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Motivation behind microseismic imaging

Microseismic	benefits

‣ Locating	fracture	at	far	distance	from	treatment	well

‣ Tracer	based	and	sonic	log	based	method	fails	at	far	distances

Hazard	prevention	

‣ Activation	of	pre-existing	faults
‣ Interference	of	fractures	with	wells

[Maxwell,	’14]
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Motivation

Reservoir	evaluation

Source	attribute	estimation	

‣moment	tensor	orientation

‣ origin	time

‣ spectral	properties	of	source	mechanism

[Maxwell,	’14;	Eaton,’14]

Motivation behind microseismic imaging
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Objectives

Super-resolution	via	sparsity	promotion	and	“lifting”

Simultaneous	estimation	of		the	location	of	microseismic	events	&	
their	source	time	functions
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Pre-existing methods

Based	on	travel-time	picking:

‣ estimate	the	origin	time

‣ estimate	the	location

‣ time	consuming

‣ no	source	time	function

[Thurber,	’00;	Waldhauser,’00]
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Pre-existing methods

Imaging	based

‣ estimates	origin	time

‣ estimates	the	location

Geometric-mean	RTM

‣ based	on	cross-correlation	imaging	condition	

‣wave	equation	solve	for	each	receiver

[Rentsch	et	al.,	’07;	McMechan,	’10;	Gajewski	et	al.,	’05;	Sun	et	al.,’15;	Nakata	et	al.,’16]
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Pre-existing methods

Hybrid	imaging	condition

‣ Computationally	less	intensive	

‣ Requires	grouping	of	neighboring	receivers
‣ Lower	resolution
‣ Receiver	group	length	determination	not	trivial

[Sun	et	al.,’15;	Nakata	et	al.,’16]
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FWI based method

Merits

‣ alternate	estimation	approach	

‣ good	estimation	when	one	of	the	spatial	or	temporal	components	known

[Sjögreen	et	al.,’14;	Kaderli	et	al.,’15]

minimize
f2Rn

x ,w2Rn

t

kF [m](fwT )� dk

⇤
where F [m] = PA[m]

�1
is the forward modelling operator

f and w are the spatial and temporal component of source
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FWI based method

Limitations:

‣ poor	estimation	when	both	source	location	&	source	time	function	unknown

‣ assumes	prior	on	number	of	sources

[Sjögreen	et	al.,’14;	Kaderli	et	al.,’15]

minimize
f2Rn

x ,w2Rn

t

kF [m](fwT )� dk

f and w are the spatial and temporal component of source

⇤
where F [m] = PA[m]

�1
is the forward modelling operator
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Synthetic	microseismic	data

Data is simulated using 
finite difference time 
stepping code

0.2 0.4 0.6 0.8

Receiver Position [km]

0

0.2

0.4

0.6

0.8

1

T
im

e
 [

s]

Wednesday, October 26, 2016



Experimental setup
Modeling information:

Model size: 0.9 km x 0.7 km
Grid spacing: 10m
Receiver spacing: 10m
Source depth: 0.27 km
Source lateral position: 0.25 km
Wavelet: Ricker wavelet
Receiver depth: 20m
Fixed spread: 0.88km
Sampling interval: 1 ms
Recording length: 1s
Peak frequency : 20 Hz0 0.2 0.4 0.6 0.8
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Estimated source location

Sparsity-promoting	method FWI
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Sparsity-promoting	method FWI
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Wavelet comparison

Wavelet Spectrum
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Our method w/ sparsity promotion

Estimates	complete	source	wavefield	in

‣ space
‣ time

Simultaneous	estimation	

‣microseismic	event	location

‣ source	time	function

‣ source	origin	time
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Our method w/ sparsity promotion

Assumptions:

‣ localized	in	space

Depth

Lateral
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Our method w/ sparsity promotion

Assumptions:

‣ localized	in	space
‣ finite	energy	along	time

Lateral

TimeDepth
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Co-sparsity property of wave equation

Time-stepping operator Wavefield Source Source time function 

��
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[Kitić	et	al.,’16]

A[m](u) = q
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Problem statement

minimize

u
kA[m](u)k2,1

subject to kP(u)� dk22  ✏
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Problem statement

Time stepping 
operator
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Problem statement

Time stepping 
operator

minimize

u
kA[m](u)k2,1

subject to kP(u)� dk22  ✏
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Problem statement

Time stepping 
operator

Slowness 
square

minimize

u
kA[m](u)k2,1

subject to kP(u)� dk22  ✏
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Problem statement

