
University	of	British	Columbia
SLIM

Philipp	A.	Witte	and	Felix	J.	Herrmann

A large-scale time-domain modeling and inversion 
workflow in Julia

Wednesday, October 26, 2016

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).
Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.



Why Julia?

2

• interpreted	languages:
‣ Matlab

‣ Python

‣ Perl

‣ Ruby	etc.

• easy	to	write	Code	(no	type	
declarations)

• compiled	languages:
‣ C,	C++,	C#

‣ Fortran

‣ Java,	etc.

• types	declared	at	compilation	time
• higher	performance

dynamically	typed	languages statically	typed	languages

Wednesday, October 26, 2016



Why Julia?

3

• interpreted	languages:
‣ Matlab

‣ Python

‣ Perl

‣ Ruby	etc.

• easy	to	write	Code	(no	type	
declarations)

• compiled	languages:
‣ C,	C++,	C#

‣ Fortran

‣ Java	etc.

• types	declared	at	compilation	time
• higher	performance

dynamically	typed	languages statically	typed	languages

Scientists Programmers

Wednesday, October 26, 2016



Why Julia?

4

• interpreted	languages:
‣ Matlab

‣ Python

‣ Perl

‣ Ruby	etc.

• easy	to	write	Code	(no	type	
declarations)

• compiled	languages:
‣ C,	C++,	C#

‣ Fortran

‣ Java	etc.

• types	declared	at	compilation	time
• higher	performance

dynamically	typed	languages statically	typed	languages

Julia

Wednesday, October 26, 2016



Why Julia?

Main	features	of	Julia:
• flexible	dynamic	language
• optional	typing	and	just-in-time	compilation	(JIT)
• multiple	dispatch	(function	overloading)
• performance	in	range	of	statically	typed	languages	like	C
• easy	to	write	parallel	programs	(parallel	loops,	shared	arrays)
• easy	interaction	with	other	languages
• free	and	open	source
• large	community	with	people	from	scientific	computing	and	applied	maths
• many	packages	for	linear	algebra,	optimization	etc.

5
Wednesday, October 26, 2016



Why Julia?

6
(http://julialang.org/)

Wednesday, October 26, 2016

http://julialang.org
http://julialang.org


Why Julia?

SLIM’s	first	steps	towards	Julia:
• workflow	for	wave-equation	based	inversion	(LSRTM,	FWI)
• Devito	toolbox	as	wave-equation	solver
• higher	level	abstractions	for	optimization
• linear	operators,	function-handles	for	black-box	optimization	packages

7

coding	close	to	mathematical	formulations	+	high	performance	

Wednesday, October 26, 2016



Recap of Devito

Optimized	FD	schemes	from	symbolic	PDEs
Automated	code	generation	and	Just-In-Time	(JIT)	compilation	from	
symbolic	Python	expressions
Code	design

• Level	1:	Set	up	problem	geometry																																																																																		
(->	PyObject	for	forward,	adjoint,	born	modeling)

• Level	2:	Once	a	specific	operation	is	called	(e.g.	forward	solve),	set	up	
symbolic	PDE	and	generate	FD	scheme

• Level	3:	Generate	C	code	with	optimized	FD	scheme	and	compile	it
• Level	4:	Solve	wave	equation

8
Wednesday, October 26, 2016



Recap of Devito

Optimized	FD	schemes	from	symbolic	PDEs
Automated	code	generation	and	Just-In-Time	(JIT)	compilation	from	
symbolic	Python	expressions
Code	design

• Level	1:	Set	up	problem	geometry																																																																																		
(->	PyObject	for	forward,	adjoint,	born	modeling)

• Level	2:	Once	a	specific	operation	is	called	(e.g.	forward	solve),	set	up	
symbolic	PDE	and	generate	FD	scheme

• Level	3:	Generate	C	code	with	optimized	FD	scheme	and	compile	it
• Level	4:	Solve	wave	equation

9

Python

C

Wednesday, October 26, 2016



Recap of Devito

Optimized	FD	schemes	from	symbolic	PDEs
Automated	code	generation	and	Just-In-Time	(JIT)	compilation	from	
symbolic	Python	expressions
Code	design

• Level	0:	Spot	operators	(F,	J),	objective	functions,	parallelization
• Level	1:	Set	up	problem	geometry																																																																																		

(->	PyObject	for	forward,	adjoint,	born	modeling)
• Level	2:	Once	a	specific	operation	is	called	(e.g.	forward	solve),	set	up	

symbolic	PDE	and	generate	FD	scheme
• Level	3:	Generate	C	code	with	optimized	FD	scheme	and	compile	it
• Level	4:	Solve	wave	equation

10

C

Julia

Wednesday, October 26, 2016



Recap of Devito

Optimized	FD	schemes	from	symbolic	PDEs
Automated	code	generation	and	Just-In-Time	(JIT)	compilation	from	
symbolic	Python	expressions
Code	design

• Level	0:	Spot	operators	(F,	J),	objective	functions,	parallelization
• Level	1:	Set	up	problem	geometry																																																																																		

(->	PyObject	for	forward,	adjoint,	born	modeling)
• Level	2:	Once	a	specific	operation	is	called	(e.g.	forward	solve),	set	up	

symbolic	PDE	and	generate	FD	scheme
• Level	3:	Generate	C	code	with	optimized	FD	scheme	and	compile	it
• Level	4:	Solve	wave	equation

11

Python

C

Julia

Intermediate	code	design

Wednesday, October 26, 2016



Code design

Level	1:	set	up	problem	
geometry	(user	level)

12

Julia

Wednesday, October 26, 2016



Code design

13

Set	up	Python	objects

Call	forward	modeling

Julia

Wednesday, October 26, 2016



Code design

• Level	2:	Set	up	symbolic	PDE	upon	function	call	and	generate	stencil

14

• Define	derivative	operators
• Insert	source/receivers	terms	
• ...

Python

Wednesday, October 26, 2016



Code design

• Level	3:	Generate	C	code	and	compile	it	upon	calling	apply()	function

15

• Level	4:	Run	loop	over	time	steps	and	run	compiled	C	code

Python

Wednesday, October 26, 2016



Parallel computing in Julia

Devito	solves	wave	equation	for	1	source
• build	parallel	Julia	framework	on	top

For	time-domain	modeling/inversion:	
• Parallelization	over	sources	(easy,	no	communication	within	modeling	

functions,	reduction	or	collection	after	function	calls)
• Domain	decomposition	(difficult,	communications	within	time	loop)

For	source	parallelization:	asynchronous	(non-blocking)	function	calls

16
Wednesday, October 26, 2016



Parallel computing in Julia

Julia’s	parallel	environment	differs	from	MPI
• One-sided	communication	(manage	only	master	process)

Higher	level	function	calls	instead	of	send/receive	operations
• Remote	calls:	call	function	on	remote	process
• Remote	references:	object	on	remote	process,	can	be	used	by	any	other	

process

17

Call	modeling/gradient	function	on	remote	workers	+	pull	result	whenever	needed

Wednesday, October 26, 2016



Source parallelization in Julia

Function	overloading	helps	to	structure	code
•

18

serial modeling function parallelization over sources

1	source 3	sources

Wednesday, October 26, 2016



Linear operators

Linear	operator	package	for	matrix-free	operations
• SPOT-like	toolbox
• define	operators	from	functions

Linear	operators	for	non-linearized	and	linearized	(Born)	modeling

19 https://github.com/JuliaSmoothOptimizers/LinearOperators.jl

(independent	of	number	of	sources)

Wednesday, October 26, 2016

https://github.com/JuliaSmoothOptimizers/LinearOperators.jl
https://github.com/JuliaSmoothOptimizers/LinearOperators.jl


Linear operators

Linear	operators	can	be	used	to	easily	implement	algorithms	
• e.g.	sparsity	promoting	least	squares	migration

