right)$
9. end for

Projection operator

Projection operator for bound constraints w/ linearized Bregman:

$$
(\tilde{\mathbf{z}}, \tilde{\mathbf{x}})=\mathcal{P}_{\text {Breg }}(\mathbf{z}, \mathbf{x})
$$

$$
\tilde{\mathbf{x}}=\mathcal{P}_{B}\left(S_{\lambda}(\mathbf{x})\right)=\operatorname{median}\left(\mathbf{a}, S_{\lambda}(\mathbf{x}), \mathbf{b}\right)
$$

a: lower bound
b: upper bound

$$
\tilde{\mathbf{z}}_{j}= \begin{cases}\mathbf{z}_{j} & \mathbf{a}_{j} \leq S_{\lambda}(\tilde{\mathbf{x}})_{j} \leq \mathbf{b}_{j} \\ \mathbf{b}_{j}+\lambda & S_{\lambda}(\tilde{\mathbf{x}})_{j}>\mathbf{b}_{j} \\ \mathbf{a}_{j}-\lambda & S_{\lambda}(\tilde{\mathbf{x}})_{j}<\mathbf{a}_{j}\end{cases}
$$

Influence of correct adjoints

Influence of correct adjoints

Influence of correct adjoints

Influence of correct adjoints

Influence of correct adjoints

Influence of correct adjoints

Influence of correct adjoints

Influence of correct adjoints

Sparsity promoting LSRTM w/ correct and incorrect gradient:

- model error decays w/ incorrect gradient
- but: decay $w /$ correct gradient is much faster

Field data example

Sparsity promoting least squares RTM on BP Machar field data set:

- Machar oil field in North sea
- 330 shots w/ 8 seconds recording time
- maximum no. of 505 receivers (OBN)

Preprocessing by BP:

- source designature
- mute of direct wave
- multiple removal

Software:

- Matlab 2D code w/ pseudo-acoustic wave equation
- 10 iterations of linearized Bregman w/ 100 shots per iteration (3 passes through data)
- on the fly source estimation (starting wavelet: 50 Hz Ricker)

Machar model

Background velocity model

Machar model

Epsilon model

Machar model

Delta model

Machar model

Image updates

Iteration 1: z variable

Image updates

Iteration 1: x variable

Observed and modeled shot records

Observed data

Iteration 1: modeled data before source estimation

Observed and modeled shot records

Observed data

Iteration 1: modeled data after source estimation

Observed and modeled shot records

Observed data

Iteration 10: modeled data before source estimation

Observed and modeled shot records

Observed data

Iteration 10: modeled data after source estimation

Observed and modeled shot records

Observed data

Observed and modeled shot records

Iteration 10: modeled data after source estimation

Machar results

Final SP-LSRTM image

Machar results

RTM image

Machar results

RTM image w/ depth weighting

Machar results

SP-LSRTM image

Machar results

RTM image

Machar results

SP-LSRTM image

Summary

Introduction of our time-domain LSRTM workflow w/ sparsity promotion:

- Matlab implementation with (pseudo-)acoustic wave equation
- linearized Bregman method as solver
- various pre-conditioners to improve convergence
- source estimation

Influence of correct gradients for LSRTM:

- incorrect gradients + non-linearized data worsen convergence
- still significantly better convergence w/ correct gradient

Future projects:

- Application to a sparse data set w/ aliasing
- 3D imaging with our new Julia/Devito workflow

Acknowledgements

This research was carried out as part of the SINBAD project with the support of the member organizations of the SINBAD Consortium.

Acknowledgements

The authors wish to acknowledge the SENAI CIMATEC Supercomputing Center for Industrial Innovation, with support from BG Brasil, Shell, and the Brazilian Authority for Oil, Gas and Biofuels (ANP), for the provision and operation of computational facilities and the commitment to invest in Research \& Development.

Acknowledgements

Many thanks to BP for providing us the Machar data set and for letting us show the results

[^0]:

