Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

A large-scale time-domain modeling and inversion workflow in Julia

Philipp A. Witte and Felix J. Herrmann

Wednesday, October 26, 2016

dynamically typed languages

• interpreted languages:

- Matlab
- Python
- Perl
- Ruby etc.
- easy to write Code (no type declarations)

statically typed languages

- compiled languages:
 - ► C, C++, C#
 - ► Fortran
 - ► Java, etc.
- types declared at compilation time
- higher performance

dynamically typed languages

• interpreted languages:

- Matlab
- Python
- Perl
- Ruby etc.
- easy to write Code (no type declarations)
 Scientists

statically typed languages

- compiled languages:
 - ► C, C++, C#
 - ► Fortran
 - Java etc.
- types declared at compilation time
- higher performance

Programmers

• interpreted languages:

- Matlab
- Python
- Perl
- Ruby etc.
- easy to write Code (no type declarations)

Main features of Julia:

- flexible dynamic language
- optional typing and just-in-time compilation (JIT)
- multiple dispatch (function overloading)
- performance in range of statically typed languages like C
- easy to write parallel programs (parallel loops, shared arrays)
- easy interaction with other languages
- free and open source
- many packages for linear algebra, optimization etc.

• large community with people from scientific computing and applied maths

	Fortran	Julia	Python	R	Matlab	Octave	Mathe- matica	JavaScript	Go	LuaJIT	Java
	gcc 5.1.1	0.4.0	3.4.3	3.2.2	R2015b	4.0.0	10.2.0	V8 3.28.71.19	g01.5	gsl-shell 2.3.1	1.8.0_45
fib	0.70	2.11	77.76	533.52	26.89	9324.35	118.53	3.36	1.86	1.71	1.21
parse_int	5.05	1.45	17.02	45.73	802.52	9581.44	15.02	6.06	1.20	5.77	3.35
quicksort	1.31	1.15	32.89	264.54	4.92	1866.01	43.23	2.70	1.29	2.03	2.60
mandel	0.81	0.79	15.32	53.16	7.58	451.81	5.13	0.66	1.11	0.67	1.35
pi_sum	1.00	1.00	21.99	9.56	1.00	299.31	1.69	1.01	1.00	1.00	1.00
rand_mat_stat	1.45	1.66	17.93	14.56	14.52	30.93	5.95	2.30	2.96	3.27	3.92
rand_mat_mul	3.48	1.02	1.14	1.57	1.12	1.12	1.30	15.07	1.42	1.16	2.36

(<u>http://julialang.org</u>/)

SLIM's first steps towards Julia:

- workflow for wave-equation based inversion (LSRTM, FWI)
- Devito toolbox as wave-equation solver
- higher level abstractions for optimization
- linear operators, function-handles for black-box optimization packages

coding close to mathematical formulations + high performance

Optimized FD schemes from symbolic PDEs

Automated code generation and Just-In-Time (JIT) compilation from symbolic Python expressions

Code design

- Level 1: Set up problem geometry (-> PyObject for forward, adjoint, born modeling)
- Level 2: Once a specific operation is called (e.g. forward solve), set up symbolic PDE and generate FD scheme
- Level 3: Generate C code with optimized FD scheme and compile it
- Level 4: Solve wave equation

Optimized FD schemes from symbolic PDEs

Automated code generation and Just-In-Time (JIT) compilation from symbolic Python expressions

Code design

- Level 1: Set up problem geometry (-> PyObject for forward, adjoint, born modeling)
- symbolic PDE and generate FD scheme
- Level 4: Solve wave equation

• Level 2: Once a specific operation is called (e.g. forward solve), set up Level 3: Generate C code with optimized FD scheme and compile it

Python

C

Optimized FD schemes from symbolic PDEs

Automated code generation and Just-In-Time (JIT) compilation from symbolic Python expressions

Code design

- Level 0: Spot operators (F, J), objective functions, parallelization
- Level 1: Set up problem geometry (-> PyObject for forward, adjoint, born modeling)
- Level 2: Once a specific operation is called (e.g. forward solve), set up symbolic PDE and generate FD scheme
- Level 4: Solve wave equation

Level 3: Generate C code with optimized FD scheme and compile it

Julia

Optimized FD schemes from symbolic PDEs

Automated code generation and Just-In-Time (JIT) compilation from symbolic Python expressions

