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Why Julia?

2

• interpreted	languages:
‣ Matlab

‣ Python

‣ Perl

‣ Ruby	etc.

• easy	to	write	Code	(no	type	
declarations)

• compiled	languages:
‣ C,	C++,	C#

‣ Fortran

‣ Java,	etc.

• types	declared	at	compilation	time
• higher	performance

dynamically	typed	languages statically	typed	languages
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Why Julia?

Main	features	of	Julia:
• flexible	dynamic	language
• optional	typing	and	just-in-time	compilation	(JIT)
• multiple	dispatch	(function	overloading)
• performance	in	range	of	statically	typed	languages	like	C
• easy	to	write	parallel	programs	(parallel	loops,	shared	arrays)
• easy	interaction	with	other	languages
• free	and	open	source
• large	community	with	people	from	scientific	computing	and	applied	maths
• many	packages	for	linear	algebra,	optimization	etc.
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Why Julia?
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(http://julialang.org/)
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Why Julia?

SLIM’s	first	steps	towards	Julia:
• workflow	for	wave-equation	based	inversion	(LSRTM,	FWI)
• Devito	toolbox	as	wave-equation	solver
• higher	level	abstractions	for	optimization
• linear	operators,	function-handles	for	black-box	optimization	packages
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coding	close	to	mathematical	formulations	+	high	performance	
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Recap of Devito

Optimized	FD	schemes	from	symbolic	PDEs
Automated	code	generation	and	Just-In-Time	(JIT)	compilation	from	
symbolic	Python	expressions
Code	design

• Level	1:	Set	up	problem	geometry																																																																																		
(->	PyObject	for	forward,	adjoint,	born	modeling)

• Level	2:	Once	a	specific	operation	is	called	(e.g.	forward	solve),	set	up	
symbolic	PDE	and	generate	FD	scheme

• Level	3:	Generate	C	code	with	optimized	FD	scheme	and	compile	it
• Level	4:	Solve	wave	equation
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Python

C

Julia

Intermediate	code	design
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Code design

Level	1:	set	up	problem	
geometry	(user	level)
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Julia
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Code design
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Set	up	Python	objects

Call	forward	modeling

Julia
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Code design

• Level	2:	Set	up	symbolic	PDE	upon	function	call	and	generate	stencil
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• Define	derivative	operators
• Insert	source/receivers	terms	
• ...

Python
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Code design

• Level	3:	Generate	C	code	and	compile	it	upon	calling	apply()	function
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• Level	4:	Run	loop	over	time	steps	and	run	compiled	C	code

Python
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Parallel computing in Julia

Devito	solves	wave	equation	for	1	source
• build	parallel	Julia	framework	on	top

For	time-domain	modeling/inversion:	
• Parallelization	over	sources	(easy,	no	communication	within	modeling	

functions,	reduction	or	collection	after	function	calls)
• Domain	decomposition	(difficult,	communications	within	time	loop)

For	source	parallelization:	asynchronous	(non-blocking)	function	calls
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Parallel computing in Julia

Julia’s	parallel	environment	differs	from	MPI
• One-sided	communication	(manage	only	master	process)

Higher	level	function	calls	instead	of	send/receive	operations
• Remote	calls:	call	function	on	remote	process
• Remote	references:	object	on	remote	process,	can	be	used	by	any	other	

process
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Call	modeling/gradient	function	on	remote	workers	+	pull	result	whenever	needed
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Source parallelization in Julia

Function	overloading	helps	to	structure	code
•

18

serial modeling function parallelization over sources

1	source 3	sources
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Linear operators

Linear	operator	package	for	matrix-free	operations
• SPOT-like	toolbox
• define	operators	from	functions

Linear	operators	for	non-linearized	and	linearized	(Born)	modeling

19 https://github.com/JuliaSmoothOptimizers/LinearOperators.jl

(independent	of	number	of	sources)
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Linear operators

Linear	operators	can	be	used	to	easily	implement	algorithms	
• e.g.	sparsity	promoting	least	squares	migration
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Linear operators

Linear	operators	can	be	used	to	easily	implement	algorithms	
• e.g.	gradient	for	full-waveform-inversion
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Optimization

Objective	functions	that	spin	off	gradient	and	function	values	for	black-box	
optimization	routines
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Optimization

Objective	function	can	be	passed	to	one	of	the	many	available	Julia	
optimization	packages

• Optim.jl	-	standard	optimization	algorithms	for	unconstrained	and	box-
constrained	optimization	(BFGS,	Nelder-Mead,	CG)

• JuMP	-	linear,	quadratic	and	non-linear	constrained	optimization
• LsqFit.jl	-	least-squares	non-linear	curve	fitting
• NLopt.jl	-	interface	to	the	NLopt	library	for	(un-)constrained	optimization
• and	others
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Optimization

E.g.	FWI	with	L-BFGS	and	bound	constraints	
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minimize

m

1

2

||d
obs

�PA(m)

�1q||22
subject to: m > m

min

m < m
max
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Unit testing

Adjoint	tests	for						and	
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d̂ = Fq

q̂ = FTd

|dT d̂� qT q̂|  ✏

�̂d = J�m

ˆ�m = JT �d

|�dT �̂d� �mT ˆ�m|  ✏

F J
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Unit testing
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�(m) =
1

2
||d

obs

�PA(m)�1q||22

�(m0 + h · �m)�
⇣
�(m0)� h ·rm�(m0)

T �m
⌘

Check	correct	gradient	implementation	of	FWI	objective:

�(m0 + h · �m)� �(m0)
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Unit testing
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Check	correct	gradient	implementation	of	LSRTM	objective: �(�m) =
1

2
||�d
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Modeling example
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Inline direction (y=5km)

0 1 2 3 4 5 6 7 8 9 10

Lateral position [km]

0

0.5

1

1.5

2

2.5

3

D
e
p
th

 [
km

]

1.5

2

2.5

3

3.5

4

4.5

Model	shot	record	on	the	3D	
BG	model:

• 10	x	10	x	3.4	km
• 1000	x	1000	x	340	grid	

points
• 3	s	recording	time	(3700	

time	steps)
• 1001	inline	receivers
• 201	crossline	receivers
• source	in	model	center	(10	

Hz	Ricker	wavelet)

Computational	time:	
50	minutes
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Modeling example
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Modeling example

30

0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e 
[s

]

20 40 60 80 100 120 140 160 180 200
Receiver No.

Crossline	shot	record

Wednesday, October 26, 2016



Outlook

We’re	just	getting	started	with	Julia	and	there’s	still	a	lot	to	do:
• Reading/writing	SEG-Y	data
• Resolve	memory	issues	(some	memory	leaks)
• Translate	most	important	Matlab	functions	to	Julia
• Devito:	replace	Python	data/model	objects	with	Julia	objects														

(prevents	data	copies)
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