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Motivation – noisy data
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only bound constraints
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Bounds only, cycle 3
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Motivation – bad start model / missing low freq. 
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Motivation – noisy data & few simultaneous sources
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bound constraints only
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Initial velocity model
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True velocity model
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Motivation

Develop	constraints	&	optimization	to	deal	with	these	issues.

Constraints	encode	information	about
• smoothness
• blockiness
• approximately	layered	media
• number	of	velocity	jumps	up	or	down
• maximum	and	minimum	values,	well-log	information,	reference	models
• much	more

5
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Goal

Create	software	toolbox	which	builds	on	top	of	existing	codes:

• use	any	code	which	provides	function	value	and	gradient	
• applies	to	any	non-linear	inverse	problem
• define	arbitrary	combinations	of	convex	and	non-convex	constraint	sets
• all	iterates	satisfy	all	constraints
• convenient	translation	of	prior	information	into	constraints
• data-misfit	function	and	constraints	are	uncoupled	

6
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Constraints

Currently	implemented:

• bounds	
• nuclear	norm,	rank
• 					-	based	sparsity	promotion	total-variation/transform-domain	sparsity
• cardinality	(					)	-	based	total-variation	transform-domain	sparsity	constraints
• slope	constraints	/	transform-domain	bounds
• Fourier-domain	smoothness	/	subspace	constraints

7
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Convex sets : some properties

Convex	set
• there	is	a	linear	path	contained	in	the	set	between	every	pair	of	the	set
• every	point	is	linearly	reachable	from	another	point
• projection	onto	a	convex	set	is	unique
• projection	onto	a	convex	set	is	a	non-expansive	operation
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Convex sets : intersections

intersection	of	convex	sets	is	also	convex

9 https://en.wikipedia.org/wiki/Helly%27s_theorem
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Prior information as convex sets

Projection	(Euclidean,	minimum-distance	projection):

Important	property:

10

PC(m) = argmin
x

kx�mk2 s.t. x 2 C1
\

C2

PC(m) = PC(PC(m))
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From prior information to set definition

The	next	few	slides	show	only	a	few	examples.

Examples	illustrate	one	set	at	a	time.

In	practice,	we	combine	multiple	sets.	(shown	later	in	this	talk)

Note:	constraints	apply	to	a	discrete	image,	not	the	true	Earth	properties.

11
Tuesday, October 25, 2016



Convex transform-domain sparsity promotion

12

Request	a	few	significant	nonzero	coefficients	in	transform	domain
Transform	domain	examples:	Wavelet,	Curvelet,	TV,	discrete	gradient,	...

C ⌘ {m | kAmk1  �}
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Non-convex transform-domain cardinality constraints

13

non-convex	set:
Cardinality	of	discrete	vertical	derivative	is	set	to:	expected	number	major	horizontal	
interfaces	–	1	.
Artifacts	are	generally	not	a	problem	if	used	in	combination	with	other	constraints.

S ⌘ {m | card(Am)  k}. k	:	integer

Cardinality constraint on vertical derivative
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Non-convex transform-domain cardinality constraints

14

convex	1-norm:
requires	estimate	of	the	number	of	major	
interfaces	and	the	magnitude	of	the	jumps

non-convex	cardinality:
requires	estimate	of	the	number	of	major	
interfaces.

C ⌘ {m | kAmk1  �}S ⌘ {m | card(Am)  k}
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Rank constraints

non-convex	set:

Simplest	form	of	the	projector:	SVD,	r<k

Layered	models	are	rank-1
Laterally	invariant	start	models	are	rank-1

15

S1 ⌘ {Mr |Mr =
rX

j=1

�jujv
⇤
j}

PS1(M) =
rX

j=1

�jujv
⇤
j , with M =

kX

j=1

�jujv
⇤
j .
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Rank = 10 constraint
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projection	of	true	model

Rank constraints
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Rank = 5 constraint
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Rank constraints

Approximately	layered	models	are	low	rank,	but	not	all	low	rank	
models	are	approximately	layered.
Rank	describes	a	variety	of	‘simple’	matrix	structures.

Interesting	feature:	
Media	with	smooth	and	blocky	parts	can	be	low-rank.

17
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some	very	low	rank	examples:
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Nuclear norm constraint

Nuclear	norm:	
• sum	of	singular	values	of	a	matrix
• heuristic	for	the	rank
• less	intuitive	than	rank,	but	a	convex	set
• personally,	found	it	difficult	to	use

19
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Transform-domain bound constraints / slope constraints

20

Element-wise	bound-constraint	on	transform-domain	coefficients:

Not	clear	how	this	could	help	in	Wavelet,	Curvelet	or	Fourier-domain.
Useful	in	discrete-gradient	domain:

A = In ⌦Dz Dz =
1

hz

0

BBB@

�1 1
�1 1

. . .
. . .
�1 1

1

CCCA

C ⌘ {m | bl  Am  bu}
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Transform-domain bounds / slope constraints

21

																																																										with	

Interpretation:
Limit	the	medium	parameter	variation	
per	distance	unit.

Can	select	different	bounds	for	increasing	
values	and	decreasing	values.

C ⌘ {mi | bl
i  Ami  bu

i } A = In ⌦Dz

Dz =
1

hz

0
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Transform-domain bound constraints
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constraint on vertical derivative
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smoothness (through constraint on vertical derivative) 
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True velocity model
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arbitrary	medium	parameter	increase,
limited	medium	parameter	decrease
with	depth	
->induces	monotonicity

limited	increase	and	limited	decrease			
->induces	vertical	smoothness
->still	allows	small	velocity	jumps
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Design principles

Constrained	optimization:

Software	is	designed	to	build	on	top	of	existing	algorithms:

• use	any	code	which	provides	function	value	and	gradient	
• need	to	provide	projector	onto	each		constraint	set
• define	arbitrary	number	of	convex	and	non-convex	constraint	sets
• assumes	nonempty	intersection	of	constraints
• all	iterates	satisfy	all	constraints

23

min
m

f(m) s.t. m 2
p\

i=1

Ci
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Nested optimization strategy

24

Solution	is	computed	by	3	levels	of	nested	optimization/computations:
1. Algorithm	for	nonconvex	(smooth	+	nonsmooth)		optimization	

2. Algorithm	computing	the	projection	onto	an	intersection

3. Projection	onto	each	set	separately

PC(m) = argmin
x

kx�mk2 s.t. x 2
p\

i=1

Ci.

PCi(m) = argmin
x

kx�mk2 s.t. x 2 Ci.

min
m

f(m) s.t. m 2
p\

i=1

Ci
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end
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Dykstra’s algorithm
Toy	example:
find	projection	onto	intersection	of	circle	&	square

Algorithm 1 Dykstra.
x0 = m, p0 = 0, q0 = 0
For k = 0,1, . . .

yk = PC1(xk + pk)
pk+1 = xk + pk � yk
xk+1 = PC2(yk +qk)
qk+1 = yk +qk � xk+1

End

each set separately. This is a cheap and simple algorithm and therefore allows to find projections onto
complicated intersections of sets. The algorithm is given by #alg1.

A toy exmaple of the trajectory the iterates follow is shown in figure 1 .
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Figure 1: The trajectory of Dykstra’s algorithm for a toy example with constraints y � 2 and x2 + y2  3.
Iterates 5, 6 and 7 coinside, the algorithm converged to the point closest to point number 1 and satisfying
both constraints. Note that the projection onto convex sets (POCS) algorithm would converge at point
number 3 and is clearly unsuitable for this type of projection problem.