Code design

- Level 0: Spot operators (F, J), objective functions, parallelization
- Level 1: Set up problem geometry (-> PyObject for forward, adjoint, born modeling)
- symbolic PDE and generate FD scheme
- Level 4: Solve wave equation

Intermediate code design

Level 1: set up problem geometry (user level)

Julia

14
15 # Grid points, spacing and
16 n = (80, 80, 80)
17 d = (10., 10., 10.)
$18 \circ = (0., 0., 0.)$
19
<pre>20 # Velocity model</pre>
21 v = ones(n) + .4
<pre>22 v[:,:,Int(round(n[3]/2)):en</pre>
$23 \ v0 = smooth 10(v, n)$
24
25 # Slowness squared
$26 m = (1./v).^{2}.$
$27 m0 = (1./\sqrt{0}).^{2}.$
28 dm = m − m0
29
30 # Set source function (rick
31 f0 = 0.010 # source peak f
32 tmax = 1000. <i># modeling</i>
<pre>33 dt = calculate_dt(n,d,o,v)</pre>
34 q = source(tmax,dt,f0)
35
<pre>36 # Source coordinates [m]</pre>
37 srcnum = 1
38 xsrc = 200
39 ysrc = 400
40 zsrc = 40
41
42 # Setup receiver grid [m]
43 nxrec = 21
44 nyrec = 101
<pre>45 xrec = linspace(50,750,nxre</pre>
<pre>46 yrec = linspace(50,750,nyre</pre>
47 zrec = 100 # the same dept
48
49 # Set up model structure
50 model = Model(n,d,o,tmax,xs
51
52 # Nonlinear forward modelin
<pre>53 data = time_modeling(model,</pre>
54

origin

nd] = 4.

requency [kHz] time end [ms]

ec) # 21 receivers in x direction ranging from 50 to 950 meters
ec) # 101 receivers in y direction
th for all receivers

src,ysrc,zsrc,xrec,yrec,zrec)

ng ,srcnum,q,m,□,'F',1);

106	
107	<pre>function time_modeling(model::TimeDomainInversion.Model, srcnum::In</pre>
108	<pre># Setup time-domain linear or nonlinear foward and adjoint modeling</pre>
109	
110	# Set up model structure
111	<pre>modelPy = ct.IGrid()</pre>
112	modelPy[:shape] = model.n
113	modelPy[:create_model](model.o, model.d, sqrt(1./m))
114	dt = modelPy[:get_critical_dt]()
115	h = modelPy[:get_spacing]()
116	<pre>nt = Int(round(1 + model.tmax/ dt))</pre>
117	if mode==-1 && length(size(x))==3 ; x = squeeze(x,3); end
118	
119	# Set up sources
120	<pre>src = ct.IShot()</pre>
121	source_coords = [model.xsrc model.ysrc model.zsrc]
122	
123	<pre>src[:set_receiver_pos](source_coords)</pre>
124	<pre>src[:set_snape](nt,1)</pre>
125	<pre>src[:set_traces](resnape(q,lengtn(q),1))</pre>
120	# Cot up providence and d
120	# Set up receiver grid
120	aata = ct.lSnot()
120	<pre>receiver_coords = setup_receiver_grid(model) data[isot_mosoiven_mos](mosoiven_coords)</pre>
121	data[.set_receiver_pos](receiver_coords)
132	dutu[.set_shupe](ht,stze(receiver_coords,1))
132	# Initiate accustic modeling object
134	Acoustic - ac Acoustic ca(modelPv data src auto tune-false)
135	Acoustic - de.Acoustic_cg(modeling, data, sic, dato_tane=raise)
136	# Modelina
137	if op=='F'
138	if mode==1
139	println("Nonlinear forward modelina")
140	(argout1, argout2) = Acoustic[:Forward]()
141	

nt64, q::Array{Float64,1}, m::Array{Float64,3}, x, op::Char, mode::Int64)
g using OPESCI/devito

