Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Low-Rank Matrix Recovery for Parallel Architectures

Oscar López and Rajiv Kumar

SLM University of British Columbia

Motivation

- Large-scale data processing - interpolate missing data - source separation
- Exploit *low-rank* structure of seismic data (2D & 3D) - SVD-free rank penalization techniques
- Need to improve time complexity - use efficient optimization schemes - design for parallel architectures

Contributions

Decoupling Method - solve in parallel architectures - parameter free approach

- decompose into independent ℓ_2 - minimization problems

Outline

Methodology decoupling method

Numerical Experiments

Tuesday, October 25, 2016

Methodology

want to minimize nuclear norm

 $\min_{\mathbf{X}} \|\mathbf{X}\|_* \quad \text{s.t.} \quad \|\mathcal{A}(\mathbf{X}) - \mathbf{b}\|_F^2 \leq \sigma$

where
$$\|\mathbf{X}\|_* = \sum_{i=1}^m \lambda_i = \|\lambda\|_1$$

and λ_i are the *singular* values.

Methodology

want to minimize nuclear norm

 $\min_{\mathbf{X}} \|\mathbf{X}\|_* \quad \text{s.t.} \quad \|\mathcal{A}(\mathbf{X}) - \mathbf{b}\|_F^2 \le \sigma$ Assume uniform noise model (evenly distributed through matrix)

where
$$\|\mathbf{X}\|_* = \sum_{i=1}^m \lambda_i = \|\lambda\|_1$$

and λ_i are the singular values.

Nuclear Norm via Factorization $\mathbf{X} = \mathbf{L}\mathbf{R}^H$

Nuclear norm is given as

 $\|\mathbf{X}\|_{*} = \min_{\mathbf{L},\mathbf{R}^{H}=\mathbf{X}} \frac{1}{2} (\|\mathbf{L}\|_{F}^{2} + \|\mathbf{R}\|_{F}^{2})$

where $\|\cdot\|_F^2$ is sum of squares of all entries.

Nuclear Norm Minimization- Factorized Form

Choosing $r \ll \min(m, n)$, we now solve

$$\min_{\mathbf{L}\in\mathbb{R}^{n\times r},\mathbf{R}\in\mathbb{R}^{m\times r}}\frac{1}{2}(\|\mathbf{L}\|_F^2 + \|\mathbf{R}\|_F^2) \quad \text{s.t.} \quad \|\mathcal{A}(\mathbf{L}\mathbf{R}^H) - \mathbf{b}\|_F^2 \le \sigma$$

Aravkin, Kumar, Mansour, Recent and Herrmann. "Fast Methods For SPG-LR implementation: **Denoising Matrix Completion Formulations, With Applications To Robust Seismic Data Interpolation". SIAM 2014**

(more details of this approach in Rajiv's talk)

Nuclear Norm Minimization - Factorized Form

Choosing $r \ll \min(m, n)$, we now solve

Alternating approach: optimize over a single factor at a time

Kumar, Lopez, Davis, Aravkin and Herrmann. "Beating level set methods for 3D seismic data interpolation: a primal-dual alternating approach". IEEE 2016

Kumar, Lopez, Davis, Aravkin and Herrmann. "Beating level set methods for 3D seismic data interpolation: a primal-dual alternating approach". IEEE 2016

Alternating Nuclear Norm Minimization

1. Input: \mathcal{A}, \mathbf{b} 2. Initialize: \mathbf{L}^{0} 3. for t = 0, ..., T - 1 do 4. $\mathbf{R}^{t+1} = \min_{\mathbf{R} \in \mathbb{R}^{m \times r}} \frac{1}{2} ||\mathbf{R}||_F^2 \quad \text{s.t.} \quad ||\mathcal{A}(\mathbf{L}^t)||_F$ 5. 6. end for 7. Return $\tilde{\mathbf{X}} = \mathbf{L}^T (\mathbf{R}^T)^H$

$$|\mathbf{F}^{H}(\mathbf{R}^{H}) - \mathbf{b}||_{F}^{2} \leq \sigma_{t}$$

$$(t+1)^H) - \mathbf{b}||_F^2 \le \sigma_t$$

Kumar, Lopez, Davis, Aravkin and Herrmann. "Beating level set methods for 3D seismic data interpolation: a primal-dual alternating approach". IEEE 2016

Alternating Nuclear Norm Minimization

1. Input: \mathcal{A}, \mathbf{b} 2. Initialize: \mathbf{L}^{0} 3. for t = 0, ..., T - 1 do 4. $\mathbf{R}^{t+1} = \min_{\mathbf{R} \in \mathbb{R}^{m \times r}} \frac{1}{2} ||\mathbf{R}||_F^2 \quad \text{s.t.} \quad ||\mathcal{A}(\mathbf{L}^t \mathbf{R}^H) - \mathbf{b}||_F^2 \le \sigma_t$ 5. $\mathbf{L}^{t+1} = \min_{\mathbf{L} \in \mathbb{R}^{n \times r}} \frac{1}{2} ||\mathbf{L}||_F^2 | \text{s.t.} ||\mathcal{A}(\mathbf{L}(\mathbf{R}^{t+1})^H) - \mathbf{b}||_F^2 \le \sigma_t$ 6. end for 7. Return $\tilde{\mathbf{X}} = \mathbf{L}^T (\mathbf{R}^T)^H$

