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Motivation

Modeling in anisotropic acoustic media:
e pseudo-acoustic wave equation
® pure p-wave equation

Pure p-wave equation:

derived from dispersion relation

captures kinematics correctly (in theory), but not dynamics
contains square root of differential operator
approximation of square root == phase velocity errors

Goal: Reduce phase velocity errors + develop fast modeling scheme
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Background

Pseudo-acoustic dispersion relation:

—wt = = [0, (R 4 ) + 0 k2 |w” — ol (0], — v, ) (2 + B2

Various versions as coupled 2nd order equations (Du et al., 2008; Fowler, 2009; Hestholm et al., 2010)
e Kinematics exact, differ dynamically
® requires € > ¢ and contains shear wave artifacts

Alternatively, factorize into pure P- and pure S-wave part

w2 1

=+ 5 {(1 +2¢) (k2 + k2) + kz}

2
vpz

1 P 517 2 | 12Y]
_ §\/[(1 +2¢) (k2 + k2) + k2| +8(5 — ) (k3 + k2)k2
|
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Scheme for the pure P-wave dispersion relation

1st order Taylor expansion of square root
w2 ] 2(6 — €) (k2 + k2
(

- [(1 +2¢) (k2 + k2) + &2
pz

Cannot be turned into a modeling scheme, so simplify further

2 . A 2(6 — €)(k2 + k2)k2
N — [(1 + 2€) (k2 + k;) + kg] 2 7

2
Upz

This is the most popular pure P-wave equation and used by many authors
(Etgen and Brandsberg-Dahl, 2009; Crawley et al., 2010; Chu et al., 2011; Zhan et al., 2013; etc.)
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Scheme for the pure P-wave dispersion relation

Improved versions:

1st order Taylor approximation + geometric series  (Chuetal,, 2013)

2 0 o o1 20— (k24 Rk Y B2 k2

2
?Jpz m=0

2nd order Taylor (with truncation of higher order €,0 terms)  (Pestanaetal., 2012)

2 2(e — 0) (k2 + k2)k* (k% + k2 + k?
- B ) R L ) B

(VTI only and €, 0 constant in denominator)
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Scheme for the pure P-wave dispersion relation

Full 2nd order Taylor expansion (just for comparison, cannot be implemented)

2

2 ) A A 2(5 — €)(k2 4 k2)k? [2(5_6)(%+i€2)f€2}
oz i) + 2] - oI ERE SR
02, (L2008 +R) TR [(1 4 20)(R2 +42) + &2

Other works

® Padé approximations of square root (Schleicher and Costa, 2015)
e |ow rank approximations of extrapolation operator (Songetal., 2013; Fomel et al., 2013)
e Optimized low rank approximations (Wu and Alkhalifah, 2014)
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Phase velocity error minimizing scheme

Instead of Taylor expansion, expand as generic polynomial series

R R R 2
2 - A ((ki +k7) — kg)
~ a1k® + as ((ki + k) — kg) + asg %

((2+82) —#2)’
(k2)?

I

| CL4

V2
Dz

=P Determine (spatially dependent) coefficients a;(x,y, 2) such that the
equation has a minimal relative phase velocity error
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Phase velocity error minimizing scheme

A

Define: k() =cos’a  and k2(a) + 1%3(04) — 12(a) = sin® a

T

.
True phase velocity as function of phase angle a € |0, 5] and €, = const.

02 (@) = % (14 20)k2 () + k()| + %\/ (14 26)k2(a) + K2(@) "1 86— k2(a)k2(a)

Approximate phase velocity

N A n ~ 2 N N 3
V2 pron (0,01, 03, 03,03) = a1 + az | K2 (@) = K2(a) | + a3 | K2(@) = K2(a)| " + aa [RE(a) — k2(0)|




Phase velocity error minimizing scheme

Objective function: relative phase velocity error

V2 o.a1.09,03. 0
E(a/]_) &2, CLS, CL4) — \/ aApproT (/027 1Ea§7 5 4) ]_
true

Approximate \/(z) — 1~ —(xz — 1) and solve linear LS problem

1
2

%

2

. 1 va,pprog; (Oé, ai,az2,ds, 0,4)

a; = argmin — 5 1)]||da
a ; 3 2 'vtrue(cy)
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Phase velocity error minimizing scheme

Coefficients are function of Thomsen parameters:
e sofar e = const., § = const. foronesetof a; (€, )
e requires recalculation of a,;(€,d) forevery new €, combination

Assumption: the coefficients a;(e,d) vary smoothly
e plot coefficients for arange €, 0 values

11

Wednesday, October 26, 2016




Phase slowness error minimizing scheme
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Interpolate a (€, d) using Legendre polynomials up to order n

a;(€,6) => > pirLi(e)Li(0)

k=1 [=1
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Phase velocity error minimizing scheme

Replace a, (€, d) in the phase velocity expression

Vororon (0 €0, Djk1) =p1kiLi(€) Li(8)k* + powy Li(€) Ly (0) []%3(04) — k2() |+

powt L€ La(8) [ R (0) — K2(0)]” + para La(e) La(8) [ R () —

and solve
€Cmax 5maa: %
. 1 /02 o, €,0,D;
pjkl = argmin / / / ( appr;x( Piki) 1) do do de
Pjkl s 3 2 vtrue(a7 €, 5)
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Phase velocity error analysis