20
Wednesday, October 26, 2016



Linear operators

Linear	operators	can	be	used	to	easily	implement	algorithms	
• e.g.	gradient	for	full-waveform-inversion

21
Wednesday, October 26, 2016



Optimization

Objective	functions	that	spin	off	gradient	and	function	values	for	black-box	
optimization	routines

22
Wednesday, October 26, 2016



Optimization

Objective	function	can	be	passed	to	one	of	the	many	available	Julia	
optimization	packages

• Optim.jl	-	standard	optimization	algorithms	for	unconstrained	and	box-
constrained	optimization	(BFGS,	Nelder-Mead,	CG)

• JuMP	-	linear,	quadratic	and	non-linear	constrained	optimization
• LsqFit.jl	-	least-squares	non-linear	curve	fitting
• NLopt.jl	-	interface	to	the	NLopt	library	for	(un-)constrained	optimization
• and	others

23
Wednesday, October 26, 2016



Optimization

E.g.	FWI	with	L-BFGS	and	bound	constraints	

24

minimize

m

1

2

||d
obs

�PA(m)

�1q||22
subject to: m > m

min

m < m
max

Wednesday, October 26, 2016



Unit testing

Adjoint	tests	for						and	

25

d̂ = Fq

q̂ = FTd

|dT d̂� qT q̂|  ✏

�̂d = J�m

ˆ�m = JT �d

|�dT �̂d� �mT ˆ�m|  ✏

F J

Wednesday, October 26, 2016



Unit testing

26

�(m) =
1

2
||d

obs

�PA(m)�1q||22

�(m0 + h · �m)�
⇣
�(m0)� h ·rm�(m0)

T �m
⌘

Check	correct	gradient	implementation	of	FWI	objective:

�(m0 + h · �m)� �(m0)

Wednesday, October 26, 2016



Unit testing

27

Check	correct	gradient	implementation	of	LSRTM	objective: �(�m) =
1

2
||�d

obs

� J�m||22

�(�m0 + h ·��m)� �(�m0)

�(�m0 + h ·��m)�
⇣
�(�m0)� h ·rm�(m0)

T��m
⌘

Wednesday, October 26, 2016



Modeling example

28

Crossline direction (x=5km)

0 1 2 3 4 5 6 7 8 9 10

Lateral position [km]

0

0.5

1

1.5

2

2.5

3

D
e
p
th

 [
km

]

1.5

2

2.5

3

3.5

4

4.5

Inline direction (y=5km)

0 1 2 3 4 5 6 7 8 9 10

Lateral position [km]

0

0.5

1

1.5

2

2.5

3

D
e
p
th

 [
km

]

1.5

2

2.5

3

3.5

4

4.5

Model	shot	record	on	the	3D	
BG	model:

• 10	x	10	x	3.4	km
• 1000	x	1000	x	340	grid	

points
• 3	s	recording	time	(3700	

time	steps)
• 1001	inline	receivers
• 201	crossline	receivers
• source	in	model	center	(10	

Hz	Ricker	wavelet)

Computational	time:	
50	minutes

Wednesday, October 26, 2016



Modeling example

29

0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e 
[s

]

200 400 600 800 1000
Receiver No.

Inline	shot	record

Wednesday, October 26, 2016



Modeling example

30

0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e 
[s

]

20 40 60 80 100 120 140 160 180 200
Receiver No.

Crossline	shot	record

Wednesday, October 26, 2016



Outlook

We’re	just	getting	started	with	Julia	and	there’s	still	a	lot	to	do:
• Reading/writing	SEG-Y	data
• Resolve	memory	issues	(some	memory	leaks)
• Translate	most	important	Matlab	functions	to	Julia
• Devito:	replace	Python	data/model	objects	with	Julia	objects														

(prevents	data	copies)

31
Wednesday, October 26, 2016



Acknowledgements

This	research	was	carried	out	as	part	of	the	SINBAD	project	with	the	
support	of	the	member	organizagons	of	the	SINBAD	Consorgum.

32
Wednesday, October 26, 2016