Set up Python objects

Call forward modeling

Julia

• Level 2: Set up symbolic PDE upon function call and generate stencil

155		
156	# Derive stencil from symbolic (equation
157	eqn = m / rho * u.dt2 - Lap + do	amp * u.dt
158	s, h = symbols('s h')	
159	stencil = 1.0 / (2.0 * m / rho -	+ s * damp) * \
160	(4.0 * m / rho * u + (s * do	amp - 2.0 * m / rho) *
161	u.backward + 2.0 * s**2 * 1	Lap)
162	<pre># Add substitutions for spacing</pre>	(temporal and spatial)
163	<pre>subs = {s: dt, h: model.get_space</pre>	cing()}
164	<pre>super(ForwardOperator, self);</pre>	init(nt, m.shape,
165		<pre>stencils=Eq(u.forward, st</pre>
166		subs=subs,
167		<pre>spc_border=spc_order/2,</pre>
168		<pre>time_order=time_order,</pre>
169		forward=True,
170		dtype=m.dtype,
171		**kwargs)
172		

- Define derivative operators
- Insert source/receivers terms
- ...

• Level 3: Generate C code and compile it upon calling apply() function

62	
63	<pre>def Forward(self, save=False, cache_blocking=None, use_at_blocks=False, cs</pre>
64	<pre>fw = ForwardOperator(self.model, self.src, self.damp, self.data,</pre>
65	<pre>time_order=self.t_order, spc_order=self.s_order,</pre>
66	save=save, cache_blocking=cache_blocking, cse=cse
67	if use_at_blocks:
68	<pre>self.at = AutoTuner(fw)</pre>
69	f <mark>w</mark> .propagator.cache_blocking = self.at.block_size
70	
71	u, rec = fw.apply()
72	return rec.data, u
73	

• Level 4: Run loop over time steps and run compiled C code

Python

Parallel computing in Julia

- Devito solves wave equation for 1 source
 - build parallel Julia framework on top

For time-domain modeling/inversion:

- Parallelization over sources (easy, no communication within modeling functions, reduction or collection after function calls)
- Domain decomposition (difficult, communications within time loop)

For source parallelization: asynchronous (non-blocking) function calls

Parallel computing in Julia

Julia's parallel environment differs from MPI

• One-sided communication (manage only master process)

Higher level function calls instead of send/receive operations

- Remote calls: call function on remote process
- Remote references: object on remote process, can be used by any other process

Call modeling/gradient function on remote workers + pull result whenever needed

Source parallelization in Julia

Function overloading helps to structure code

serial modeling function

parallelization over sources

Linear operators

Linear operator package for matrix-free operations

- SPOT-like toolbox
- define operators from functions

Linear operators for non-linearized and linearized (Born) modeling

(independent of number of sources)

https://github.com/JuliaSmoothOptimizers/LinearOperators.jl

Linear operators

Linear operators can be used to easily implement algorithms e.g. sparsity promoting least squares migration

51
52 # Nonlinear modeling
53 J = opJ(model,srcnum,q,m0)
54
55 # Observed reflection data
56 y = J*dm
57
58 # Sparsity promoting LSRTM
59 x = zeros(prod(n))
60 z = zeros(prod(n))
<mark>61 lambda =</mark> 1
62 numIterations = 10
63
64 for j=1:numIterations
65
66 # Stepsize
67 $t = norm(J^*x - y)^2/norm(J^*x - y)$
68
69 # Update variables
70 $z = z - t^{*}J^{*}(J^{*}x - y)$
71 x = softThresholding(z
72
73 end
74

orm(J'*(J*x-y))^2

,lambda)

Linear operators

Linear operators can be used to easily implement algorithms e.g. gradient for full-waveform-inversion

52	
53 # Set up operators	
54 F = opF(model,srcnur	n,q,m@
<pre>55 J = opJ(model,srcnur</pre>	n,q,m@
56	
57 # FWI gradient	
58 d_pred = F*q	
59	
60 misfit = .5*norm(d_p	ored -
61	
62 gradient = J'*(d_pre	ed – d
63	

Optimization

Objective functions that spin off gradient and function values for black-box optimization routines

55
56 # Nonlinear forward modeling
57 D = F^*q
58
59 # Linearized forward modeling
60 dD = J*dm
61
62 # FWI
63 fval1, grad1 = pde_objective(mode
64
65 # LSRTM
66 image = zeros(model.n)
67 fval2, grad2 = pde_objective(mode
68

l, srcnum, q, m0, [], D, "fwi")

Optimization

Objective function can be passed to one of the many available Julia optimization packages