Calculate coefficients of optimized scheme:

Define range of Thomson parameters and number of samples
E.g. 20 valuesof € € [0,0.5] and ¢ € [—0.1,0.4]

Define range and number of samples of phase angle

E.g. 20 values of « € [0, 7 /2]

Sampling can be uniform or from any type of other distribution

Set up linear system and solve directly

Size of linear system is small
e |egendre polynomials up to order 3 === 64 unknowns DjkI
e 20valuesof each €,0, @ === 920 observations

Phase velocity error analysis
e Plot relative error as function of phase angle for arbitrary combination of ¢, 0
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Phase velocity error analysis

Phase errors of different schemes

1. Optimized scheme

w2

((2+82) —#2)’
k2

o ~ ark? + aQ((l%i +k2) — kﬁ) + as

2. 1st order Taylor for M=0,1,2

w2 e a1 20— (k2 + 2R M B2+ k2
2 ~ —[(1+26)(k§+k5)+k§} o 2N - 26 o Y
o m=0

3. 2nd order Taylor

2

2

w |

o ol 2(6 — €) (k2 + k2)k? 2(8 — €) (k3 + kj k2
%—[(1—|—26)(k§—|—]€5)—|—k3} O )k 4 &y )% [ - } 3

o2, A+ 2R+ R R Ty a2+ k2) + 2
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Phase velocity error analysis

Relative phase error [%)]
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Phase velocity error analysis
e = 0.4, = —0.05

Relative phase error [%)]
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Phase velocity error analysis
e =1.22,0 = —0.388 (Biotite Crystal)

— Optimized scheme
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Phase velocity error analysis
e =0.1,0 = —0.1
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Phase velocity error analysis
e =0.1,0 = —0.1
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Phase velocity error analysis
e =0.1,0 = —0.1
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Absolute maximum error over a range of Thomsen parameters: E(e,d) = max (\E(e, 0, a)\)
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Forward modeling scheme VTI

VTl medium: direct translation from dispersion relation to
modeling scheme

1 O*P
vs, Ot

P: wavefield in wavenumber domain

—p1r L (€) L (5)f_1 kQP} P: wavefield in spatial domain

_ —1. - .
pglek(e)Ll((S)f_l (ki k2 _ k2)P} JF i inverse Fourier transform

S(t): source function

+p3lek(€)Lz(5).7:1{ (ki + Ky — k)7 P}
+p4ksz(€)Lz(5)}"1{
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Forward modeling scheme VTI

VTl medium after 6.5 seconds (¢=0.4, /=-0.05)
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Forward modeling scheme VTI

VTl medium after 6.5 seconds (¢=0.4, /=-0.05)
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Forward modeling scheme VTI

VTl medium after 6.5 seconds (¢=0.4, /=-0.05)
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Forward modeling scheme VTI

VTl medium after 6.5 seconds (¢=0.4, /=-0.05)
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Forward modeling scheme TTI

TTI medium:
* replace k., by rotated wavenumber vectors, e.g.

A

ky = kg costcoso + k, cosbsing — k,sind

In the optimized scheme, this would increase the number of terms (FFTs)
enormously

e but: special structure of equation allows an efficient modeling scheme
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Forward modeling scheme TTlI

Recursive computations of terms:

U1 = {F_lkZ}P

U = {61-7:_116:% + 02-7:_1162 + cs F kS c1 = 1 — 2sin” @ cos” ¢ etc.

tesF Yhoghy + s F Yhgks + CGF_lkykz}P

k2 k2 k2
Uz = {Cl.ll—'._lk—;j +C2.F_1k—g —|—Cg./~"_1k—§
ForF IS e P o F T L Fug

Uyg — ...

Followed by a weighted summing:

1 0°P
vZ, Ot?

=p1lek(6)Ll(5)U1 -+ pglek(E)Ll(é)UQ + p3ki L (6)[41(5)’&3 - p4lek(€)Ll(5)u4 T S(t)
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Forward modeling scheme TTI

Overview of computational cost

Method VTI (2D) VTI (3D) TTI (2D) TTI (3D)
| st order Taylor (standard pure P-wave eq.) 4 4 9 22
| st order Taylor + geometric series (M=1) 4 4 | | 35
| st order Taylor + geometric series (M=2) 5 5 13 52
Optimized pure P-wave equation 5 5 | 3 22
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Forward modeling scheme TTlI

VTl medium after 3 seconds (¢=0.4, §=-0.05) TTI medium after 3 seconds (¢=0.4, /=-0.05 6=26°)
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Forward modeling scheme TTlI

3D modeling example:

e 500 cube
e 1smodeling time
v, =2 km/s
e =0.4
6 = —0.1 <
f = 25° 3
® = 36°
e Modeling time:
48 hours

y-Direction [km]
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Hess VI

Modeling example
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Modeling example

Snapshot after 1 second
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Modeling example

Shot records
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Conclusions

Optimized pure P-wave equation:
e optimized to have minimal phase velocity error
e optimal over defined range of phase angles and Thomson parameters

e up to an order of magnitude more accurate than other pure P-wave
equations

Forward modeling scheme:
e Similar computational cost for 2/3D VTI
e Same computational cost as standard pure P-wave equation for 3D TTI
e reference code (slow but high accuracy, no dispersion) for Devito
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