Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Asymmetric sampling in time-lapse seismic acquisition Felix Oghenekohwo

Thursday, October 27, 2016

Asymmetric sampling in time-lapse seismic acquisition Felix Oghenekohwo*, Haneet Wason, Felix J. Herrmann

Thursday, October 27, 2016

Challenges

Expensive dense multi-azimuth surveys

Source/receiver replication among time-lapse (4D) surveys

Need for high-fidelity 4D data repeatability

Solution

Compressed sensing inspired cheap acquisition

Avoid source/receiver replication

Exploit common information in vintages

(IRM)

- Improve 4D data repeatability using the joint recovery model

Joint recovery model (JRM)

Distributed compressed sensing [Baron et al., (2009)]

Enable low-cost time-lapse acquisition design & processing

Time-lapse imaging (w/ multiples) & FWI

Felix Oghenekohwo, Haneet Wason, Ernie Esser and Felix J. Herrmann "Low-cost time-lapse seismic with distributed Compressive Sensing---exploiting common information amongst the vintages" (To appear in Geophysics)

Haneet Wason, Felix Oghenekohwo, and Felix J. Herrmann "Cheap time-lapse with distributed Compressive Sensing---impact on repeatability" (To appear in Geophysics)

Joint recovery model (JRM)

Key idea:

- with sparse recovery
- common component observed by all surveys

Invert for common components & innovation w.r.t. common components

Joint recovery model (JRM)

sparsity-promoting minimization:

$$\tilde{\mathbf{z}} = \arg\min_{\mathbf{z}} \|\mathbf{z}\|_{1}$$

support detection

$$\tilde{\mathbf{z}} = \begin{bmatrix} \tilde{\mathbf{z}}_0 \\ \tilde{\mathbf{z}}_1 \\ \tilde{\mathbf{z}}_2 \end{bmatrix}$$
time-lapse

Key idea:

- with sparse recovery
- common component observed by all surveys

Invert for common components & innovation w.r.t. common components

Acquisition design : examples

Time-jittered sources a.k.a. Sim. src. or blended acquisition

(Wason and Herrmann, 2013)

Simultaneous long offset (SLO) (Long et al., 2010)

Coil shooting

(Moldoveanu et al., 2010)

Randomized (jittered) source sampling

(Hennenfent and Herrmann, 2008)

... any design w/ randomness

Acquisition design : examples

Time-jittered sources a.k.a. Sim. src. or blended acquisition

(Wason and Herrmann, 2013)

Simultaneous long offset (SLO) (Long et al., 2010)

Coil shooting

(Moldoveanu et al., 2010)

Randomized (jittered) source sampling

(Hennenfent and Herrmann, 2008)

... any design w/ randomness

Randomly missing sources

Seismic example

NRMS: [Kragh and Christie (2002)]

Context

Time-lapse AVO is of interest - for inversion purposes

Pre-stack (repeatability) data analysis is desirable

NRMS is a suitable metric to validate repeatability

Optimize cost of time-lapse surveys to meet 4D objectives

NRMS: [Kragh and Christie (2002)]

NRMS

Metric for quantifying repeatability

$RMS(\mathbf{x}_t) =$

: number of samples in interval \mathcal{N} NRMS : similarity between two signals

$NRMS(\mathbf{x_1}, \mathbf{x_2}) = \frac{200 \times RMS(\mathbf{x_1} - \mathbf{x_2})}{RMS(\mathbf{x_1}) + RMS(\mathbf{x_2})}$

$$\sqrt{\frac{\sum_{t_1}^{t_2} (\mathbf{x}_t)^2}{N}}$$

- 0% : ideal, perfect repeatability
- $\ll 10\%$: acceptable repeatability

Time-lapse seismic acquisition & repeatability

Experiment

One common receiver gather (OBN) 4secs record length @ 4ms sample interval 150 shots per receiver gather Time-lapse amplitude scaled by factor of 10 Randomly subsample shots & recovery Validate repeatability & time-lapse fidelity

Extendable to other randomized sampling acquisition scenarios

Ground truth

Baseline

Monitor

Time lapse (Gain : X 10)

Assuming no time-lapse (Earth model doesn't change)

Ground truth

Baseline

Monitor

Time-lapse

Sampling scheme

ON-THE-GRID SAMPLING ("exact" replication)

- (a) dense sampling
- (b) first random subsampling
- (c) second randomly subsampling(NO overlap with (b))

Assume no time-lapse

Acquire and recover data

Compare Independent recovery (IRS) with our JRM

Measure the repeatability (NRMS) of recovered data

Pre-stack (repeatability) data analysis may be desirable

Recovery Baseline (IRS) (50% missing)

Monitor (65% missing)

Time lapse NRMS: 20%

Recovery (JRM)

Baseline (50% missing)

Monitor (65% missing)

Time lapse NRMS: 1.9%

Recovery (JRM)

Baseline

Monitor

Time lapse

NRMS: 1.9%

Excellent repeatability

Should we acquire more data for the baseline or vice-versa?

Asymmetric sampling & JRM

Ground truth

Baseline

Monitor

Time lapse (Gain : X 10)

Experiments w/ Asymmetric sampling

Acquire and recover data

- with baseline (50% missing), monitor (65% missing)
- with baseline (60% missing), monitor (55% missing)

Recovery with only JRM

Measure the recovery quality (SNR)

Compute time-lapse SNR in area of interest

Ground truth

Baseline

Monitor

Time lapse

Recovery Baseline (JRM) (23.5 dB, 50% missing)

Monitor (23.3 dB, 65% missing)

Time lapse (6.39 dB)

Recovery (JRM) (25 Baseline (25.4 dB, 60% missing)

Monitor (25.1 dB, 55% missing)

Time lapse (6.65 dB)

Summary

- Time-lapse acquisition design & recovery w/ JRM
- Repeatability w/ JRM, measured by NRMS, can serve as yardstick for survey validation
- Preserve pre-stack time-lapse signal
- More in-depth study on more realistic acquisitions on different geological models need to be investigated

Next step

Simulation-based 3D time-lapse acquisition (static/ dynamic) design, and QC on two realistic geological settings Preliminary results promising (next talk)

Validation on field data

Acknowledgements

support of the member organizations of the SINBAD Consortium.

This research was carried out as part of the SINBAD project with the