- Optim.jl standard optimization algorithms for unconstrained and boxconstrained optimization (BFGS, Nelder-Mead, CG)
- JuMP linear, quadratic and non-linear constrained optimization
- LsqFit.jl least-squares non-linear curve fitting
- NLopt.jl interface to the NLopt library for (un-)constrained optimization
- and others

Optimization

E.g. FWI with L-BFGS and bound constraints

58

$\begin{array}{l} \underset{\mathbf{m}}{\text{minimize}} \quad \frac{1}{2} ||\mathbf{d}_{obs} - \mathbf{P}\mathbf{A}(\mathbf{m})^{-1}\mathbf{q}||_{2}^{2} \\ \text{subject to:} \quad \mathbf{m} > \mathbf{m}_{min} \end{array}$

 $\mathbf{m} < \mathbf{m}_{max}$

```
59 # Set up spot operator
60 F = opF(model,srcnum,q,m)
61
62 # Generate observed data
63 D = F*q
64
65 # Function for NLopt
66 count = 0
67 function f!(x,grad)
                           pde_objective(model,srcnum,q,x,[],D,"fwi")
       fval, grad[1:end]
68
69
       global count
70
       count += 1
71
       println(count)
72
       return fval
73 end
 74
 75 # LBFGS with bound constraints
76 opt = Opt(:LD_LBFGS, prod(n))
77 lower_bounds!(opt, mmin)
78 upper_bounds!(opt, mmax)
79 min_objective!(opt, f!)
80 maxeval!(opt, 20)
81 (minf, minx, ret) = optimize(opt, vec(m0))
82
```


Unit testing

 $\begin{aligned} \hat{\mathbf{d}} &= \mathbf{F}\mathbf{q} \\ \hat{\mathbf{q}} &= \mathbf{F}^T\mathbf{d} \\ |\mathbf{d}^T\hat{\mathbf{d}} - \mathbf{q}^T\hat{\mathbf{q}}| \leq \epsilon \end{aligned}$

$\hat{\delta \mathbf{d}} = \mathbf{J} \delta \mathbf{m}$ $\hat{\delta \mathbf{m}} = \mathbf{J}^T \delta \mathbf{d}$ $|\delta \mathbf{d}^T \hat{\delta \mathbf{d}} - \delta \mathbf{m}^T \hat{\delta \mathbf{m}}| \le \epsilon$

Unit testing

Check correct gradient implementation of FW

26

VI objective:
$$\Phi(\mathbf{m}) = \frac{1}{2} ||\mathbf{d}_{obs} - \mathbf{PA}(\mathbf{m})^{-1}\mathbf{q}||_2^2$$

$$\Phi(\mathbf{m}_{0} + h \cdot \delta \mathbf{m}) - \Phi(\mathbf{m}_{0})$$

$$\Phi(\mathbf{m}_{0} + h \cdot \delta \mathbf{m}) - \left(\Phi(\mathbf{m}_{0}) - h \cdot \nabla_{m} \Phi(\mathbf{m}_{0})^{T} d \right)$$

Unit testing

Check correct gradient implementation of LSI

27

SRTM objective:
$$\Phi(\delta \mathbf{m}) = \frac{1}{2} ||\delta \mathbf{d}_{obs} - \mathbf{J} \delta \mathbf{m}||_2^2$$

$$\Phi(\delta \mathbf{m_0} + h \cdot \Delta \delta \mathbf{m}) - \Phi(\delta \mathbf{m_0})$$
$$\Phi(\delta \mathbf{m_0} + h \cdot \Delta \delta \mathbf{m}) - \left(\Phi(\delta \mathbf{m_0}) - h \cdot \nabla_m \Phi(\mathbf{m_0})^T \Delta \delta \mathbf{m}\right)$$

Modeling example

Model shot record on the 3D BG model:

- 10 x 10 x 3.4 km
- 1000 x 1000 x 340 grid points
- 3 s recording time (3700 time steps)
- 1001 inline receivers
- 201 crossline receivers
- source in model center (10 Hz Ricker wavelet)

Computational time: 50 minutes

Crossline direction (x=5km)

29

Outlook

We're just getting started with Julia and there's still a lot to do:

- Reading/writing SEG-Y data
- Resolve memory issues (some memory leaks)
- Translate most important Matlab functions to Julia
- Devito: replace Python data/model objects with Julia objects (prevents data copies)

Acknowledgements

support of the member organizations of the SINBAD Consortium.

This research was carried out as part of the SINBAD project with the