While the gradient-projection algorithm is a solid approach, it can also be relatively slowly converging.
A potentially much faster algorithm is the class of quasi-Newton methods, which iteratively try to
approximate the Hessian by using just gradient and function value information. However, in general it
is not possible to just project quasi-Newton steps onto a convex set, just as in the gradient-projection
algorithm. The use of second-order information may cause a projected step to point in the opposite
direction and in general does not solve problem 5, but converges to a solution which does not correspond
to the problem. There are slighly more complicated algorithms which properly implement a projected
quasi-Newton algorithm. We select the projected-quasi-Newton (PQN) algorithm by Schmidt et al. (2009).
This algorithm finds a search direction which is in the intersection of the convex sets using the spectral
projected gradient algorithm (SPG) as a subproblem of an L-BFGS-like algorithm. This algorithm need
the objective function value, f (m) , its gradient and an algorithm to solve the projection problem 6. This
algorithm has very similar computational cost as the standard LBFGS algorithm, because the projections
are cheap to compute. See Schmidt et al. (2009) for some examples of strong emperical performance of
PQN versus projected-gradient for some non-geophysical examples.

The final algorithm is given by.

77th EAGE Conference & Exhibition 2015
IFEMA Madrid, Spain, 1–4 June 2015

Only	needs	projections	onto	each	set	separately!

Feasible	set Feasible	set
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Projection computation

31

If	no	closed	form	solution	is	available:	reformulate	and	solve	using	ADMM.
This	works	for	all	transform-domain	norm/cardinality/bounds

PC(m) = argmin
x

1

2
kx�mk22 s.t x 2 C

PC(m) = argmin
x

1

2
kx�mk22 s.t x 2 C

= argmin
x

1

2
kx�mk22 s.t kAxk  �

= argmin
x

1

2
kx�mk22 s.t kzk  � , Ax = z
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Projection computation

32

If	no	closed	form	solution	is	available:	reformulate	and	solve	using	ADMM.
This	works	for	all	transform-domain	norm/cardinality/bounds

PC(m) = argmin
x

1

2
kx�mk22 s.t x 2 C

PC(m) = argmin
x

1

2
kx�mk22 s.t x 2 C

= argmin
x

1

2
kx�mk22 s.t card(Ax)  �

= argmin
x

1

2
kx�mk22 s.t card(z)  � , Ax = z
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Projection computation

33

If	no	closed	form	solution	is	available:	reformulate	and	solve	using	ADMM.
This	works	for	all	transform-domain	norm/cardinality/bounds

PC(m) = argmin
x

1

2
kx�mk22 s.t x 2 C

PC(m) = argmin
x

1

2
kx�mk22 s.t x 2 C

= argmin
x

1

2
kx�mk22 s.t b

l  Ax  b

u

= argmin
x

1

2
kx�mk22 s.t b

l  z  b

u , Ax = z
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Projection computation

34

%obtain projector function handle
%A: transform domain operator

%proj_z projector onto norm-ball, bounds or cardinality
proj_z=@(input) project_l1_norm(input,sigma)

proj_TV=@(input) P_ADMM(input,A,proj_z)

PC(m) = argmin
x

1

2
kx�mk22 s.t kzk  � , Ax = z
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Workflow

gradient
User	provided	code	for	FWI

function	value
Optimization	algorithm	which	handles	projections

(projected	&	proximal	algorithms)

vector projected
vector

Algorithm	to	compute	projection	
onto	intersection

Projector	onto	set	1

Projector	onto	set	2

Projector	onto	set	p

model	update	direction
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Code(1)

User	provides	a	code	which	computes	function	values	and	gradients:

%1) set up code to compute function value and gradient

This	is	a	function	handle	which	acts	as:

36

%1) set up code to compute function value and gradient

data_misfit=@(input) compute_misfit_gradient(input,geometry,sources,frequencies);

[f,g]= data_misfit(m);

Tuesday, October 25, 2016



Use	a	script	provided	by	the	toolbox	to	get	projectors	onto	each	constraint	set	
separately.
This	script	requires	informalon	about	the	model	grid	and	possibly	frequencyand	
inilal	model.

		Each	projector	is	a	funclon	handle,	input	is	projected	onto	the	set:

Code(2)

37

%2)obtain projectors onto each set separately
[Proj_bound,Proj_TV,Proj_rank] = setup_constraints(constraint,geometry,m0,frequencies);

output=Proj_TV(input)
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Code(3)

Obtain	the	projector	onto	the	intersection.
Requires	the	function	handles	to	the	separate	projectors	as	input.