Decoupling Method

$$\mathbf{R}^{t+1} = \underset{\mathbf{R} \in \mathbb{R}^{m \times r}}{\operatorname{argmin}} \frac{1}{2} ||\mathbf{R}||_{F}^{2} \quad \text{s.t.} \ ||\mathcal{A}||_{F}^{2}$$

Can further decouple each convex sub problem to solve "row-by-row".

$A(\mathbf{L}^t \mathbf{R}^H) - \mathbf{b}||_F^2 \le \sigma_t$

$$\mathbf{R}^{t+1} = \underset{\mathbf{R} \in \mathbb{R}^{m \times r}}{\operatorname{argmin}} \frac{1}{2} ||\mathbf{R}||_{F}^{2} \quad \text{s.t.} \; ||\mathcal{A}(\mathbf{L}^{t}\mathbf{R}^{H}) - \mathbf{b}||_{F}^{2} \leq \sigma_{t}$$

Example: Matrix Completion for data interpolation

$$\mathcal{A}(\mathbf{X})_{i,j} = \begin{cases} \mathbf{X}_{i,j} \\ \mathbf{X}_{i,j} \end{cases}$$

where Ω is the set of observed matrix entries.

- $L_{i,j}$ if $(i,j) \in \Omega$ 0 otherwise

Decoupling Method: Visualization

Decoupling Method: Visualization *ℓ*-th column ℓ -th row \times \mathbf{R}^{H} $\mathbb{R}^{r imes m}$ \subseteq $\mathbb{R}^{n imes m}$ $\mathbf{R}^{t+1}(\ell, :) = \arg\min_{v \in \mathbb{R}^r} \|v\|_2 \quad \text{s.t.} \quad \|\mathcal{A}_{\ell}(\mathbf{L}^t v) - \mathbf{b}(:, \ell)\|_2^2 \le \frac{\sigma_t}{m}$

So we can solve for rows independently: $1 < \ell < m$

$\mathbf{R}^{t+1}(\ell, :) = \arg\min_{v \in \mathbb{R}^r} \|v\|_2 \quad \text{s.t.} \quad \|\mathcal{A}_{\ell}(\mathbf{L}^t v) - \mathbf{b}(:, \ell)\|_2^2 \le \frac{\sigma_t}{m}$

where \mathcal{A}_{ℓ} is the action of \mathcal{A} on the ℓ -th column.

$$\mathbf{R}^{t+1}(\ell, :) = \arg\min_{v \in \mathbb{R}^r} \|v\|_2 \quad \text{s.t.} \quad \|\mathcal{A}_{\ell}(\mathbf{L}^t v) - \mathbf{b}(:, \ell)\|_2^2 \le \frac{\sigma_t}{m}$$

Many methods to solve residual constrained ℓ_2 - minimization: - SPG- ℓ_1 (Pareto curve approach)

- primal-dual splitting (for blocks of rows)
- Matlab's backslash (QR factorization)

$$\mathbf{R}^{t+1}(\ell, :) = \arg\min_{v \in \mathbb{R}^r} \|v\|_2 \quad \text{s.t.} \quad \|\mathcal{A}_{\ell}(\mathbf{L}^t v) - \mathbf{b}(:, \ell)\|_2^2 \le \frac{\sigma_t}{m}$$

- Many methods to solve residual constrained ℓ_2 minimization: - SPG- ℓ_1 (Pareto curve approach)
- primal-dual splitting (for blocks of rows)
- Matlab's backslash

optimized by Matlab, requires no parameters!

Pseudo Code: solve for $\mathbf{R}^{t+1}(\ell, :)$

Pseudo Code: solve for $\mathbf{R}^{t+1}(\ell, :)$

1.Input:
$$\mathbf{L}^t, \Omega_\ell, \mathbf{b}(:, \ell)$$

- 2. $\tilde{\mathbf{L}} = \mathbf{L}_{\Omega_{\ell}}^t$
- 3. $\tilde{\mathbf{b}} = \mathbf{b}(\Omega_{\ell}, \ell)$
- **QR** factorization 4. $\mathbf{R}^{t+1}(\ell, :) = \tilde{\mathbf{L}} \setminus \tilde{\mathbf{b}}$

restrict rows of fixed factor according to Ω_{ℓ}

restrict observations according to Ω_{ℓ}

initial factor (e.g., randomly generated)

output first left factor

...and so on solve for $(\mathbf{L}^2, \mathbf{R}^2), \ (\mathbf{L}^3, \mathbf{R}^3), \ ..., \ (\mathbf{L}^T, \mathbf{R}^T)$

Decoupling Method

Parallelizable: assign set of rows to each worker.

