Low-Rank Matrix Recovery for Parallel Architectures

Oscar López and Rajiv Kumar

SLIMe
University of British Columbia

Motivation

- Large-scale data processing
- interpolate missing data
- source separation
- Exploit low-rank structure of seismic data (2D \& 3D)
- SVD-free rank penalization techniques
- Need to improve time complexity
- use efficient optimization schemes
- design for parallel architectures

Contributions

Decoupling Method

- decompose into independent ℓ_{2} - minimization problems
- solve in parallel architectures
- parameter free approach

Outline

- Methodology
- decoupling method
- Numerical Experiments

Methodology

want to minimize nuclear norm

$$
\min _{\mathbf{X}}\|\mathbf{X}\|_{*} \text { s.t. }\|\mathcal{A}(\mathbf{X})-\mathbf{b}\|_{F}^{2} \leq \sigma
$$

where $\|\mathbf{X}\|_{*}=\sum_{i=1}^{m} \lambda_{i}=\|\lambda\|_{1}$
and λ_{i} are the singular values.

Methodology

want to minimize nuclear norm

$$
\begin{gathered}
\min _{\mathbf{X}}\|\mathbf{X}\|_{*} \text { s.t. }\|\mathcal{A}(\mathbf{X})-\mathbf{b}\|_{F}^{2} \leq \sigma^{\prime} \\
\text { where }\|\mathbf{X}\|_{*}=\sum_{i=1}^{m} \lambda_{i}=\|\lambda\|_{1} \quad \text { Assume uniform noise model }
\end{gathered}
$$

and λ_{i} are the singular values.

Nuclear Norm via Factorization

$\mathbf{X}=\mathbf{L R}^{H}$

Nuclear norm is given as

$$
\|\mathbf{X}\|_{*}=\min _{\mathbf{L R}^{H}=\mathbf{x}} \frac{1}{2}\left(\|\mathbf{L}\|_{F}^{2}+\|\mathbf{R}\|_{F}^{2}\right)
$$

where $\|.\|_{F}^{2}$ is sum of squares of all entries.

Nuclear Norm Minimization- Factorized Form

Choosing $r \ll \min (m, n)$, we now solve

$$
\min _{\mathbf{L} \in \mathbb{R}^{n \times r}, \mathbf{R} \in \mathbb{R}^{m \times r}} \frac{1}{2}\left(\|\mathbf{L}\|_{F}^{2}+\|\mathbf{R}\|_{F}^{2}\right) \text { s.t. }\left\|\mathcal{A}\left(\mathbf{L R}^{H}\right)-\mathbf{b}\right\|_{F}^{2} \leq \sigma
$$

Aravkin, Kumar, Mansour, Recent and Herrmann. "Fast Methods For
SPG-LR implementation: Denoising Matrix Completion Formulations, With Applications To Robust Seismic Data Interpolation". SIAM 2014
(more details of this approach in Rajiv's talk)

Nuclear Norm Minimization- Factorized Form

Choosing $r \ll \min (m, n)$, we now solve

Alternating approach: optimize over a single factor at a time

Kumar, Lopez, Davis, Aravkin and Herrmann. "Beating level set methods for 3D seismic data interpolation: a primal-dual alternating approach". IEEE 2016

Kumar, Lopez, Davis, Aravkin and Herrmann. "Beating level set methods for 3D seismic data interpolation: a primal-dual alternating approach". IEEE 2016

Alternating Nuclear Norm Minimization

1. Input: \mathcal{A}, \mathbf{b}
2. Initialize: \mathbf{L}^{0}
3. for $t=0, \ldots, T-1$ do
4.

$$
\mathbf{R}^{t+1}=\min _{\mathbf{R} \in \mathbb{R}^{m \times r}} \frac{1}{2}\|\mathbf{R}\|_{F}^{2} \quad \text { s.t. }\left\|\mathcal{A}\left(\mathbf{L}^{t} \mathbf{R}^{H}\right)-\mathbf{b}\right\|_{F}^{2} \leq \sigma_{t}
$$

5.