Output	is	the	projection	onto	the	intersection.

38

%3)set up Dykstra’s algorithm

Proj_intersect = @(input) Dykstra(input,Proj_bound,Proj_TV,Proj_rank);

Tuesday, October 25, 2016



Code(4)

Call	optimization	algorithm	using	the	data-misfit	&	gradient	
function	handle	and	the	intersection	projector.

39

%4) optimize

m_est = SPG(data_misfit,m0,Proj_intersect);
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Code overview

40

%1) set up code to compute function value and gradient
data_misfit=@(input) compute_misfit_gradient(input,geometry,sources,frequencies);

%2)obtain projectors onto each set separately
[Proj_bound,Proj_TV,Proj_rank] = setup_constraints(constraint,geometry,m0,frequencies);

%3)set up Dykstra’s algorithm
Proj_intersect = @(input) Dykstra(input,Proj_bound,Proj_TV,Proj_rank);

%4) optimize
m_est = SPG(data_misfit,m0,Proj_intersect);
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Numerical examples

(projected)	gradient	descent	is	much	too	slow	in	practice.
Instead,	we	use	(stochastic)	versions	of	gradient	descent	with

• non-monotone	linesearch
• spectral	scaling
• momentum/inertia.

These	methods	are	also	less	prone	go	get	stuck	in	shallow	local	
minimizers	(empirically).
Numerical	examples	use	a	variant	of	(stochastic)	non-monotone	
spectral	projected	gradient.

41
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Frequency domain FWI example 3 – Salt structure

Frequency	batches:

42

{3, 3.33, 3.67, 4}, {4, 4.33, 4.67, 5}, {. . . }, {12, 12.33, 12.67, 13}
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Frequency domain FWI example 3 – Salt structure

43

Bounds only, cycle 1
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Bounds only, cycle 2
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Bounds only, cycle 3
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Bound	constraints	only,	restart	3	times
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Frequency domain FWI example 3 – Salt structure

44

Questions:	
• How	can	constraints	help?
• Which	constraints?
• How	to	select	the	associated	parameters?
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Frequency domain FWI example 3 – Salt structure

45

Bounds and transform domain bounds, cycle 1
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A	possible	strategy:
Only	use	bound	constraints	to	see	
what	works	and	what	does	not.

Observations:
• Top	of	salt	looks	good.
• Velocity	drops	down	to	

minimum	just	below	the	top.
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Frequency domain FWI example 3 – Salt structure

46

Need	to	prevent	the	velocity	to	drop	quickly	in	the	depth	direction.
One	option:	pointwise	slope	constraints	(as	before):

In	this	example										means

In	words:	
velocity	can	increase	with	depth,	unbounded.	
velocity	can	only	slowly	decrease	with	depth.							=	small	negative	number

C ⌘ {m | bl  Am  bu}

Am bl
i 

mi+1,j �mi,j

hz
 1

bl
i
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Use	previous	result	as	initial	guess	&	
rerun	inversion.

Salt	is	extended	downwards,	but	our	
current	constraints	do	now	allow	a	
sharp	salt	bottom.	

Solution...

Frequency domain FWI example 3 – Salt structure

47

Bounds and transform domain bounds, cycle 1
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Bounds and transform domain bounds, cycle 2
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Bounds and transform domain bounds, cycle 2
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Bounds and transform domain bounds, cycle 3
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Turn	of	slope	constraints	&	rerun	with	
just	bound	constraints.

Salt	bottom	is	much	sharper,	but	not	
perfect.

Frequency domain FWI example 3 – Salt structure
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Frequency domain FWI example 4 – sediments

Another	strategy	if	we	do	not	have	much	prior	information:
• Combine	many	‘weak’	constraints.
• Each	constraint	eliminates	a	class	of	physically	unrealistic	models.
• The	intersection	is	then	a	more	‘powerful’	constraint	set.
• Philosophy:	describe	what	the	model	should	not	look	like.