Time stepping 
operator

Slowness 
square Time domain 

wavefield

minimize

u
kA[m](u)k2,1

subject to kP(u)� dk22  ✏
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Problem statement

Time stepping 
operator

Slowness 
square Time domain 

wavefield

Receiver restriction 
operator

minimize

u
kA[m](u)k2,1

subject to kP(u)� dk22  ✏
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Problem statement

Time stepping 
operator

Slowness 
square Time domain 

wavefield

Receiver restriction 
operator

minimize
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Problem statement

Time stepping 
operator

Slowness 
square Time domain 

wavefield

Receiver restriction 
operator

Observed data

minimize

u
kA[m](u)k2,1

subject to kP(u)� dk22  ✏
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Problem statement

Time stepping 
operator

Slowness 
square Time domain 

wavefield

Receiver restriction 
operator

Observed data

minimize

u
kA[m](u)k2,1

subject to kP(u)� dk22  ✏
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Problem statement

Time stepping 
operator

Slowness 
square Time domain 

wavefield

Receiver restriction 
operator

Observed data Data residual

minimize

u
kA[m](u)k2,1

subject to kP(u)� dk22  ✏
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Our method w/ sparsity promotion

✓	Does	not	require	separable	structure	of	source	term	into	spatial	
&	temporal	components

✓	Does	not	require	prior	information	on	number	of	sources
✓	Simultaneously	estimates	location/directivity	pattern	&	source	
origin/source	time	function

minimize

u
kA[m](u)k2,1

subject to kP(u)� dk22  ✏
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Method

The	above	optimization	problem	is	made	more	tractable	by	
change	of	variable	A[m](u) = Q

[Van	Den	Berg	et	al.,’08]

minimize

Q
kQk2,1

subject to kF [m](Q)� dk22  ✏
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Method

The	above	optimization	problem	is	made	more	tractable	by	
change	of	variable	

Similar	to	classic	Basis	Pursuit	Denoising	(BPDN)		Problem

A[m](u) = Q

[Van	Den	Berg	et	al.,’08]

minimize

Q
kQk2,1

subject to kF [m](Q)� dk22  ✏
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Modified Linearized Bregman

⇤
where k.kF is the Frobenius norm

[Huang	et	al.,’11;	Herrmann	et	al.,’15;	Sharan	et	al.,’16	]

minimize

Q
kQk2,1 +

1

2µ
kQk2F

subject to kF [m](Q)� dk22  ✏

‣ Recent	successful	application	
‣ Three-step	algorithm	simple	to	implement	

‣ Solves	slightly	relaxed	version	of	original	Basis	Pursuit	Denoising	problem
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Modified Linearized Bregman

⇤
where k.kF is the Frobenius norm

[Huang	et	al.,’11;	Herrmann	et	al.,’15;	Sharan	et	al.,’16	]

‣ Choice	of					controls	the	trade	off	between	sparsity	and	the	Frobenius	norm
‣ 													corresponds	to	solving	original	BPDN	problem	

µ

µ " 1

minimize

Q
kQk2,1 +

1

2µ
kQk2F

subject to kF [m](Q)� dk22  ✏
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Algorithm

⇤where tk = kF(m)Qk�dk2

kF(m)T (F(m)Qk�d)k2 is the dynamic step length

[Lorentz	et	al.,’14;	Combettes	et	al.,’11]

⇤
⇧✏(x) = max{0, 1� ✏

kxk}.(x) the projection on to `2 norm ball

1. for k = 0, 1, · · ·
2. Vk = FT

[m](⇧✏(F [m](Qk)� d)) //adjoint solve

3. Zk+1 = Zk � tkVk //auxiliary variable update

4. Qk+1 = Proxµk.k2,1
(Zk+1) //sparsity promotion

5. end

⇤
Proxµk.k2,1(c) := argminb µkbk2,1 + 1

2kc� bk2F is the proximal mapping of

the `21 norm
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Adjoint solve
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Adjoint solve

Z1 = Z0 � t1V1
Auxiliary variable 

update
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Source	location:	estimated	as	outlier	in	intensity	plot

Source	time	function:	temporal	variation	of	wavefield	at	estimated	source	
location	

I(x) =
X

t

| Q(x, t) |

Location and source time function estimation

[Kitić	et	al.,’16]
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Schematic	showing	source	location	as	outlier	and	corresponding	source	time	function

Intensity Plot & Source time function
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BG compass model example

Objective	

‣ to	show	the	ability	of	our	method	in	realistic	geological	setting
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Objective	