$\mathbf{L}^{t+1}=\min _{\mathbf{L} \in \mathbb{R}^{n \times r}} \frac{1}{2}\|\mathbf{L}\|_{F}^{2} \quad$ s.t. $\left\|\mathcal{A}\left(\mathbf{L}\left(\mathbf{R}^{t+1}\right)^{H}\right)-\mathbf{b}\right\|_{F}^{2} \leq \sigma_{t}$
6. end for
7. Return $\tilde{\mathbf{X}}=\mathbf{L}^{T}\left(\mathbf{R}^{T}\right)^{H}$

Kumar, Lopez, Davis, Aravkin and Herrmann. "Beating level set methods for 3D seismic data interpolation: a primal-dual alternating approach". IEEE 2016

Alternating Nuclear Norm Minimization

1. Input: \mathcal{A}, \mathbf{b}
2. Initialize: \mathbf{L}^{0}
3. for $t=0, \ldots, T-1$ do
4.

$\mathbf{R}^{t+1}=\min _{\mathbf{R} \in \mathbb{R}^{m \times r}} \frac{1}{2}\|\mathbf{R}\|_{F}^{2} \quad$ s.t. $\left\|\mathcal{A}\left(\mathbf{L}^{t} \mathbf{R}^{H}\right)-\mathbf{b}\right\|_{F}^{2} \leq \sigma_{t}$ 5.
$\mathbf{L}^{t+1}=\min _{\mathbf{L} \in \mathbb{R}^{n \times r}} \frac{1}{2}\|\mathbf{L}\|_{F}^{2} \quad$ s.t. $\left\|\mathcal{A}\left(\mathbf{L}\left(\mathbf{R}^{t+1}\right)^{H}\right)-\mathbf{b}\right\|_{F}^{2} \leq \sigma_{t}$

Each sub problem
is convex
6. end for
7. Return $\tilde{\mathbf{X}}=\mathbf{L}^{T}\left(\mathbf{R}^{T}\right)^{H}$

Decoupling Method

$$
\mathbf{R}^{t+1}=\underset{\mathbf{R} \in \mathbb{R}^{m \times r}}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{R}\|_{F}^{2} \quad \text { s.t. }\left\|\mathcal{A}\left(\mathbf{L}^{t} \mathbf{R}^{H}\right)-\mathbf{b}\right\|_{F}^{2} \leq \sigma_{t}
$$

Can further decouple each convex sub problem to solve "row-by-row".

Decoupling Method: Matrix Completion

$$
\mathbf{R}^{t+1}=\underset{\mathbf{R} \in \mathbb{R}^{m \times r}}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{R}\|_{F}^{2} \quad \text { s.t. }\left\|\mathcal{A}\left(\mathbf{L}^{t} \mathbf{R}^{H}\right)-\mathbf{b}\right\|_{F}^{2} \leq \sigma_{t}
$$

Example: Matrix Completion for data interpolation

$$
\mathcal{A}(\mathbf{X})_{i, j}=\left\{\begin{array}{cl}
\mathbf{X}_{i, j} \text { if }(i, j) \in \Omega \\
0 & \text { otherwise }
\end{array}\right.
$$

where Ω is the set of observed matrix entries.

Decoupling Method: Visualization

Decoupling Method: Visualization
ℓ-th column

$\mathbf{R}^{t+1}(\ell,:)=\arg \min _{v \in \mathbb{R}^{r}}\|v\|_{2}$ s.t. $\left\|\mathcal{A}_{\ell}\left(\mathbf{L}^{t} v\right)-\mathbf{b}(:, \ell)\right\|_{2}^{2} \leq \frac{\sigma_{t}}{m}$

Decoupling Method: Matrix Completion

So we can solve for rows independently: $1 \leq \ell \leq m$

$$
\mathbf{R}^{t+1}(\ell,:)=\arg \min _{v \in \mathbb{R}^{r}}\|v\|_{2} \text { s.t. }\left\|\mathcal{A}_{\ell}\left(\mathbf{L}^{t} v\right)-\mathbf{b}(:, \ell)\right\|_{2}^{2} \leq \frac{\sigma_{t}}{m}
$$

where \mathcal{A}_{ℓ} is the action of \mathcal{A} on the ℓ-th column.