Similar approaches can be designed for other \mathcal{A} (see Rajiv's talk).

Can efficiently solve each sub problem.

Outline

Methodology – decoupling method

Numerical Experiments

Interpolation: Synthetic BG 3D Model

▶ 67 x 67 sources with 401 x 401 receivers

• Data at 7.34 Hz and 12.3 Hz.

Matricize in "(rec,rec)"-form

Data Matricized - (rec,rec) form 7.35 Hz

30

Data Matricized - (rec,rec) form BG 3D Dataset 7.35 Hz

S

3D Interpolation Experiment

Size: 26,867 x 26,867 (full slice, no windowing)

Remove 80 % of Receivers randomly

Compare Interpolation via:

- SPG-LR
- Decoupling Method

How to choose the rank parameter?

minimization if

 $k \ge Cr \max(n, m) \log(\max(n, m))$

with high probability.

Typical abridged result from low-rank matrix recovery theory:

If $\mathcal{A}: \mathbb{C}^{n \times m} \mapsto \mathbb{C}^k$ is a random linear operator (e.g., Ω chosen randomly, subgaussian), then can recover a rank-r matrix via nuclear norm

How to choose the rank parameter?

In our case: $k = .2 \cdot nm$ n = m = 26,867

(with C = 1 and rounding) $\implies r \leq 527$

choose upper bound as rank.

$k \ge Cr \max(n, m) \log(\max(n, m))$

Common Source Gather

True Source Gather

Subsampled Source Gather

Remove 80% of Receivers randomly

Results: SPG-LR

True Source Gather (9 V source X receiver X 300 350 300 350 50 100 150 200 250 $y_{receiver} (y_{source} = 6)$

Recovered Source Gather

SPG- ℓ_1 iterations: 400

SNR = 26.1 dB

Time = 82 hrs and 40 min

Results: SPG-LR

Difference Plot

SPG- ℓ_1 iterations: 400

SNR = 26.1 dB

Time = 82 hrs and 40 min

True Source Gather (9 (9 Ш X receiver (V source V source X receiver 300 300 350 350 50 350 100 50 100 150 200 250 300 $y_{receiver} (y_{source} = 6)$

40 processors

Recovered Source Gather

Alternations: 2

SNR = 16 dB

Time = 1 hrs and 28 mins

True Source Gather (9 V source X receiver X 300 350 350 50 100 150 200 250 300 $y_{receiver} (y_{source} = 6)$

Recovered Source Gather

40 processors

Alternations: 5

SNR = 24.3 dB

Time = 3 hrs and 47 mins

True Source Gather (9 V source X receiver X 300 350 350 50 100 150 200 250 300 $y_{receiver} (y_{source} = 6)$

Recovered Source Gather

40 processors

Alternations: 7

SNR = 25.3 dB

Time = 5 hrs and 20 mins

40 processors

Alternations: 7

SNR = 25.3 dB

Time = 5 hrs and 20 mins

3D Interpolation Experiment

Size: 26,867 x 26,867 (full slice, no windowing)

Remove 80 % of Receivers randomly

Compare Interpolation via:

- SPG-LR
- Decoupling Method

Common Source Gather

True Source Gather

Subsampled Source Gather

Remove 80% of Receivers randomly

Results: SPG-LR

True Source Gather

Recovered Source Gather

SPG- ℓ_1 iterations: 400

SNR = 20.5 dB

Time = 137 hrs and 20 min

Results: SPG-LR

True Source Gather

(9

Difference Plot

SPG- ℓ_1 iterations: 400

$SNR = 20.5 \, dB$

Time = 137 hrs and 20min

True Source Gather 50 100 () V source X receiver 300 350 50 100 150 200 250 350 $y_{receiver} (y_{source} = 6)$

Recovered Source Gather

40 processors

Alternations: 2

SNR = 12.4 dB

Time = 1 hrs and 43 mins

True Source Gather

Recovered Source Gather

40 processors

Alternations: 5

SNR = 19 dB

Time = 4 hrs and 43 mins

True Source Gather

Recovered Source Gather

40 processors

Alternations: 7

SNR = 20 dB

Time = 6 hrs and 19 mins

True Source Gather

Difference Plot

40 processors

Alternations: 7

SNR = 20 dB

Time = 6 hrs and 19 mins

Computation Time vs. # of Processors

Matrix Size: 26,867 x 26,867 (full slice, no windowing)

Computation time of 1 alternation

Conclusions

- Significant improvement in computation time
- Equivalent SNR output
- No need to form full matrices
- Parameter free

Future Work

- Fully parallel version no need to store full factor in each worker.

Julia implementation.

• Design for other measurement operators, \mathcal{A} (see Rajiv's talk).

– design for distributed arrays, e.g., distributed QR factorization.

Acknowledgements

support of the member organizations of the SINBAD Consortium.

Software release coming soon Thank you for your attention!

This research was carried out as part of the SINBAD project with the