‣ to	show	the	ability	of	our	method	in	realistic	geological	setting

Assumptions	

‣ access	to	smooth	background	velocity	model	

‣ noisy	data	(bandwidth	limited	random	noise	up	to	45	Hz)

BG compass model example
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Experimental setup
Modeling information:

Model size: 2.04 km x 4.50 km
Grid spacing: 10m
Total number of sources: 6
Receiver spacing: 20m
Receiver depth: 20m
Fixed spread: 4.30 km
Sampling interval: 1 ms
Recording length: 2.5 s
Peak frequency : 15 Hz & 10 Hz

BG	Compass	velocity	model
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Experimental setup

BG	Compass	velocity	model

Dominant wavelength: 420 m 
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Observed microseismic data

Noisy	microseismic	data,	SNR	=	2.83

Data is contaminated with 
low frequency random 
noise (up to 45 Hz)
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Smooth velocity model
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Smooth velocity model

Used	for	joint	microseismic	source	location	and	source	time	
function	estimation
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Estimated Source location (From noisy data)
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Estimated Source location (From noisy data)

Sparsity-promoting	method FWI
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Location 1

Wavelet Spectrum
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Location 2

Wavelet Spectrum
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Location 2

Wavelet Spectrum
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Location 3

Wavelet Spectrum
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Location 4

Wavelet Spectrum
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Location 5

Wavelet Spectrum
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Location 6

Wavelet Spectrum
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Linearized Bregman via LBFGS acceleration

We	solve	the	dual	

of	the	problem

via	LBFGS	acceleration

[Huang	et	al.,’11]

minimize
y

Gµ(y)

minimize

Q
kQk2,1 +

1

2µ
kQk2F

subject to kF [m](Q)� dk22  ✏
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Case Study

‣ Two	closely	spaced	sources
• Within	a	wavelength

‣ 2.5	D	modeling

‣ Smooth	velocity	model	

‣ Comparison	with	Hybrid	imaging	result
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Experimental setup
Modeling information:

Model size: 0.7 km x 0.7 km
Grid spacing: 5 m
Receiver spacing: 5 m
Wavelet: Ricker wavelet
Receiver depth: 20 m
Fixed spread: 0.66 km
Sampling interval: 0.5 ms
Recording length: 0.5 s
Peak frequency : 15 Hz
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Experimental setup

Dominant wavelength: 113 m
Source separation:  62 m
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Synthetic	microseismic	data

Data is simulated using 
2.5 D finite difference 
time stepping code
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Smooth velocity model
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Smooth velocity model

Used	for	joint	microseismic	source	location	&	source	time	
function	estimation
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Estimated Source location

Sparsity-promoting Hybrid	Imaging
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Estimated Source location

Sparsity-promoting Hybrid	Imaging

FWI
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Location 1

Wavelet Spectrum
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Application to dipole sources
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Motivation

Earthquake/microseismic	source

‣Moment	tensor	sources

‣Double	dipole	

[Madriaga,	’07]
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Objective

Dipole	sources	are

‣Directional
‣ Can	be	decomposed	horizontal	and	vertical	components

Aim	is	to

‣ locate
‣ estimate	the	directivity	by	estimating	each	component

‣ estimate	the	source	time	function
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Method

The	original	optimization	problem	

minimize

Q
kQk2,1 +

1

2µ
kQk2F

subject to kF [m](Q)� dk22  ✏
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Method

is	modified	to

minimize

S
kSk2,1 +

1

2µ
kSk2F

subject to kF [m](D(S))� dk22  ✏
⇤
where S is the synthesis matrix containing weights of each dipole component

D is the dictionary containing all possible horizontal and vertical dipoles for

a given dipole source separation
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Experimental setup- Double dipole
Modeling information:

Model size: 0.7 km x 1.8 km
Grid spacing: 5 m
Receiver spacing: 5 m
Receiver depth: 20 m
Fixed spread: 1.78 km
Sampling interval: 1 ms
Recording length: 0.75 s
Peak frequency : 15 Hz
Dipole source separation : 10 m
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Experimental setup- Double dipole

Maximum aperture: 71 degrees
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Experimental setup- Double dipole

Maximum aperture: 71 degrees
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Zoomed
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Shot gather with directivity
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Conclusions

Potential	applications:
‣high	resolution	source	collocation
‣locate	dipole	sources	with	different	directivity	pattern

Works	with	sources	of	different	frequencies	and	origin	time

With	zero	initial	guess	“Sparsity-promoting”	based	method	can	estimate	
‣Source	location
‣source	time	function

We	also	demonstrated	extension	of	our	method	in	2.5	D	
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Future work

Extension	to	3D

Velocity	update
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