Decoupling Method: Matrix Completion

$$
\mathbf{R}^{t+1}(\ell,:)=\arg \min _{v \in \mathbb{R}^{r}}\|v\|_{2} \text { s.t. }\left\|\mathcal{A}_{\ell}\left(\mathbf{L}^{t} v\right)-\mathbf{b}(:, \ell)\right\|_{2}^{2} \leq \frac{\sigma_{t}}{m}
$$

Many methods to solve residual constrained ℓ_{2} - minimization:

- SPG- ℓ_{1} (Pareto curve approach)
- primal-dual splitting (for blocks of rows)
- Matlab’s backslash (QR factorization)

Decoupling Method: Matrix Completion

$$
\mathbf{R}^{t+1}(\ell,:)=\arg \min _{v \in \mathbb{R}^{r}}\|v\|_{2} \text { s.t. }\left\|\mathcal{A}_{\ell}\left(\mathbf{L}^{t} v\right)-\mathbf{b}(:, \ell)\right\|_{2}^{2} \leq \frac{\sigma_{t}}{m}
$$

Many methods to solve residual constrained ℓ_{2} - minimization:

- SPG- ℓ_{1} (Pareto curve approach)
- primal-dual splitting (for blocks of rows)
- Matlab's backslash

> optimized by Matlab, requires no parameters!

Pseudlo Code: solve for $\mathbf{R}^{t+1}(\ell,:)$

1.Input: $\mathbf{L}^{t}, \Omega_{\ell}, \mathbf{b}(:, \ell)$
observed indices of ℓ-th column

Pseudlo Code: solve for $\mathbf{R}^{t+1}(\ell,:)$

1.Input: $\mathbf{L}^{t}, \Omega_{\ell}, \mathbf{b}(:, \ell)$
2. $\tilde{\mathbf{L}}=\mathbf{L}_{\Omega_{\ell}}^{t} \quad$ restrict rows of fixed factor according to Ω_{ℓ}
3. $\tilde{\mathbf{b}}=\mathbf{b}\left(\Omega_{\ell}, \ell\right) \quad$ restrict observations according to Ω_{ℓ}
4. $\mathbf{R}^{t+1}(\ell,:)=\tilde{\mathbf{L}} \backslash \tilde{\mathbf{b}} \quad$ QR factorization

Decoupling Method in Action

Decoupling Method in Action

worker k

Decoupling Method in Action

Decoupling Method in Action

worker k

Decoupling Method in Action

Decoupling Method in Action

...and so on solve for $\left(\mathbf{L}^{2}, \mathbf{R}^{2}\right),\left(\mathbf{L}^{3}, \mathbf{R}^{3}\right), \ldots,\left(\mathbf{L}^{T}, \mathbf{R}^{T}\right)$

Decoupling Method

-Parallelizable: assign set of rows to each worker.
-Similar approaches can be designed for other \mathcal{A} (see Rajiv's talk).
-Can efficiently solve each sub problem.

- Methodology
- decoupling method
- Numerical Experiments

Interpolation: Synthetic BG 3D Model

- 67×67 sources with 401×401 receivers
- Data at 7.34 Hz and 12.3 Hz .
- Matricize in "(rec,rec)"-form

Data Matricized - (rec,rec) form

Data Matricized - (rec,rec) form

3D Interpolation Experiment

Size: 26,867 x 26,867 (full slice, no windowing)

Remove 80 \% of Receivers randomly

Compare Interpolation via:

- SPG-LR
- Decoupling Method

How to choose the rank parameter?

