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Motivation

Our	first	steps	with	sparsity	promoting	LSRTM	in	the	time-domain:
• develop	robust	workflow	with	little	user	interaction
• experiments	with	increasing	difficulty
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Synthetic	data	set:	linearized	data,	(non-)	inversion	crime

Synthetic	data	set:	non-linearized	data

Field	data	set:	Machar	2D
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LSRTM
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Motivation
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Solve	sparsity	promoting	LSRTM	w/	linearized	Bregman

minimize �||C�m||1 +
1

2

||C�m||22
subject to || J�m� �d||2  �

Basic	implementation	of	SP-LSRTM
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Motivation

4

Solve	sparsity	promoting	LSRTM	w/	linearized	Bregman

minimize �||C�m||1 +
1

2

||C�m||22
subject to || J�m� �d||2  �

Pre-conditioned	SP-LSRTM	w/							auto-tuning

LSRTM
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Sparsity promoting LSRTM

Problem	formulation:
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minimize �||C�m||1 +
1

2

||C�m||22
subject to || J�m� �d||2  �

�d: linearized data (single scattered data)

J: linearized forward modeling operator (Jacobian)

C: curvelet transform

�m: model perturbation/image
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Sparsity promoting LSRTM

Problem	formulation:

Left-	and	right-hand	preconditioning:

6

minimize �||C�m||1 +
1

2

||C�m||22
subject to || J�m� �d||2  �

�m = M

�1
R x

M

�1
L JM

�1
R x = M

�1
L �d
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Preconditioning

Left-hand	preconditioning	(data	space)

Right-hand	preconditioning	(model	space)

7

(Herrmann,	Brown,	Erlangga	and	Moghaddam	(2009):	Curvelet-based	migration	preconditioning	and	scaling,	Geophysics,	Vol.	74,	No.	4)

M�1
L = TdF Td : Topmute

F : Fractional integration @�1/2
|t|

M�1
R = TmA Tm : Topmute

A : Depth scaling
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Preconditioned SP-LSRTM

8

Algorithm:

minimize �||Cx||1 +
1

2

||Cx||22

subject to || M�1
L JM

�1
R| {z }

Ĵ

x�M

�1
L �d

| {z }
b

||2  �

1. for k = 0, 1, · · ·
2. zk+1 = zk�tkˆJ⇤

r(k)(
ˆ

Jr(k)xk�br(k))·max(0, 1� �
||Ĵr(k)xk�br(k)||2

)

3. xk+1 = C

⇤S�(Czk+1)

4. end for
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SP-LSRTM examples w/ linearized data

Marmousi	model
• 320	shots,	4	seconds	recording	time
• 30	Hz	Ricker	wavelet
• 25	m	source	spacing
• OBNs	with	10	m	receiver	spacing

Inversion	parameters
• 40	iterations
• 8	shots	per	iteration	(1	data	pass)
• linearized	observed	data	(inversion	crime)
• no	data	preprocessing

9
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SP-LSRTM: Marmousi
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Velocity model
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SP-LSRTM: Marmousi
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Background velocity model
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SP-LSRTM: Marmousi
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True image
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SP-LSRTM: Marmousi
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LSRTM
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SP-LSRTM: Marmousi

14 Linearized data
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Problem:
• ocean	bottom	reflection
• backscattered	energy	in	background	

model														low	frequency	updates

Data-topmute
• mute	data	outside	window	of	OB	

reflection
• apply	mute	at	each	iteration	to	observed	

+	synthetic	data
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SP-LSRTM: Marmousi

15 Linearized data
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Muted linearized data

50 100 150 200 250 300

Receiver No.

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
 [

s]

Tuesday, October 25, 2016



SP-LSRTM: Marmousi
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LSRTM
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Result	after	40	iterations	with	data	topmute
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SP-LSRTM: Marmousi
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True image
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SP-LSRTM: Marmousi
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RTM
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SP-LSRTM: Marmousi
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LSRTM
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Inverse	crime
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SP-LSRTM: Marmousi
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Non-inverse	crime	(observed	data	modeled	with	i-wave)
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SP-LSRTM: Marmousi

21

5 10 15 20 25 30 35 40

Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
la

ti
v
e
 r

e
s
id

u
a

l

Relative data residual

5 10 15 20 25 30 35 40

Iteration

0.994

0.995

0.996

0.997

0.998

0.999

1

R
e
la

ti
v
e

 e
rr

o
r

Relative model error

Tuesday, October 25, 2016



SP-LSRTM: Marmousi
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SP-LSRTM examples w/ linearized data

Overthrust	model
• 360	shots,	4	seconds	recording	time
• 30	Hz	Ricker	wavelet
• 25	m	source	spacing
• OBNs	with	10	m	receiver	spacing

Inversion	parameters
• 30	iterations
• 16	shots	per	iteration	(1.3	data	passes)
• linearized	observed	data	(inversion	crime)

23
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SP-LSRTM: Overthrust
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Velocity model
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SP-LSRTM: Overthrust
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Background velocity model
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SP-LSRTM: Overthrust
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True image
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SP-LSRTM: Overthrust
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RTM
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SP-LSRTM: Overthrust
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LSRTM
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SP-LSRTM: Overthrust
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SP-LSRTM with non-linearized data