49
Tuesday, October 25, 2016



Frequency domain FWI example 4 – sediments
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Initial velocity model
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left	side	of	the	Marmousi	model
10	simultaneous	sources
zero	mean	Gaussian	noise
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Frequency domain FWI example 4 – sediments
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Initial velocity model
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left	side	of	the	Marmousi	model
10	simultaneous	sources
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bound constraints only

0 500 1000 1500 2000 2500 3000 3500

x [m]

0

500

1000

1500

2000

2500

3000

z 
[m

]

1500

2000

2500

3000

3500

4000

4500

Bound	constraints	only
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True velocity model
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Frequency domain FWI example 4 – sediments

52

Now	use	all	of	the	prior	information	below:
1.Bound	constraints
2.Reasonable	initial	model	->	tighten	bounds	to	start	model	+/-	1000	m/s
3.Coarse	structure	is	blocky	->	limit	the	total-variation	a	little	bit
4.Approximately	layered,	except	the	bottom	->	rank	constraint
5.No	large	jumps	in	the	horizontal	direction	->	slope	constraint	on	horizontal	gradient.
6.Small	number	of	horizontal	velocity	jumps->limit	cardinality	of	horizontal	gradient.
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Frequency domain FWI example 4 – sediments
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Much	better	model	estimate.
Bottom	part	not	estimated	well,	because	it	was	not	described	by	the	constraints.

All	constraints	simultaneously
all constraints
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True velocity model
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Frequency domain FWI example 4 – sediments
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True	model
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Convex vs non-convex sets
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convex
pro:

• Dykstra	&	ADMM	will	converge
• Any	other	algorithms	can	be	swapped	in	and	it	will	work	as	well.

con:
• Constraint	definition	sometimes	not	intuitive	or	difficult	to	estimate.
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Convex vs non-convex sets
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non-convex
pro:

• Constraint	definition	is	often	more	intuitive.

con:
• Dykstra	&	ADMM	may	not	find	projections,	but	approximations.
• Any	other	algorithm	needs	to	be	carefully	tested	for	robustness	in	case	
of	non-convex	sets.
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Related geophysical work (1)

[A.	Baumstein,	2013]	.	This	work	attempts	to	find	the	projection	onto	an	intersection	using	
POCS,	for	different	constraints.	Includes	preconditioner	in	the	projected	gradient	algorithm.	
May	not	converge.
[E.	Esser	et.	al.,	2014;	2015]	(UBC	Tech	report;	EAGE	2015).	Similar	philosophy/ideas	&	problem	
formulation,	different	constraints	and	algorithms.
[B.	Peters,	B.	R.	Smithyman	&	F.J.	Herrmann,	2015]	(UBC	Tech	report)	projected	quasi-Newton	based	
version	of	this	presentation.
[B.	R.	Smithyman,	B.	Peters	&	F.J.	Herrmann,	2015]	(EAGE,2015).	About	real	land	dataset,	uses	
projected	quasi-Newton.	
[S.	Becker	et.	al.,	2015].	(EAGE,2015)	Also	uses	projected/proximal	quasi-Newton,	for	projections	
onto	a	single	set.	Curvelet	domain	sparsity/TV.
[B.	Peters,	Z.	Fang,	B.	R.	Smithyman	&	F.J.	Herrmann,	2015]	(submitted	to	SEG	2015	conference).	About	
the	Chevron	blind-test	dataset	(2014).	Projected	Newton-type	using	ADMM.
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Related geophysical work (2)
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Conclusions & remarks

59

Non-convex	sets	may	be	easier	to	use.
Current	algorithms	perform	sufficiently	well	with	non-convex	sets,	if	
combined	with	other	sets.
Working	with	non-convex	sets	is	an	active	research	topic,	expect	improved	
robustness	in	the	near	future.

Suitable	for	any	nonlinear	inverse	problem.
All	software	is	available	at	our	Github	(Matlab).
Almost	finished:	compiled	Matlab,	variables	passed	as	filenames.
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