Typical abridged result from low-rank matrix recovery theory:

If $\mathcal{A}: \mathbb{C}^{n \times m} \mapsto \mathbb{C}^{k}$ is a random linear operator (e.g., Ω chosen randomly, subgaussian), then can recover a rank- r matrix via nuclear norm minimization if

$$
k \geq C r \max (n, m) \log (\max (n, m))
$$

with high probability.

How to choose the rank parameter?

$$
k \geq C r \max (n, m) \log (\max (n, m))
$$

In our case: $k=.2 \cdot n m$

$$
n=m=26,867
$$

(with $C=1$ and rounding) $\quad \Rightarrow \quad r \leq 527$
choose upper bound as rank.

Common Source Gather

Remove 80% of Receivers randomly

Results: SPG-LR

SPG- ℓ_{1} iterations: 400
$S N R=26.1 \mathrm{~dB}$

Time $=82 \mathrm{hrs}$ and 40 min

Results: SPG-LR

SPG- ℓ_{1} iterations: 400
$S N R=26.1 \mathrm{~dB}$

Time $=82 \mathrm{hrs}$ and 40 min

Results: Decoupling Method

40 processors

Alternations: 2
$S N R=16 d B$

Time $=1 \mathrm{hrs}$ and 28 mins

Results: Decoupling Method

40 processors

Alternations: 5

SNR $=24.3 \mathrm{~dB}$

Time $=3 \mathrm{hrs}$ and 47 mins

Results: Decoupling Method

40 processors

Alternations: 7

SNR $=25.3 \mathrm{~dB}$

Time $=5 \mathrm{hrs}$ and 20 mins

Results: Decoupling Method

True Source Gather

Difference Plot

40 processors

Alternations: 7

SNR $=25.3 \mathrm{~dB}$

Time $=5 \mathrm{hrs}$ and 20 mins

3D Interpolation Experiment

Size: 26,867 x 26,867
(full slice, no windowing)

Remove 80 \% of Receivers randomly

Compare Interpolation via:

- SPG-LR
- Decoupling Method

Common Source Gather

True Source Gather

Subsampled Source Gather

Remove 80% of Receivers randomly

Results: SPG-LR

True Source Gather

Recovered Source Gather

SPG- ℓ_{1} iterations: 400

SNR $=20.5 \mathrm{~dB}$

Time $=137$ hrs and 20 min

Results: SPG-LR

True Source Gather

Difference Plot

SPG- ℓ_{1} iterations: 400

SNR $=20.5 \mathrm{~dB}$

Time $=137$ hrs and 20 min

Results: Decoupling Method

True Source Gather

Recovered Source Gather

40 processors

Alternations: 2
$S N R=12.4 \mathrm{~dB}$

Time $=1 \mathrm{hrs}$ and 43 mins

Results: Decoupling Method

True Source Gather

Recovered Source Gather

40 processors

Alternations: 5
$\mathrm{SNR}=19 \mathrm{~dB}$

Time $=4 \mathrm{hrs}$ and 43 mins

Results: Decoupling Method

True Source Gather

Recovered Source Gather

40 processors

Alternations: 7
$S N R=20 \mathrm{~dB}$

Time $=6 \mathrm{hrs}$ and 19 mins

Results: Decoupling Method

True Source Gather

Difference Plot

40 processors

Alternations: 7
$S N R=20 \mathrm{~dB}$

Time $=6 \mathrm{hrs}$ and 19 mins

Computation Time vs. \# of Processors

Matrix Size: 26,867 x 26,867
(full slice, no windowing)

Computation time of 1 alternation

Conclusions

- Significant improvement in computation time
- Equivalent SNR output
- No need to form full matrices
- Parameter free

Future Work

- Design for other measurement operators, \mathcal{A} (see Rajiv's talk).
- Fully parallel version
- design for distributed arrays, e.g., distributed QR factorization.
- no need to store full factor in each worker.
- Julia implementation.

Fully Parallel Version

worker k

Acknowledgements

This research was carried out as part of the SINBAD project with the support of the member organizations of the SINBAD Consortium.

Software release coming soon

Thank you for your attention!