Sparsity	promoting	LSRTM	with	linearized	data:
• inverted	image	close	to	true	image
• noticeable	improvement	compared	to	RTM

How	does	our	algorithm	behave	for	non-linearized	data?
• Amplitudes	of	observed	data	and		modeled	linearized	data	can	never	match

30
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SP-LSRTM with non-linearized data

Sparsity	promoting	LSRTM	with	linearized	data:
• inverted	image	close	to	true	image
• noticeable	improvement	compared	to	RTM

How	does	our	algorithm	behave	for	non-linearized	data?
• Amplitudes	of	observed	data	and		modeled	linearized	data	can	never	match

31
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SP-LSRTM with non-linearized data

Sparsity	promoting	LSRTM	with	linearized	data:
• inverted	image	close	to	true	image
• noticeable	improvement	compared	to	RTM

How	does	our	algorithm	behave	for	non-linearized	data?
• Amplitudes	of	observed	data	and		modeled	linearized	data	can	never	match
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SP-LSRTM with non-linearized data

Sparsity	promoting	LSRTM	with	linearized	data:
• inverted	image	close	to	true	image
• noticeable	improvement	compared	to	RTM

How	does	our	algorithm	behave	for	non-linearized	data?
• Amplitudes	of	observed	data	and		modeled	linearized	data	can	never	match

What	is	the	influence	of	having	a	correct	Jacobian	pair?

33

versus
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SP-LSRTM algorithm w/o Jacobians:

34

1. for k = 0, 1, · · ·
2. Demigration:

�dk = M

�1
L Fr(k)(m0 +M

�1
R xk)�M

�1
L br(k)

3. Migration of data residual:

�mk = (M

�1
R )

T
F

T
r(k)

⇣
(M

�1
L )

T �dk

⌘

4. Vertical derivative:

�mk = Dz�mk

5. Update z:

zk+1 = zk � tk · �mk

6. Update x:

xk+1 = C

⇤S�(Czk+1)

7. Bound projections:

8. (zk+1,xk+1) = PBreg(zk+1,xk+1)

9. end for
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Projection operator

Projection	operator	for	bound	constraints	w/	linearized	Bregman:

35

(z̃, x̃) = PBreg(z,x)

n
z̃j =

x̃ = PB

⇣
S�(x)

⌘
= median

⇣
a, S�(x),b

⌘

bj + �

aj  S�(x̃)j  bjzj

S�(x̃)j < ajaj � �

a: lower bound
b: upper bound

S�(x̃)j > bj
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Influence of correct adjoints
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Background velocity model
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Influence of correct adjoints

37 Linearized data
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Non-linearized data
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Influence of correct adjoints

38 Muted linearized data
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Muted non-linearized data
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Influence of correct adjoints
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Influence of correct adjoints
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LSRTM: J, JT
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Influence of correct adjoints
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Influence of correct adjoints
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Influence of correct adjoints
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Sparsity	promoting	LSRTM	w/	correct	and	incorrect	gradient:
• model	error	decays	w/	incorrect	gradient
• but:	decay	w/	correct	gradient	is	much	faster
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Field data example

Sparsity	promoting	least	squares	RTM	on	BP	Machar	field	data	set:
• Machar	oil	field	in	North	sea
• 330	shots	w/	8	seconds	recording	time
• maximum	no.	of	505	receivers	(OBN)

Preprocessing	by	BP:
• source	designature
• mute	of	direct	wave
• multiple	removal

Software:	
• Matlab	2D	code	w/	pseudo-acoustic	wave	equation
• 10	iterations	of	linearized	Bregman	w/	100	shots	per	iteration	(3	passes	

through	data)
• on	the	fly	source	estimation	(starting	wavelet:	50	Hz	Ricker)

44
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Machar model
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Background velocity model
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Machar model
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Epsilon model
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Machar model
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Delta model
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Machar model
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Tilt angle

Lateral Position [km]
0 2 4 6 8 10 12 14 16 18

D
ep

th
 [k

m
]

0

1

2

3

4

5

6

Th
et

a 
[D

eg
re

e]

-25

-20

-15

-10

-5

0

5

10

15

20

Tuesday, October 25, 2016



Image updates
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Iteration 1: z variable
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Iteration	1:	z	variable
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Image updates
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Iteration 1: x variable
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Iteration	1:	x	variable
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Observed and modeled shot records

51 Receiver No.
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Observed and modeled shot records

52 Receiver No.
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Observed and modeled shot records
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Observed and modeled shot records
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Observed and modeled shot records
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Observed and modeled shot records
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Machar results
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Machar results
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Machar results
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Machar results
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Figure	explaination

Machar results
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Machar results
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Summary

Introduction	of	our	time-domain	LSRTM	workflow	w/	sparsity	promotion:
• Matlab	implementation	with	(pseudo-)acoustic	wave	equation
• linearized	Bregman	method	as	solver
• various	pre-conditioners	to	improve	convergence
• source	estimation

Influence	of	correct	gradients	for	LSRTM:
• incorrect	gradients	+	non-linearized	data	worsen	convergence
• still	significantly	better	convergence	w/	correct	gradient
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Outlook

Future	projects:
• Application	to	a	sparse	data	set	w/	aliasing
• 3D	imaging	with	our	new	Julia/Devito	workflow
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